51
|
Carnitine Deficiency and Pregnancy. Case Rep Obstet Gynecol 2015; 2015:101468. [PMID: 26113999 PMCID: PMC4464594 DOI: 10.1155/2015/101468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 12/30/2022] Open
Abstract
We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations.
Collapse
|
52
|
Hitomi T, Matsuura N, Shigematsu Y, Okano Y, Shinozaki E, Kawai M, Kobayashi H, Harada KH, Koizumi A. Importance of molecular diagnosis in the accurate diagnosis of systemic carnitine deficiency. J Genet 2015; 94:147-50. [PMID: 25846890 DOI: 10.1007/s12041-015-0486-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Toshiaki Hitomi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoecho, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Aksglaede L, Christensen M, Olesen JH, Duno M, Olsen RKJ, Andresen BS, Hougaard DM, Lund AM. Abnormal Newborn Screening in a Healthy Infant of a Mother with Undiagnosed Medium-Chain Acyl-CoA Dehydrogenase Deficiency. JIMD Rep 2015; 23:67-70. [PMID: 25763512 DOI: 10.1007/8904_2015_428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 05/08/2023] Open
Abstract
A neonate with low blood free carnitine level on newborn tandem mass spectrometry screening was evaluated for possible carnitine transporter defect (CTD). The plasma concentration of free carnitine was marginally reduced, and the concentrations of acylcarnitines (including C6, C8, and C10:1) were normal on confirmatory tests. Organic acids in urine were normal. In addition, none of the frequent Faroese SLC22A5 mutations (p.N32S, c.825-52G>A) which are common in the Danish population were identified. Evaluation of the mother showed low-normal free carnitine, but highly elevated medium-chain acylcarnitines (C6, C8, and C10:1) consistent with medium-chain acyl-CoA dehydrogenase deficiency (MCADD). The diagnosis was confirmed by the finding of homozygous presence of the c.985A>G mutation in ACADM.
Collapse
Affiliation(s)
- Lise Aksglaede
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Han L, Wang F, Wang Y, Ye J, Qiu W, Zhang H, Gao X, Gong Z, Gu X. Analysis of genetic mutations in Chinese patients with systemic primary carnitine deficiency. Eur J Med Genet 2014; 57:571-5. [PMID: 25132046 DOI: 10.1016/j.ejmg.2014.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 08/01/2014] [Indexed: 12/30/2022]
Abstract
Systemic primary carnitine deficiency (CDSP) is caused by mutations in SLC22A5 gene, which encodes organic cation transporter 2(OCTN2). CDSP leads to skeletal or cardiac myopathy and hepatic encephalopathy. The present study aimed to identify SLC22A5 gene mutations and analyze the potential relationship between genotype and clinical symptoms in 20 Chinese patients with CDSP. The complete coding region of the SLC22A5 gene including intron-exon boundaries were amplified and sequenced in all patients. Eighteen different mutations were found; of which, nine were novel. The mutations clustering in exons 1 and 4 accounted for 66.7% of all mutant alleles (26/39). The c.760C>T (p. R254X) was the most frequent mutation (25.6%, 10/39), suggesting it as an ethnic founder mutation. The relationship between genotype and phenotype was investigated in patients carrying the R254X mutation. Homozygous patients with R254X were late-onset cases who presented with dilated cardiomyopathy and muscle weakness after 1 year of age. Compound heterozygous patients carrying R254X, combined with other missense mutations occurred in very specific positions, dramatically altered OCTN2 protein function. Based on the analysis of case studies, a clear relationship between free carnitine (C0) level in plasma and OCTN2 genotype was not found in the present work, however, the low plasma C0 level could not indicate disease severity or genotype. Further functional studies with a large sample size are required to understand the relationship between R254X mutation and CDSP.
Collapse
Affiliation(s)
- Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Fei Wang
- Department of Pediatric Endocrinology, Children's Hospital, Shanghai Jiaotong University, Shanghai 200040, China
| | - Yu Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaolan Gao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
55
|
Abstract
Carnitine is essential for the transfer of long-chain fatty acids from the cytosol into mitochondria for subsequent β-oxidation. A lack of carnitine results in impaired energy production from long-chain fatty acids, especially during periods of fasting or stress. Primary carnitine deficiency (PCD) is an autosomal recessive disorder of mitochondrial β-oxidation resulting from defective carnitine transport and is one of the rare treatable etiologies of metabolic cardiomyopathies. Patients affected with the disease may present with acute metabolic decompensation during infancy or with severe cardiomyopathy in childhood. Early recognition of the disease and treatment with L-carnitine may be life-saving. In this review article, the pathophysiology, clinical presentation, diagnosis, treatment and prognosis of PCD are discussed, with a focus on cardiac involvements.
Collapse
Affiliation(s)
- Lijun Fu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meirong Huang
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shubao Chen
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
56
|
Hall PL, Marquardt G, McHugh DMS, Currier RJ, Tang H, Stoway SD, Rinaldo P. Postanalytical tools improve performance of newborn screening by tandem mass spectrometry. Genet Med 2014; 16:889-95. [PMID: 24875301 PMCID: PMC4262759 DOI: 10.1038/gim.2014.62] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/30/2014] [Indexed: 12/02/2022] Open
Abstract
Purpose: The purpose of this study was to compare performance metrics of postanalytical interpretive tools of the Region 4 Stork collaborative project to the actual outcome based on cutoff values for amino acids and acylcarnitines selected by the California newborn screening program. Methods: This study was a retrospective review of the outcome of 176,186 subjects born in California between 1 January and 30 June 2012. Raw data were uploaded to the Region 4 Stork Web portal as .csv files to calculate tool scores for 48 conditions simultaneously using a previously unpublished functionality, the tool runner. Scores for individual target conditions were deemed informative when equal or greater to the value representing the first percentile rank of known true-positive cases (17,099 cases in total). Results: In the study period, the actual false-positive rate and positive predictive value were 0.26 and 10%, respectively. Utilization of the Region 4 Stork tools, simple interpretation rules, and second-tier tests could have achieved a false-positive rate as low as 0.02% and a positive predictive value >50% by replacing the cutoff system with Region 4 Stork tools as the primary method for postanalytical interpretation. Conclusion: Region 4 Stork interpretive tools, second-tier tests, and other evidence-based interpretation rules could have reduced false-positive cases by up to 90% in California.
Collapse
Affiliation(s)
- Patricia L Hall
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregg Marquardt
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - David M S McHugh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert J Currier
- California Department of Public Heath, Richmond, California, USA
| | - Hao Tang
- California Department of Public Heath, Richmond, California, USA
| | - Stephanie D Stoway
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Piero Rinaldo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
57
|
Rasmussen J, Køber L, Lund AM, Nielsen OW. Primary Carnitine deficiency in the Faroe Islands: health and cardiac status in 76 adult patients diagnosed by screening. J Inherit Metab Dis 2014; 37:223-30. [PMID: 23963628 DOI: 10.1007/s10545-013-9640-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/05/2013] [Accepted: 07/12/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Carnitine deficiency can cause cardiomyopathy and cardiac arrhythmia. The prevalence in the Faroe Islands is the highest reported in the world (1:300). A nationwide screening program identified 76 Faroese adult patients (15-80 years) with Primary Carnitine Deficiency (PCD). We describe prior and current health status and symptoms in these patients, especially focusing on cardiac characteristics. METHODS Upon identification, patients were immediately admitted for physical examination, ECG, blood tests and initiation of L-carnitine supplementation. Medical records were reviewed and patients were interviewed. Echocardiography and blood tests were performed in 35 patients before and after L-carnitine supplementation. RESULTS All patients were either asymptomatic or had minor symptoms when diagnosed. Echocardiography including LVEF, global longitudinal strain and dimensions were normal apart from left ventricular hypertrophy with normal systolic function in one young male. Symptoms, e.g. fatigue, were reported in 43 % with a reduction to 12 % (p < 0.01) following initiation of L-carnitine supplementation. Eighty two % reported participation in sports of which 52 % were on a competitive level. ECGs showed limited changes and blood tests were normal. Mean plasma free carnitine increased from 6.1 μmol/L to 15.1 μmol/L (p < 0.01) within 50 days of L-carnitine supplementation. CONCLUSION PCD in adults can cause serious symptoms, but adult Faroese patients identified through a screening program were predominantly asymptomatic with a normal cardiac structure and function.
Collapse
Affiliation(s)
- Jan Rasmussen
- Department of Internal Medicine, National Hospital, FO-100, Thorshavn, the Faroe Islands,
| | | | | | | |
Collapse
|
58
|
Sirrs SM, Lehman A, Stockler S, van Karnebeek CDM. Treatable inborn errors of metabolism causing neurological symptoms in adults. Mol Genet Metab 2013; 110:431-8. [PMID: 24427801 DOI: 10.1016/j.ymgme.2013.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The identification of inborn errors of metabolism (IEM) in adults presenting with a wide range of neurological symptoms is a relatively new field in medicine. We sought to identify which treatable IEM have been diagnosed for the first time in adults and generate a protocol for metabolic screening targeting those treatable disorders. METHODS Medline/Pubmed searches of English language literature limited to the adult age group were performed. Diseases identified through this search were then compared to previously published lists of treatable IEM in both adults and children. RESULTS 85% of the treatable conditions known to cause global developmental delay or intellectual disability in children had reports where the diagnosis of that IEM was made in one or more adult patients with neurological symptoms. Screening tests in blood, urine, CSF and MRI can detect most of these treatable conditions but the diagnostic accuracy of these screening tests in adults is not clear. CONCLUSION Treatable IEM need to be considered in the differential diagnosis of neurological symptoms in patients of any age.
Collapse
|
59
|
Chen YC, Chien YH, Chen PW, Leung-Sang Tang N, Chiu PC, Hwu WL, Lee NC. Carnitine uptake defect (primary carnitine deficiency): risk in genotype-phenotype correlation. Hum Mutat 2013; 34:655. [PMID: 23520115 DOI: 10.1002/humu.22286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/11/2012] [Indexed: 11/11/2022]
|
60
|
Chien YH, Lee NC, Chao MC, Chen LC, Chen LH, Chien CC, Ho HC, Suen JH, Hwu WL. Fatty Acid oxidation disorders in a chinese population in taiwan. JIMD Rep 2013; 11:165-72. [PMID: 23700290 PMCID: PMC3755561 DOI: 10.1007/8904_2013_236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 04/14/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fatty acid oxidation (FAO) disorders are a heterogeneous group of inborn errors in the transportation and oxidation of fatty acids. FAO disorders were thought to be very rare in the Chinese population. Newborn screening for FAO disorders beginning in 2002 in Taiwan may have increased the diagnosis of this group of diseases. MATERIALS AND METHODS Till 2012, the National Taiwan University Hospital Newborn Screening Center screened more than 800,000 newborns for FAO disorders. Both patients diagnosed through screening and patients detected after clinical manifestations were included in this study. RESULTS A total of 48 patients with FAO disorders were identified during the study period. The disorders included carnitine palmitoyltransferase I deficiency, carnitine acylcarnitine translocase deficiency, carnitine palmitoyltransferase II deficiency, very long-chain acyl-CoA dehydrogenase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, multiple acyl-CoA dehydrogenase deficiency, short-chain defects, and carnitine uptake defect. Thirty-nine patients were diagnosed through newborn screening. Five false-negative newborn screening cases were noted during this period, and four patients who were not screened were diagnosed based on clinical manifestations. The ages of all patients ranged from 6 months to 22.9 years (mean age 6.6 years). Except for one case of postmortem diagnosis, there were no other mortalities. CONCLUSIONS The combined incidence of FAO disorders estimated by newborn screening in the Chinese population in Taiwan is 1 in 20,271 live births. Newborn screening also increases the awareness of FAO disorders and triggers clinical diagnoses of these diseases.
Collapse
Affiliation(s)
- Yin-Hsiu Chien
- />Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- />Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chyn Chao
- />Division of Genetics, Endocrinology and Metabolism, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- />Department of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Chu Chen
- />Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Hsin Chen
- />Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Ching Chien
- />Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Chen Ho
- />Taipei Institute of Pathology, Taipei, Taiwan
| | | | - Wuh-Liang Hwu
- />Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
61
|
Wang LY, Chen NI, Chen PW, Chiang SC, Hwu WL, Lee NC, Chien YH. Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests. BMC MEDICAL GENETICS 2013; 14:24. [PMID: 23394329 PMCID: PMC3575349 DOI: 10.1186/1471-2350-14-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/07/2013] [Indexed: 11/26/2022]
Abstract
Background Tandem mass spectrometry (MS/MS) analysis is a powerful tool for newborn screening, and many rare inborn errors of metabolism are currently screened using MS/MS. However, the sensitivity of MS/MS screening for several inborn errors, including citrin deficiency (screened by citrulline level) and carnitine uptake defect (CUD, screened by free carnitine level), is not satisfactory. This study was conducted to determine whether a second-tier molecular test could improve the sensitivity of citrin deficiency and CUD detection without increasing the false-positive rate. Methods Three mutations in the SLC25A13 gene (for citrin deficiency) and one mutation in the SLC22A5 gene (for CUD) were analyzed in newborns who demonstrated an inconclusive primary screening result (with levels between the screening and diagnostic cutoffs). Results The results revealed that 314 of 46 699 newborns received a second-tier test for citrin deficiency, and two patients were identified; 206 of 30 237 newborns received a second-tier testing for CUD, and one patient was identified. No patients were identified using the diagnostic cutoffs. Although the incidences for citrin deficiency (1:23 350) and CUD (1:30 000) detected by screening are still lower than the incidences calculated from the mutation carrier rates, the second-tier molecular test increases the sensitivity of newborn screening for citrin deficiency and CUD without increasing the false-positive rate. Conclusions Utilizing a molecular second-tier test for citrin deficiency and carnitine transporter deficiency is feasible.
Collapse
Affiliation(s)
- Li-Yun Wang
- Graduate Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
62
|
Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet J Rare Dis 2012; 7:68. [PMID: 22989098 PMCID: PMC3495906 DOI: 10.1186/1750-1172-7-68] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022] Open
Abstract
Systemic primary carnitine deficiency (CDSP) is an autosomal recessive disorder of carnitine transportation. The clinical manifestations of CDSP can vary widely with respect to age of onset, organ involvement, and severity of symptoms, but are typically characterized by episodes of hypoketotic hypoglycemia, hepatomegaly, elevated transaminases, and hyperammonemia in infants; skeletal myopathy, elevated creatine kinase (CK), and cardiomyopathy in childhood; or cardiomyopathy, arrhythmias, or fatigability in adulthood. The diagnosis can be suspected on newborn screening, but is established by demonstration of low plasma free carnitine concentration (<5 μM, normal 25-50 μM), reduced fibroblast carnitine transport (<10% of controls), and molecular testing of the SLC22A5 gene. The incidence of CDSP varies depending on ethnicity; however the frequency in the United States is estimated to be approximately 1 in 50,000 individuals based on newborn screening data. CDSP is caused by recessive mutations in the SLC22A5 gene. This gene encodes organic cation transporter type 2 (OCTN2) which transport carnitine across cell membranes. Over 100 mutations have been reported in this gene with the c.136C > T (p.P46S) mutation being the most frequent mutation identified. CDSP should be differentiated from secondary causes of carnitine deficiency such as various organic acidemias and fatty acid oxidation defects. CDSP is an autosomal recessive condition; therefore the recurrence risk in each pregnancy is 25%. Carrier screening for at-risk individuals and family members should be obtained by performing targeted mutation analysis of the SLC22A5 gene since plasma carnitine analysis is not a sufficient methodology for determining carrier status. Antenatal diagnosis for pregnancies at increased risk of CDSP is possible by molecular genetic testing of extracted DNA from chorionic villus sampling or amniocentesis if both mutations in SLC22A5 gene are known. Once the diagnosis of CDSP is established in an individual, an echocardiogram, electrocardiogram, CK concentration, liver transaminanses measurement, and pre-prandial blood sugar levels, should be performed for baseline assessment. Primary treatment involves supplementation of oral levocarnitine (L-carnitine) at a dose of 50-400 mg/kg/day divided into three doses. No formal surveillance guidelines for individuals with CDSP have been established to date, however the following screening recommendations are suggested: annual echocardiogram and electrocardiogram, frequent plasma carnitine levels, and CK and liver transaminases measurement can be considered during acute illness. Adult women with CDSP who are planning to or are pregnant should meet with a metabolic or genetic specialist ideally before conception to discuss management of carnitine levels during pregnancy since carnitine levels are typically lower during pregnancy. The prognosis for individuals with CDSP depends on the age, presentation, and severity of symptoms at the time of diagnosis; however the long-term prognosis is favorable as long as individuals remain on carnitine supplementation.
Collapse
Affiliation(s)
- Pilar L Magoulas
- Medical Genetics Section, Department of Pediatrics, The Children's Hospital at King Fahad Medical City and King Saud bin Abdulaziz University for Health Science, Riyadh, Kingdom of Saudi Arabia
| | | |
Collapse
|
63
|
Birth prevalence of disorders detectable through newborn screening by race/ethnicity. Genet Med 2012; 14:937-45. [PMID: 22766612 DOI: 10.1038/gim.2012.76] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of this study was to describe the birth prevalence of genetic disorders among different racial/ethnic groups through population-based newborn screening data. METHODS Between 7 July 2005 and 6 July 2010 newborns in California were screened for selected metabolic, endocrine, hemoglobin, and cystic fibrosis disorders using a blood sample collected via heel stick. The race and ethnicity of each newborn was self-reported by the mother at the time of specimen collection. RESULTS Of 2,282,138 newborns screened, the overall disorder detection rate was 1 in 500 births. The disorder with the highest prevalence among all groups was primary congenital hypothyroidism (1 in 1,706 births). Birth prevalence for specific disorders varied widely among different racial/ethnic groups. CONCLUSION The California newborn screening data offer a unique opportunity to explore the birth prevalence of many genetic disorders across a wide spectrum of racial/ethnicity classifications. The data demonstrate that racial/ethnic subgroups of the California newborn population have very different patterns of heritable disease expression. Determining the birth prevalence of these disorders in California is a first step to understanding the short- and long-term medical and treatment needs faced by affected communities, especially those groups that are impacted by more severe disorders.
Collapse
|
64
|
Cho HS, Choo YK, Lee HJ, Lee HS. Transient carnitine transport defect with cholestatic jaundice: report of one case in a premature baby. KOREAN JOURNAL OF PEDIATRICS 2012; 55:58-62. [PMID: 22375151 PMCID: PMC3286764 DOI: 10.3345/kjp.2012.55.2.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/05/2011] [Accepted: 09/28/2011] [Indexed: 12/30/2022]
Abstract
Carnitine (β-hydroxy-γ-trimethylaminobutyric acid) is involved in the transport of long-chain fatty acids into the mitochondrial matrix and the removal of potentially toxic acylcarnitine esters. Transient carnitine transport defect is a rare condition in newborns reported in 1/90,000 live births. In this paper, we describe a case of transient carnitine transport defect found in a premature baby who had prolonged cholestatic jaundice and poor weight gain, and who responded dramatically to oral carnitine supplementation.
Collapse
Affiliation(s)
- Hyun-Seok Cho
- Department of Pediatrics, Kangwon National University Hospital, Chuncheon, Korea
| | | | | | | |
Collapse
|
65
|
Abstract
Extended newborn screening (ENBS) with the use of tandem mass spectrometry technology is well established in all Australian states and in New Zealand. ENBS has afforded a marked reduction in morbidity and mortality in select conditions such as medium-chain acyl-CoA dehydrogenase deficiency. While this technology has been of great benefit to newborn screening, it comes with many inherent and unforeseen challenges. In this review, we discuss the successes and challenges associated with ENBS.
Collapse
Affiliation(s)
- David Coman
- Department of Metabolic Medicine, The Royal Children's Hospital, Brisbane, Queensland, Australia.
| | | |
Collapse
|
66
|
|
67
|
Hwu WL, Chien YH, Lee NC, Wang SF, Chiang SC, Hsu LW. Application of Mass Spectrometry in Newborn Screening: About Both Small Molecular Diseases and Lysosomal Storage Diseases. CHEMICAL DIAGNOSTICS 2012; 336:177-96. [DOI: 10.1007/128_2012_354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
68
|
Rose EC, di San Filippo CA, Ndukwe Erlingsson UC, Ardon O, Pasquali M, Longo N. Genotype-phenotype correlation in primary carnitine deficiency. Hum Mutat 2011; 33:118-23. [PMID: 21922592 DOI: 10.1002/humu.21607] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/25/2011] [Indexed: 12/30/2022]
Abstract
Primary carnitine deficiency is caused by defective OCTN2 carnitine transporters encoded by the SLC22A5 gene. Lack of carnitine impairs fatty acid oxidation resulting in hypoketotic hypoglycemia, hepatic encephalopathy, skeletal and cardiac myopathy. Recently, asymptomatic mothers with primary carnitine deficiency were identified by low carnitine levels in their infant by newborn screening. Here, we evaluate mutations in the SLC22A5 gene and carnitine transport in fibroblasts from symptomatic patients and asymptomatic women. Carnitine transport was significantly reduced in fibroblasts obtained from all patients with primary carnitine deficiency, but was significantly higher in the asymptomatic women's than in the symptomatic patients' fibroblasts (P < 0.01). By contrast, ergothioneine transport (a selective substrate of the OCTN1 transporter, tested here as a control) was similar in cells from controls and patients with carnitine deficiency. DNA sequencing indicated an increased frequency of nonsense mutations in symptomatic patients (P < 0.001). Expression of the missense mutations in Chinese hamster ovary (CHO) cells indicated that many mutations retained residual carnitine transport activity, with no difference in the average activity of missense mutations identified in symptomatic versus asymptomatic patients. These results indicate that cells from asymptomatic women have on average higher levels of residual carnitine transport activity as compared to that of symptomatic patients due to the presence of at least one missense mutation.
Collapse
Affiliation(s)
- Emily C Rose
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
69
|
De Biase I, Champaigne NL, Schroer R, Pollard LM, Longo N, Wood T. Primary Carnitine Deficiency Presents Atypically with Long QT Syndrome: A Case Report. JIMD Rep 2011; 2:87-90. [PMID: 23430858 DOI: 10.1007/8904_2011_52] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 12/13/2022] Open
Abstract
Primary carnitine deficiency (PCD) is an autosomal recessive disorder of fatty acid oxidation caused by mutations in the SLC22A5 gene encoding for the carnitine transporter OCTN2. Carnitine uptake deficiency results in renal carnitine wasting and low plasma levels. PCD usually presents early in life either with acute metabolic crisis or as progressive cardiomyopathy that responds to carnitine supplementation. PCD inclusion in the newborn screening (NBS) programs has led to the identification of asymptomatic adult patients ascertained because of a positive NBS in their offspring. We extensively reviewed the literature and found that 15 of 42 adult published cases (35.7%) were symptomatic. Cardiac arrhythmias were present in five patients (12%). Here, we report the ascertainment and long-term follow-up of the first case of PCD presenting with long QT syndrome. The patient presented in her early twenties with a syncopal episode caused by ventricular tachycardia, and a prolonged QT interval. Arrhythmias were poorly controlled by pharmacologic therapy and a defibrillator was installed. Syncopal episodes escalated during her first pregnancy. A positive NBS in the patient's child suggested a carnitine uptake deficiency, which was confirmed by reduced carnitine transporter activity and by molecular testing. After starting carnitine supplementation, no further syncopal episodes have occurred and the QT interval returned to normal. As precaution, a low-dose metoprolol therapy and the defibrillator are still in place. Although rare, PCD should be ruled out as a cause of cardiac arrhythmias since oral carnitine supplementation is readily available and efficient.
Collapse
Affiliation(s)
- Irene De Biase
- Greenwood Genetic Center, 106 G. Mendel Circle, Greenwood, SC, 29646, USA,
| | | | | | | | | | | |
Collapse
|
70
|
Leydiker KB, Neidich JA, Lorey F, Barr EM, Puckett RL, Lobo RM, Abdenur JE. Maternal medium-chain acyl-CoA dehydrogenase deficiency identified by newborn screening. Mol Genet Metab 2011; 103:92-5. [PMID: 21354840 DOI: 10.1016/j.ymgme.2011.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
Prior to the advent of expanded newborn screening, sudden and unexplained death was often the first and only symptom of medium-chain acyl-CoA dehydrogenase deficiency (MCADD). With the use of tandem mass spectrometry, infants can now be identified and treated before a life threatening metabolic decompensation occurs. Newborn screening has also been shown to detect previously undiagnosed maternal inborn errors of metabolism. We have now diagnosed two women with MCADD following the identification of low free carnitine in their newborns. While one of the women reported prior symptoms of fasting intolerance, neither had a history of metabolic decompensation or other symptoms consistent with a fatty acid oxidation disorder. These cases illustrate the importance of including urine organic acid analysis and an acylcarnitine profile as part of the confirmatory testing algorithm for mothers when low free carnitine is identified in their infants.
Collapse
Affiliation(s)
- K B Leydiker
- Division of Metabolic Disorders, CHOC Children's, 455 S. Main St., Orange, CA 92868, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Niu DM, Chien YH, Chiang CC, Ho HC, Hwu WL, Kao SM, Chiang SH, Kao CH, Liu TT, Chiang H, Hsiao KJ. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. J Inherit Metab Dis 2010; 33:S295-305. [PMID: 20567911 DOI: 10.1007/s10545-010-9129-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/07/2010] [Accepted: 05/10/2010] [Indexed: 11/26/2022]
Abstract
In Taiwan, during the period March 2000 to June 2009, 1,495,132 neonates were screened for phenylketonuria (PKU) and homocystinuria (HCU), and 1,321,123 neonates were screened for maple syrup urine disease (MSUD), methylmalonic academia (MMA), medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) deficiency, isovaleric academia (IVA), and glutaric aciduria type 1 (GA-1) using tandem mass spectrometry (MS/MS). In a pilot study, 592,717 neonates were screened for citrullinemia, 3-methylcrotonyl-CoA carboxylase deficiency (3-MCC) and other fatty acid oxidation defects in the MS/MS newborn screening. A total of 170 newborns and four mothers were confirmed to have inborn errors of metabolism. The overall incidence was approximately 1/5,882 (1/6,219 without mothers). The most common inborn errors were defects of phenylalanine metabolism [five classic PKU, 20 mild PKU, 40 mild hyperphenylalaninemia (HPA), and 13 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency]. MSUD was the second most common amino acidopathy and, significantly, most MSUD patients (10/13) belonged to the Austronesian aboriginal tribes of southern Taiwan. The most frequently detected among organic acid disorders was 3-MCC deficiency (14 newborns and four mothers). GA-1 and MMA were the second most common organic acid disorders (13 and 13 newborns, respectively). In fatty acid disorders, five carnitine transport defect (CTD), five short-chain acyl-CoA dehydrogenase deficiency (SCAD), and two medium-chain acyl-CoA dehydrogenase (MCAD) deficiency were confirmed. This is the largest case of MS/MS newborn screening in an East-Asian population to date. We hereby report the incidences and outcomes of metabolic inborn error diseases found in our nationwide MS/MS newborn screening program.
Collapse
Affiliation(s)
- Dau-Ming Niu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming University, No.155, Sec.2, Linong Street, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|