51
|
Norfatimah M, Teh L, Salleh M, Mat Isa M, SitiAzizah M. Complete mitochondrial genome of Malaysian Mahseer (Tor tambroides). Gene 2014; 548:263-9. [DOI: 10.1016/j.gene.2014.07.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/08/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
|
52
|
Mitochondrial genomic investigation of flatfish monophyly. Gene 2014; 551:176-82. [PMID: 25172210 DOI: 10.1016/j.gene.2014.08.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 08/26/2014] [Indexed: 11/21/2022]
Abstract
We present the first study to use whole mitochondrial genome sequences to examine phylogenetic affinities of the flatfishes (Pleuronectiformes). Flatfishes have attracted attention in evolutionary biology since the early history of the field because understanding the evolutionary history and patterns of diversification of the group will shed light on the evolution of novel body plans. Because recent molecular studies based primarily on DNA sequences from nuclear loci have yielded conflicting results, it is important to examine phylogenetic signal in different genomes and genome regions. We aligned and analyzed mitochondrial genome sequences from thirty-nine pleuronectiforms including nine that are newly reported here, and sixty-six non-pleuronectiforms (twenty additional clade L taxa [Carangimorpha or Carangimorpharia] and forty-six secondary outgroup taxa). The analyses yield strong support for clade L and weak support for the monophyly of Pleuronectiformes. The suborder Pleuronectoidei receives moderate support, and as with other molecular studies the putatively basal lineage of Pleuronectiformes, the Psettodoidei is frequently not most closely related to other pleuronectiforms. Within the Pleuronectoidei, the basal lineages in the group are poorly resolved, however several flatfish subclades receive consistent support. The affinities of Lepidoblepharon and Citharoides among pleuronectoids are particularly uncertain with these data.
Collapse
|
53
|
Tao W, Zhao H. The complete mitogenome of Gnathopogon polytaenia (Cypriniformes; Cyprinidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1307-8. [PMID: 25133698 DOI: 10.3109/19401736.2014.945569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome was sequenced from one of the endemic freshewater gudgeons (Gnathopogon polytaenia) in China. The mitochondrial genome sequence was 16,594 bp in size, and the gene order and contents were identical with the congeneric species G. strigatus and G. elongatus. Six genes (COII, ATP6, COIII, ND3, ND4, Cytb) had an incomplete stop codon. Base composition of the genome is A (29.1%), T (26.9%), C (25.9%) and G (18.1%) with an A + T rich feature (56%) as that of other vertebrate mitochondrial genomes.
Collapse
Affiliation(s)
- Wenjing Tao
- a Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing , School of Life Science, Southwest University , Chongqing , P.R. China and
| | - Haipeng Zhao
- b School of Life Science, Henan University , Kaifeng , P.R. China
| |
Collapse
|
54
|
Pushchin I, Karetin Y. Retinal ganglion cells in the Pacific redfin,Tribolodon brandtiidybowski, 1872: Morphology and diversity. J Comp Neurol 2014; 522:1355-72. [DOI: 10.1002/cne.23489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology; A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences; Vladivostok 690059 Russia
| | - Yuriy Karetin
- Laboratory of Embryology; A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences; Vladivostok 690059 Russia
- Laboratory of Cell Biology; School of Natural Sciences; Far Eastern Federal University; Vladivostok 690950 Russia
| |
Collapse
|
55
|
Stewart TA, Smith WL, Coates MI. The origins of adipose fins: an analysis of homoplasy and the serial homology of vertebrate appendages. Proc Biol Sci 2014; 281:20133120. [PMID: 24598422 DOI: 10.1098/rspb.2013.3120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose fins are appendages found on the dorsal midline between the dorsal and caudal fins in more than 6000 living species of teleost fishes. It has been consistently argued that adipose fins evolved once and have been lost repeatedly across teleosts owing to limited function. Here, we demonstrate that adipose fins originated repeatedly by using phylogenetic and anatomical evidence. This suggests that adipose fins are adaptive, although their function remains undetermined. To test for generalities in the evolution of form in de novo vertebrate fins, we studied the skeletal anatomy of adipose fins across 620 species belonging to 186 genera and 55 families. Adipose fins have repeatedly evolved endoskeletal plates, anterior dermal spines and fin rays. The repeated evolution of fin rays in adipose fins suggests that these fins can evolve new tissue types and increased structural complexity by expressing fin-associated developmental modules in these new territories. Patterns of skeletal elaboration differ between the various occurrences of adipose fins and challenge prevailing hypotheses for vertebrate fin origin. Adipose fins represent a powerful and, thus far, barely studied model for exploring the evolution of vertebrate limbs and the roles of adaptation and generative biases in morphological evolution.
Collapse
Affiliation(s)
- Thomas A Stewart
- Department of Organismal Biology and Anatomy, University of Chicago, , 1027 E. 57th St., Chicago, IL 60637, USA, Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, , Lawrence, KS 66045, USA, Committee on Evolutionary Biology, University of Chicago, , 1025 E. 57th St., Chicago, IL 60637, USA
| | | | | |
Collapse
|
56
|
Wang J, Wu X, Chen Z, Yue Z, Ma W, Chen S, Xiao H, Murphy RW, Zhang Y, Zan R, Luo J. Molecular phylogeny of European and African Barbus and their West Asian relatives in the Cyprininae (Teleostei: Cypriniformes) and orogenesis of the Qinghai-Tibetan Plateau. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5878-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
57
|
Wang M, Yang JX, Chen XY. Molecular phylogeny and biogeography of percocypris (Cyprinidae, Teleostei). PLoS One 2013; 8:e61827. [PMID: 23750199 PMCID: PMC3672144 DOI: 10.1371/journal.pone.0061827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 03/18/2013] [Indexed: 12/05/2022] Open
Abstract
Fierce predatory freshwater fishes, the species of Percocypris (Cyprinidae, Teleostei) inhabit large rivers or lakes, and have a specific distribution pattern. Only a single species or subspecies occurs in each large-scale drainage basin of the Southeastern Tibetan Plateau. In this study, the molecular phylogenetic relationships for all but one of the described subspecies/species of Percocypris were investigated based on three mitochondrial genes (16S; COI; Cyt b) and one nuclear marker (Rag2). The results of Maximum Likelihood and Bayesian Inference analyses show that Percocypris is a strongly supported monophyletic group and that it is the sister group of Schizothorax. Combined with analyses of morphological characters, our results suggest that Percocypris needs to be reclassified, and we propose that six species be recognized, with corresponding distributions in five main drainages (including one lake). In addition, based on the results of the estimation of divergence times and ancestral drainages, we hypothesize that Percocypris likely originated in the early Miocene from a paleo-connected drainage system containing the contemporary main drainages of the Southeastern Tibetan Plateau. This study suggests that vicariance (due to the uplift of the Tibetan Plateau modifying the large-scale morphologies of drainage basins in the Southeastern Tibetan Plateau) has played an important role in the speciation of the genus. Furthermore, external morphological characters (such as the length of the fins) and an internal trait (the position of pterygiophore) appear to be correlated with different habitats in rivers and the lake.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (XYC); (JXY)
| | - Xiao-Yong Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (XYC); (JXY)
| |
Collapse
|
58
|
Chen WJ, Lavoué S, Mayden RL. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 2013; 67:2218-39. [PMID: 23888847 DOI: 10.1111/evo.12104] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/15/2013] [Indexed: 11/26/2022]
Abstract
The biogeography of the mega-diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans-oceanic distributions. Despite multiple hypotheses explaining present-day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time-calibrated, molecular-based phylogenetic analysis and event-based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within- and between-continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post-tectonic drift dispersal events are hypothesized to account for their current distribution patterns.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Institute of Oceanography, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| | | | | |
Collapse
|
59
|
Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae). BMC Genomics 2013; 14:32. [PMID: 23324215 PMCID: PMC3583795 DOI: 10.1186/1471-2164-14-32] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background The construction of linkage maps is a first step in exploring the genetic basis for adaptive phenotypic divergence in closely related species by quantitative trait locus (QTL) analysis. Linkage maps are also useful for comparative genomics in non-model organisms. Advances in genomics technologies make it more feasible than ever to study the genetics of adaptation in natural populations. Restriction-site associated DNA (RAD) sequencing in next-generation sequencers facilitates the development of many genetic markers and genotyping. We aimed to construct a linkage map of the gudgeons of the genus Gnathopogon (Cyprinidae) for comparative genomics with the zebrafish Danio rerio (a member of the same family as gudgeons) and for the future QTL analysis of the genetic architecture underlying adaptive phenotypic evolution of Gnathopogon. Results We constructed the first genetic linkage map of Gnathopogon using a 198 F2 interspecific cross between two closely related species in Japan: river-dwelling Gnathopogon elongatus and lake-dwelling Gnathopogon caerulescens. Based on 1,622 RAD-tag markers, a linkage map spanning 1,390.9 cM with 25 linkage groups and an average marker interval of 0.87 cM was constructed. We also identified a region involving female-specific transmission ratio distortion (TRD). Synteny and collinearity were extensively conserved between Gnathopogon and zebrafish. Conclusions The dense SNP-based linkage map presented here provides a basis for future QTL analysis. It will also be useful for transferring genomic information from a “traditional” model fish species, zebrafish, to screen candidate genes underlying ecologically important traits of the gudgeons.
Collapse
Affiliation(s)
- Ryo Kakioka
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, 606-8502, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
60
|
Dettai A, Gallut C, Brouillet S, Pothier J, Lecointre G, Debruyne R. Conveniently pre-tagged and pre-packaged: extended molecular identification and metagenomics using complete metazoan mitochondrial genomes. PLoS One 2012; 7:e51263. [PMID: 23251474 PMCID: PMC3522660 DOI: 10.1371/journal.pone.0051263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Researchers sorely need markers and approaches for biodiversity exploration (both specimen linked and metagenomics) using the full potential of next generation sequencing technologies (NGST). Currently, most studies rely on expensive multiple tagging, PCR primer universality and/or the use of few markers, sometimes with insufficient variability. METHODOLOGY/PRINCIPAL FINDINGS We propose a novel approach for the isolation and sequencing of a universal, useful and popular marker across distant, non-model metazoans: the complete mitochondrial genome. It relies on the properties of metazoan mitogenomes for enrichment, on careful choice of the organisms to multiplex, as well as on the wide collection of accumulated mitochondrial reference datasets for post-sequencing sorting and identification instead of individual tagging. Multiple divergent organisms can be sequenced simultaneously, and their complete mitogenome obtained at a very low cost. We provide in silico testing of dataset assembly for a selected set of example datasets. CONCLUSIONS/SIGNIFICANCE This approach generates large mitogenome datasets. These sequences are useful for phylogenetics, molecular identification and molecular ecology studies, and are compatible with all existing projects or available datasets based on mitochondrial sequences, such as the Barcode of Life project. Our method can yield sequences both from identified samples and metagenomic samples. The use of the same datasets for both kinds of studies makes for a powerful approach, especially since the datasets have a high variability even at species level, and would be a useful complement to the less variable 18S rDNA currently prevailing in metagenomic studies.
Collapse
Affiliation(s)
- Agnes Dettai
- Muséum national d'Histoire naturelle, Département Systématique et Évolution, UMR 7138 Systématique, Adaptation, Évolution UPMC-CNRS-MNHN-IRD-ENS, Paris, France.
| | | | | | | | | | | |
Collapse
|
61
|
Bej D, Sahoo L, Das SP, Swain S, Jayasankar P, Das PC, Routray P, Swain SK, Jena JK, Das P. Complete mitochondrial genome sequence of Catla catla and its phylogenetic consideration. Mol Biol Rep 2012; 39:10347-54. [PMID: 23086264 DOI: 10.1007/s11033-012-1912-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/01/2012] [Indexed: 11/25/2022]
Abstract
Complete nucleotide sequence of mitochondrial genome (mitogenome) of the Catla catla (Ostariophysi: Cypriniformes: Cyprinidae) was determined in the present study. Its length is 16,594 bp and contains 13 protein coding genes, 22 transfer RNAs, two ribosomal RNAs and one non-coding control region. Most of the genes were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser (UCN), Glu and Pro) genes were encoded on the L-strand. The reading frames of two pair of genes overlapped: ATPase 8 with 6 and ND4L with ND4 by seven nucleotides each. The main non-coding region was 929 bp, with three conserved sequence blocks (CSB-I, CSB-II, and CSB-III) and an unusual simple sequence repeat, (TA)(7). Phylogenetic analyses based on complete mitochondrial genome sequences were in favor of the traditional taxonomy of family Cyprinidae. In conclusion present mitogenome of Catla catla adds more information to our understanding of diversity and evolution of mitogenome in fishes.
Collapse
Affiliation(s)
- Dillip Bej
- Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002 Odisha, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sorhannus U. Evolution of Type II Antifreeze Protein Genes in Teleost Fish: A Complex Scenario Involving Lateral Gene Transfers and Episodic Directional Selection. Evol Bioinform Online 2012; 8:535-44. [PMID: 23032610 PMCID: PMC3460678 DOI: 10.4137/ebo.s9976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
I examined hypotheses about lateral transfer of type II antifreeze protein (AFP) genes among “distantly” related teleost fish. The effects of episodic directional selection on amino acid evolution were also investigated. The strict consensus results showed that the type II AFP and type II antifreeze-like protein genes were transferred from Osmerus mordax to Clupea harengus, from the ancestral lineage of the Brachyopsis rostratus—Hemitripterus americanus clade to the ancestor of the Hypomesus nipponensis—Osmerus mordax group and from the ancestral lineage of Brachyopsis rostratus—Hemitripterus americanus—Siniperca chuatsi—Perca flavescens to Perca flavescens. At the present time, the available evidence is more consistent with the LGT hypothesis than with other alternative explanations. The overall results indicate that evolutionary history of the type II AFP gene is complex, and that episodic directional selection was instrumental in the evolution of this freeze-preventing protein from a C-type lectin precursor.
Collapse
Affiliation(s)
- Ulf Sorhannus
- Department of Biology and Health Services, Edinboro University of Pennsylvania, Edinboro, Pennsylvania, USA
| |
Collapse
|
63
|
LIAO TEYU, KULLANDER SVENO. Phylogenetic significance of the kinethmoid-associated Y-shaped ligament and long intercostal ligaments in the Cypriniformes (Actinopterygii: Ostariophysi). ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00565.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
64
|
Liu SQ, Mayden RL, Zhang JB, Yu D, Tang QY, Deng X, Liu HZ. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. Gene 2012; 508:60-72. [PMID: 22868207 DOI: 10.1016/j.gene.2012.07.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/15/2012] [Accepted: 07/23/2012] [Indexed: 02/08/2023]
Abstract
The superfamily Cobitoidea of the order Cypriniformes is a diverse group of fishes, inhabiting freshwater ecosystems across Eurasia and North Africa. The phylogenetic relationships of this well-corroborated natural group and diverse clade are critical to not only informing scientific communities of the phylogeny of the order Cypriniformes, the world's largest freshwater fish order, but are key to every area of comparative biology examining the evolution of traits, functional structures, and breeding behaviors to their biogeographic histories, speciation, anagenetic divergence, and divergence time estimates. In the present study, two mitochondrial gene sequences (COI, ND4+5) and four single-copy nuclear gene segments (RH1, RAG1, EGR2B, IRBP) were used to infer the phylogenetic relationships of the Cobitoidea as reconstructed from maximum likelihood (ML) and partitioned Bayesian Analysis (BA). Analyses of the combined mitochondrial/nuclear gene datasets revealed five strongly supported monophyletic Cobitoidea families and their sister-group relationships: Botiidae+(Vaillantellidae+(Cobitidae+(Nemacheilidae+Balitoridae))). These recovered relationships are in agreement with previous systematic studies on the order Cypriniformes and/or those focusing on the superfamily Cobitoidea. Using these relationships, our analyses revealed pattern lineage- or ecological-group-specific evolution of these genes for the Cobitoidea. These observations and results corroborate the hypothesis that these group-specific-ancestral ecological characters have contributed in the diversification and/or adaptations within these groups. Positive selections were detected in RH1 of nemacheilids and in RAG1 of nemacheilids and genus Vaillantella, which indicated that evolution of RH1 (related to eye's optic sense) and RAG1 (related to immunity) genes appeared to be important for the diversification of these groups. The balitorid lineage (those species inhabiting fast-flowing riverine habitats) had, as compared with other cobitoid lineages, significantly different dN/dS, dN and dS values for ND4 and IRBP genes. These significant differences are usually indicative of weaker selection pressure, and lineage-specific evolution on genes along the balitorid lineage. Furthermore, within Cobitoidea, excluding balitorids, species living in subtropics had significantly higher dN/dS values in RAG1 and IRBP genes than those living in temperate and tropical zones. Among tropical cobitoids, genes COI, ND5, EGR2B, IRBP and RH1, had a significantly higher mean dS value than those species in subtropical and temperate groups. These findings suggest that the evolution of these genes could also be ecological-group-specific and may have played an important role in the adaptive evolution and diversification of these groups. Thus, we hypothesize that the genes included in the present study were actively involved in lineage- and/or ecological-group-specific evolutionary processes of the highly diverse Cobitoidea. These two evolutionary patterns, both subject to further testing, are hypothesized as integral in the diversification with this major clade of the world's most diverse group of freshwater fishes.
Collapse
Affiliation(s)
- Si-Qing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China.
| | | | | | | | | | | | | |
Collapse
|
65
|
Yang L, Arunachalam M, Sado T, Levin BA, Golubtsov AS, Freyhof J, Friel JP, Chen WJ, Hirt MV, Manickam R, Agnew MK, Simons AM, Saitoh K, Miya M, Mayden RL, He S. Molecular phylogeny of the cyprinid tribe Labeonini (Teleostei: Cypriniformes). Mol Phylogenet Evol 2012; 65:362-79. [PMID: 22728909 DOI: 10.1016/j.ympev.2012.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
The cyprinid tribe Labeonini (sensuRainboth, 1991) is a large group of freshwater fishes containing around 40 genera and 400 species. They are characterized by an amazing diversity of modifications to their lips and associated structures. In this study, a total of 34 genera and 142 species of putative members of this tribe, which represent most of the generic diversity and more than one third of the species diversity of the group, were sampled and sequenced for four nuclear genes and five mitochondrial genes (totaling 9465bp). Phylogenetic relationships and subdivision of this tribe were investigated and the placement and status of most genera are discussed. Partitioned maximum likelihood analyses were performed based on the nuclear dataset, mitochondrial dataset, combined dataset, and the dataset for each nuclear gene. Inclusion of the genera Paracrossochilus, Barbichthys, Thynnichthys, and Linichthys in the Labeonini was either confirmed or proposed for the first time. None of the genera Labeo, Garra, Bangana, Cirrhinus, and Crossocheilus are monophyletic. Taxonomic revisions of some genera were made: the generic names Gymnostomus Heckel, 1843, Ageneiogarra Garman, 1912 and Gonorhynchus McClelland, 1839 were revalidated; Akrokolioplax Zhang and Kottelat, 2006 becomes a junior synonym of Gonorhynchus; the species Osteochilus nashii was found to be a member of the barbin genus Osteochilichthys. Five historical hypotheses on the classification of the Labeonini were tested and rejected. We proposed to subdivide the tribe, which is strongly supported as monophyletic, into four subtribes: Labeoina, Garraina, Osteochilina, and Semilabeoina. The taxa included in each subtribe were listed and those taxa that need taxonomic revision were discussed.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biology, Saint Louis University, 3507 Laclede Ave., St. Louis, MO 63103, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Li P, Yang C, Tu F, Liu G. The complete mitochondrial genome of the Elongate loach Leptobotia elongata (Cypriniformes: Cobitidae). ACTA ACUST UNITED AC 2012; 23:352-4. [PMID: 22708860 DOI: 10.3109/19401736.2012.690754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Elongate loach (Leptobotia elongata) belongs to family Cobitidae, which is endemic to the middle and upper reaches of the Yangtze River in China. In this study, the complete mitochondrial genome of L. elongata was sequenced. It was determined to be 16,591 bases. The nucleotide sequence data of 12 heavy-strand protein-coding genes of L. elongata and other 12 Cobitidae species were used for phylogenetic analyses. Trees constructed using Bayesian and maximum parsimony showed a similar topology demonstrating that L. elongate was clustered in subfamily Botiinae being sister to the subfamily Cobitinae. The trees also suggested that the genera Cobitis were polyphyletic.
Collapse
Affiliation(s)
- Peng Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, P.R. China
| | | | | | | |
Collapse
|
67
|
Shen XX, Liang D, Zhang P. The development of three long universal nuclear protein-coding locus markers and their application to osteichthyan phylogenetics with nested PCR. PLoS One 2012; 7:e39256. [PMID: 22720083 PMCID: PMC3375249 DOI: 10.1371/journal.pone.0039256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. CONCLUSIONS/SIGNIFICANCE Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Dan Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Peng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
68
|
Senior AM, Nat Lim J, Nakagawa S. The fitness consequences of environmental sex reversal in fish: a quantitative review. Biol Rev Camb Philos Soc 2012; 87:900-11. [PMID: 22540898 DOI: 10.1111/j.1469-185x.2012.00230.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Environmental sex reversal (ESR) occurs when environmental factors overpower genetic sex-determining factors. The phenomenon of ESR is observed widely in teleost species, where it can be induced by exposing developing fish to endocrine disrupting chemicals (EDCs). EDC-induced ESR has been exploited by the aquaculture industry, while ecological and evolutionary models are also beginning to elucidate the potential roles that sex-reversed individuals play in influencing population dynamics. However, how EDC exposure affects individual fitness remains relatively unknown. To date, many experimental studies have induced sex reversal in fish and measured fitness-as indicated by related traits such as size, survival and gonadal somatic index (GSI), but the reported results vary. Here, we meta-analytically combine the results of 78 studies of induced ESR to gain insight into the fitness of sex-reversed individuals. Overall, our results suggest that the fitness of fish exposed to EDCs is reduced at the time of exposure, with exposed individuals having a smaller size and likely a smaller GSI. Given a period of non-exposure, fish treated with EDCs can regain a size equal to those not exposed, although GSI remains compromised. Interestingly, survival does not appear to be affected by EDC treatment. The published reports that comprise our dataset are, however, based on captive fish and the general small size resulting from exposure is likely to lead to reduced survival in the wild. Additionally, reduced fitness-related parameters are likely to be due to exposure to EDCs rather than ESR itself. We suggest that theoretical models of ESR should account for the fitness-related effects that we report. Whilst we are able to shed light on the physical fitness of EDC-exposed fish, the behaviour of such individuals remains largely untested and should be the focus of future experimental manipulation.
Collapse
|
69
|
Engeman JM, Mabee PM. Segmentation and fusion on the midline: basibranchial homologies in cypriniform fishes. J Morphol 2012; 273:725-36. [PMID: 22460806 DOI: 10.1002/jmor.20017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/17/2011] [Accepted: 02/05/2012] [Indexed: 11/09/2022]
Abstract
The development and homologies of the median elements of the ventral hyoid and branchial arches of Cypriniformes have been unclear. We compared the developmental morphology of this region across five species (Cycleptus elongatus, Luxilus zonatus, Danio rerio, Devario auropurpureus, and Cobitis striata), representing three of five major clades of cypriniforms. The development of basibranchial 1 is similar in catostomids and cyprinids, where a single, elongate, basihyal + anterior copula divides into separate elements. A gap develops between the posterior end of the basihyal cartilage and the anterior copula in catostomids but in cyprinids (Luxiluszonatus, Danio rerio, and Devarioauropurpureus) there is little separation and the basihyal and basibranchial 1 may grow close together or retain a cartilaginous connection (Danio rerio, several outgroups). In loaches and Gyrinocheilus, the gap posterior to the basihyal has been alternately interpreted as either the absence or posterior displacement of basibranchial 1. Uniquely among examined species, in Cobitis striata, the basihyal cartilage and anterior copula form as separate cartilages and remain distinct throughout development with a prominent gap between the basihyal and most anterior basibranchial, which we interpret as loss of basibranchial 1. In the posterior region associated with branchial arches 4 and 5, all examined species except Danio rerio, which has only a basibranchial 4 cartilage, have separate basibranchial 4 and 5 cartilages in early ontogeny. Basibranchials 4 and 5 remain separate in Cycleptus elongatus, Devario auropurpurea, and Cobitis striata, but fuse in Luxilus zonatus to form a posterior copula. The orientation of basibranchial 4 and 5 cartilages in Cobitis striata is similar to catostomids and cyprinids. The most posterior median element in the branchial arches, the post-ceratobranchial cartilage, generally forms as a separate cartilage in catostomids but in Cobitis striata is connected with basibranchial 5 cartilage from earliest appearance.
Collapse
Affiliation(s)
- Jeffrey M Engeman
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
70
|
Multi-locus species tree of the chub genus Squalius (Leuciscinae: Cyprinidae) from western Iberia: new insights into its evolutionary history. Genetica 2011; 139:1009-18. [DOI: 10.1007/s10709-011-9602-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/09/2011] [Indexed: 11/26/2022]
|
71
|
Gante HF, Alves MJ, Dowling TE. Paralog-specific primers for the amplification of nuclear Loci in tetraploid barbels (barbus: cypriniformes). ACTA ACUST UNITED AC 2011; 102:617-21. [PMID: 21705490 DOI: 10.1093/jhered/esr059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thirty paralog-specific primers were developed, following an intron-primed exon-crossing strategy, for S7 and growth hormone genes in Barbus (subgenera Barbus and Luciobarbus). We found that paralog-specific amplification requires the use of only one paralog-specific primer, allowing their simultaneous use with universal exon-primed intron-crossing primers of broad taxonomic applicability. This hybrid annealing strategy guarantees both specificity and generality of amplification reactions and represents a step forward in the amplification of duplicated nuclear loci in polyploid organisms and members of multigene families. Assays of several representative taxa identified high levels of segregating single nucleotide polymorphisms (SNPs) and nucleotide diversity within each of these subgenera. Additionally, several insertions-deletions (indels) that are diagnostic across species are found in intronic regions. Therefore, these primers provide a reliable source of valuable nuclear SNP and indel data for population and species level studies of barbels, such as applied conservation and basic evolutionary studies.
Collapse
Affiliation(s)
- Hugo F Gante
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601, USA.
| | | | | |
Collapse
|
72
|
Nakatani M, Miya M, Mabuchi K, Saitoh K, Nishida M. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol Biol 2011; 11:177. [PMID: 21693066 PMCID: PMC3141434 DOI: 10.1186/1471-2148-11-177] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. RESULTS Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. CONCLUSIONS The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100-112 Ma, creating an over 100 million year time span without fossil evidence. This formidable ghost range partially reflects a genuine difference between the estimated ages of stem group origin (molecular divergence time) and crown group morphological diversification (fossil divergence time); the ghost range, however, would be filled with discoveries of older fossils that can be used as more reasonable time constraints as well as with developments of more realistic models that capture the rates of molecular sequences accurately.
Collapse
Affiliation(s)
- Masanori Nakatani
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
| | | | | | | | | |
Collapse
|
73
|
Xu TJ, Cheng YZ, Liu XZ, Shi G, Wang RX. The complete mitochondrial genome of the marbled rockfish Sebastiscus marmoratus (Scorpaeniformes, Scorpaenidae): Genome characterization and phylogenetic considerations. Mol Biol 2011. [DOI: 10.1134/s0026893311020191] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
Tang KL, Agnew MK, Chen WJ, Vincent Hirt M, Raley ME, Sado T, Schneider LM, Yang L, Bart HL, He S, Liu H, Miya M, Saitoh K, Simons AM, Wood RM, Mayden RL. Phylogeny of the gudgeons (Teleostei: Cyprinidae: Gobioninae). Mol Phylogenet Evol 2011; 61:103-24. [PMID: 21672635 DOI: 10.1016/j.ympev.2011.05.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/24/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022]
Abstract
The members of the cyprinid subfamily Gobioninae, commonly called gudgeons, form one of the most well-established assemblages in the family Cyprinidae. The subfamily is a species-rich group of fishes, these fishes display diverse life histories, appearances, and behavior. The phylogenetic relationships of Gobioninae are examined using sequence data from four loci: cytochrome b, cytochrome c oxidase I, opsin, and recombination activating gene 1. This investigation produced a data matrix of 4114 bp for 162 taxa that was analyzed using parsimony, maximum likelihood, and Bayesian inference methods. The phylogenies our analyses recovered corroborate recent studies on the group. The subfamily Gobioninae is monophyletic and composed of three major lineages. We find evidence for a Hemibarbus-Squalidus group, and the tribes Gobionini and Sarcocheilichthyini, with the Hemibarbus-Squalidus group sister to a clade of Gobionini-Sarcocheilichthyini. The Hemibarbus-Squalidus group includes those two genera; the tribe Sarcocheilichthyini includes Coreius, Coreoleuciscus, Gnathopogon, Gobiocypris, Ladislavia, Paracanthobrama, Pseudorasbora, Pseudopungtungia, Pungtungia, Rhinogobio, and Sarcocheilichthys; the tribe Gobionini includes Abbottina, Biwia, Gobio, Gobiobotia, Huigobio, Microphysogobio, Platysmacheilus, Pseudogobio, Romanogobio, Saurogobio, and Xenophysogobio. The monotypic Acanthogobio is placed into the synonymy of Gobio. We tentatively assign Belligobio to the Hemibarbus-Squalidus group and Mesogobio to Gobionini; Paraleucogobio and Parasqualidus remain incertae sedis. Based on the topologies presented, the evolution of swim bladder specializations, a distinctive feature among cyprinids, has occurred more than once within the subfamily.
Collapse
Affiliation(s)
- Kevin L Tang
- Saint Louis University, Department of Biology, St. Louis, MO 63103, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Phylogenetic relationships of the North American cyprinid subgenus Hydrophlox. Mol Phylogenet Evol 2011; 59:725-35. [DOI: 10.1016/j.ympev.2011.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/21/2022]
|
76
|
Doosey MH, Bart HL. Morphological variation of the palatal organ and chewing pad of catostomidae (teleostei: cypriniformes). J Morphol 2011; 272:1092-108. [PMID: 21598291 DOI: 10.1002/jmor.10966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 01/25/2011] [Accepted: 03/09/2011] [Indexed: 11/12/2022]
Abstract
We studied the morphology and shape variation of the palatal organ and chewing pad of sucker fishes, family Catostomidae. The palatal organ is a muscularized structure that forms a large mass on the roof of the posterior part of the buccopharyngeal cavity in cypriniform fishes. It functions in coordination with the branchial arches to separate food items from inorganic debris during feeding. The palatal organ exhibits considerable variability in morphology among catostomids. It is shorter, narrower, and thinner in species of the subfamily Cycleptinae (e.g., Cycleptus elongatus) than in other catostomid subfamilies. The thickest and widest palatal organ is seen in species of the subfamily Ictiobinae (e.g., Ictiobus cyprinellus). The shape and size of the palatal organ generally varies between these extremes in species of subfamily Catostominae (e.g., Catostomus and Moxostoma species). Principal components analysis and analysis of variance has differentiated means of various palatal organ measurements for each monophyletic subfamily and tribe of Catostomidae with statistical significance. These results corroborate previously established typological classification of catostomids based on pharyngeal tooth count, pharyngeal tooth morphology, and diet. A keratinized chewing pad forms on the posterior surface of the palatal organ in catostomids or on a skeletal process in cyprinids and serves as an occlusion surface for pharyngeal teeth. The chewing pad is lunate in catostomids and generally ovoid in cyprinids. It is absent from the species of loaches (e.g., botiids, cobitids, and nemacheilids) and gyrinocheilids examined. A synonymy of terms used in the past to describe the palatal organ and chewing pad of Cypriniformes is provided.
Collapse
Affiliation(s)
- Michael H Doosey
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70118, USA.
| | | |
Collapse
|
77
|
SAITOH KENJI, SADO TETSUYA, DOOSEY MICHAELH, BART Jr HENRYL, INOUE JUNG, NISHIDA MUTSUMI, MAYDEN RICHARDL, MIYA MASAKI. Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2010.00651.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
78
|
Nakae M, Sasaki K, Nakajima T, Miyazaki Y, Matsuura K. Homologies of the branchial arch muscles in Zacco platypus (Teleostei: Cypriniformes: Cyprinidae): evidence from innervation pattern. J Morphol 2011; 272:503-12. [PMID: 21290421 DOI: 10.1002/jmor.10930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/12/2010] [Accepted: 11/01/2010] [Indexed: 11/11/2022]
Abstract
Homologies of the branchial arch muscles in the cyprinid Zacco platypus are assessed based on their innervation. Muscles serving the first gill arch are innervated by branches of the glossopharyngeal (IX) nerve and those serving other arches by the vagal (X) nerve. Absence of the levator posterior is confirmed. Five pairs of muscles originating from the cranium and inserted onto the specialized 5th ceratobranchial, all unique to cyprinids, are innervated by the 4th branchial trunks of X, indicating that all pairs are derivatives of the sphincter oesophagi, involving reorganization from intrinsic to extrinsic elements. Homologies of some ventral branchial muscles are also discussed and the criteria for homology improved by clarifying the innervation pattern.
Collapse
Affiliation(s)
- Masanori Nakae
- Collection Center, National Museum of Nature and Science, Shinjuku-ku, Tokyo 169-0073, Japan.
| | | | | | | | | |
Collapse
|
79
|
BUFALINO ANGELOP, MAYDEN RICHARDL. Phylogenetic evaluation of North American Leuciscidae (Actinopterygii: Cypriniformes: Cyprinoidea) as inferred from analyses of mitochondrial and nuclear DNA sequences. SYST BIODIVERS 2010. [DOI: 10.1080/14772000.2010.516029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
80
|
Mayden RL, Chen WJ. The world’s smallest vertebrate species of the genus Paedocypris: A new family of freshwater fishes and the sister group to the world’s most diverse clade of freshwater fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol 2010; 57:152-75. [DOI: 10.1016/j.ympev.2010.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 03/29/2010] [Accepted: 04/02/2010] [Indexed: 11/25/2022]
|
81
|
Zheng LP, Yang JX, Chen XY, Wang WY. Phylogenetic relationships of the Chinese Labeoninae (Teleostei, Cypriniformes) derived from two nuclear and three mitochondrial genes. ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2010.00441.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Saitoh K, Chen WJ, Mayden RL. Extensive hybridization and tetrapolyploidy in spined loach fish. Mol Phylogenet Evol 2010; 56:1001-10. [DOI: 10.1016/j.ympev.2010.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/14/2010] [Accepted: 04/16/2010] [Indexed: 12/15/2022]
|
83
|
Yang L, Mayden RL, Sado T, He S, Saitoh K, Miya M. Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2010.00443.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
84
|
Pasco-Viel E, Charles C, Chevret P, Semon M, Tafforeau P, Viriot L, Laudet V. Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi). PLoS One 2010; 5:e11293. [PMID: 20585584 PMCID: PMC2892034 DOI: 10.1371/journal.pone.0011293] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 05/31/2010] [Indexed: 11/19/2022] Open
Abstract
Background The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species. Cypriniformes are characterized by a striking distribution of their dentition: namely the absence of oral teeth and presence of pharyngeal teeth on the last gill arch (fifth ceratobranchial). Despite this limited localisation, the diversity of tooth patterns in Cypriniformes is astonishing. Here we provide a further description of this diversity using X-ray microtomography and we map the resulting dental characters on a phylogenetic tree to explore evolutionary trends. Results We performed a pilot survey of dental formulae and individual tooth shapes in 34 adult species of Cypriniformes by X-ray microtomography (using either conventional X-ray machine, or synchrotron microtomography when necessary) or by dissecting. By mapping morphological results in a phylogenetic tree, it emerges that the two super-families Cobitoidea and Cyprinoidea have followed two distinct evolutionary pathways. Furthermore, our analysis supports the hypothesis of a three-row dentition as ancestral for Cyprinoidea and a general trend in tooth row reduction in most derived lineages. Yet, this general scheme must be considered with caution as several events of tooth row gain and loss have occurred during evolutionary history of Cyprinoidea. Significance Dentition diversity in Cypriniformes constitutes an excellent model to study the evolution of complex morphological structures. This morphological survey clearly advocates for extending the use of X-ray microtomography to study tooth morphology in Cypriniformes. Yet, our survey also underlines that improved knowledge of Cypriniformes life traits, such as feeding habits, is required as current knowledge is not sufficient to conclude on the link between diet and dental morphology.
Collapse
Affiliation(s)
- Emmanuel Pasco-Viel
- Evo-devo of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Cyril Charles
- iPHEP, CNRS UMR 6046, Université de Poitiers, Poitiers, France
| | - Pascale Chevret
- Molecular Zoology, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marie Semon
- Molecular Zoology, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Laurent Viriot
- Evo-devo of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
- iPHEP, CNRS UMR 6046, Université de Poitiers, Poitiers, France
- * E-mail: (VL); (LV)
| | - Vincent Laudet
- Molecular Zoology, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (VL); (LV)
| |
Collapse
|
85
|
Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Mol Phylogenet Evol 2010; 57:189-214. [PMID: 20553898 DOI: 10.1016/j.ympev.2010.05.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 05/20/2010] [Accepted: 05/20/2010] [Indexed: 11/20/2022]
Abstract
The members of the cyprinid subfamily Danioninae form a diverse and scientifically important group of fishes, which includes the zebrafish, Danio rerio. The diversity of this assemblage has attracted much scientific interest but its monophyly and the relationships among its members are poorly understood. The phylogenetic relationships of the Danioninae are examined herein using sequence data from mitochondrial cytochrome b, mitochondrial cytochrome c oxidase I, nuclear opsin, and nuclear recombination activating gene 1. A combined data matrix of 4117 bp for 270 taxa was compiled and analyzed. The resulting topology supports some conclusions drawn by recent studies on the group and certain portions of the traditional classification, but our results also contradict key aspects of the traditional classification. The subfamily Danioninae is not monophyletic, with putative members scattered throughout Cyprinidae. Therefore, we restrict Danioninae to the monophyletic group that includes the following genera: Amblypharyngodon, Barilius, Cabdio, Chela, Chelaethiops, Danio, Danionella, Devario (including Inlecypris), Esomus, Horadandia, Laubuca, Leptocypris, Luciosoma, Malayochela, Microdevario, Microrasbora, Nematabramis, Neobola, Opsaridium, Opsarius, Paedocypris, Pectenocypris, Raiamas, Rasbora (including Boraras and Trigonostigma), Rasboroides, Salmostoma, Securicula, and Sundadanio. This Danioninae sensu stricto is divided into three major lineages, the tribes Chedrini, Danionini, and Rasborini, where Chedrini is sister to a Danionini-Rasborini clade. Each of these tribes is monophyletic, following the restriction of Danioninae. The tribe Chedrini includes a clade of exclusively African species and contains several genera of uncertain monophyly (Opsarius, Raiamas, Salmostoma). Within the tribe Rasborini, the species-rich genus Rasbora is rendered non-monophyletic by the placement of two monophyletic genera, Boraras and Trigonostigma, hence we synonymize those two genera with Rasbora. In the tribe Danionini, the miniature genus Danionella is recovered as the sister group of Danio, with D. nigrofasciatus sister to D. rerio.
Collapse
|
86
|
Bufalino AP, Mayden RL. Phylogenetic relationships of North American phoxinins (Actinopterygii: Cypriniformes: Leuciscidae) as inferred from S7 nuclear DNA sequences. Mol Phylogenet Evol 2010; 55:143-152. [DOI: 10.1016/j.ympev.2009.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 11/16/2022]
|
87
|
Evolutionary divergence of duplicate copies of the growth hormone gene in suckers (Actinopterygii: catostomidae). Int J Mol Sci 2010; 11:1090-102. [PMID: 20480002 PMCID: PMC2869224 DOI: 10.3390/ijms11031090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 12/01/2022] Open
Abstract
Catostomid fishes (suckers) have duplicate copies of the growth hormone gene and other nuclear genes, due to a genome duplication event early in the group’s history. Yet, paralogs of GH in suckers are more than 90% conserved in nucleotide (nt) and amino acid (aa) sequence. Within paralogs across species, variation in nt and aa sequence averages 3.33% and 4.46% for GHI, and 3.22% and 2.43% for GHII, respectively. Selection tests suggest that the two GH paralogs are under strong purifying selection. Consensus trees from phylogenetic analysis of GH coding region data for 23 species of suckers, other cypriniform fishes and outgroups resolved cypriniform relationships and relationships among GHI sequences of suckers more or less consistently with analyses based on other molecular data. However, the analysis failed to resolve all sucker GHI and GHII sequences as monophyletic sister groups. This unexpected topology did not differ significantly from topologies constrained to make all GH sequences monophyletic. We attribute this result either to limitations in our GHII data set or convergent adaptive changes in GHII of tribe Catostomini.
Collapse
|
88
|
Chen WJ, Lheknim V, Mayden RL. Molecular phylogeny of the Cobitoidea (Teleostei: Cypriniformes) revisited: position of enigmatic loach Ellopostoma resolved with six nuclear genes. JOURNAL OF FISH BIOLOGY 2009; 75:2197-2208. [PMID: 20738682 DOI: 10.1111/j.1095-8649.2009.02398.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular variation in six nuclear genes provides substantive phylogenetic evidence for the recognition of a new cypriniform family, the Ellopostomatidae, to include the enigmatic Southern Asia loach genus Ellopostoma. The current six loach families form a monophyletic group, with the Nemacheilidae as the sister group to Ellopostomatidae; Vaillantellidae forms the sister group to all families exclusive of Botiidae. While the superfamily Cobitoidea includes eight families, the monophyly of this large clade within the Cypriniformes remains a vexing problem despite extensive molecular analyses and is in need of further investigation.
Collapse
Affiliation(s)
- W-J Chen
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA.
| | | | | |
Collapse
|
89
|
Kim KY, Lim YH, Bang IC, Nam YK. Phylogenetic relationships among three newHemibarbusmitogenome sequences belonging to the subfamily Gobioninae (Teleostei, Cypriniformes, and Cyprinidae). ACTA ACUST UNITED AC 2009; 20:119-25. [DOI: 10.3109/19401730903176896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
90
|
Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: Further evidence from six nuclear genes. Mol Phylogenet Evol 2009; 52:544-9. [DOI: 10.1016/j.ympev.2009.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
91
|
Doosey MH, Bart HL, Saitoh K, Miya M. Phylogenetic relationships of catostomid fishes (Actinopterygii: Cypriniformes) based on mitochondrial ND4/ND5 gene sequences. Mol Phylogenet Evol 2009; 54:1028-34. [PMID: 19527790 DOI: 10.1016/j.ympev.2009.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/11/2009] [Indexed: 11/16/2022]
Abstract
Family Catostomidae is a diverse group of benthic freshwater fishes that are distributed across North America and in parts of East Asia. In this study, the phylogenetic relationships of Catostomidae is examined using 3436 nucleotides of mitochondrial ND4 and ND5 protein coding genes and intervening tRNAs. All 13 genera and 60 species of catostomids were sampled to represent diversity of the family. Catostomidae and its four subfamilies were found to be monophyletic; however, relationships of the subfamilies are not strongly supported with bootstrapping. The analysis provides strong support for recognizing four tribes in subfamily Catostominae.
Collapse
Affiliation(s)
- Michael H Doosey
- Department of Ecology and Evolutionary Biology, Tulane University, 00 Boggs Center, New Orleans, LA 70118, USA.
| | | | | | | |
Collapse
|