51
|
Romero PE, Weigand AM, Pfenninger M. Positive selection on panpulmonate mitogenomes provide new clues on adaptations to terrestrial life. BMC Evol Biol 2016; 16:164. [PMID: 27549326 PMCID: PMC4994307 DOI: 10.1186/s12862-016-0735-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transitions from marine to intertidal and terrestrial habitats resulted in a significant adaptive radiation within the Panpulmonata (Gastropoda: Heterobranchia). This clade comprises several groups that invaded the land realm independently and in different time periods, e.g., Ellobioidea, Systellomatophora, and Stylommatophora. Thus, mitochondrial genomes of panpulmonate gastropods are promising to screen for adaptive molecular signatures related to land invasions. RESULTS We obtained three complete mitochondrial genomes of terrestrial panpulmonates, i.e., the ellobiid Carychium tridentatum, and the stylommatophorans Arion rufus and Helicella itala. Our dataset consisted of 50 mitogenomes comprising almost all major panpulmonate lineages. The phylogenetic tree based on mitochondrial genes supports the monophyly of the clade Panpulmonata. Terrestrial lineages were sampled from Ellobioidea (1 sp.) and Stylommatophora (9 spp.). The branch-site test of positive selection detected significant non-synonymous changes in the terrestrial branches leading to Carychium (Ellobiodea) and Stylommatophora. These convergent changes occurred in the cob and nad5 genes (OXPHOS complex III and I, respectively). CONCLUSIONS The convergence of the non-synonymous changes in cob and nad5 suggest possible ancient episodes of positive selection related to adaptations to non-marine habitats. The positively selected sites in our data are in agreement with previous results in vertebrates suggesting a general pattern of adaptation to the new metabolic requirements. The demand for energy due to the colonization of land (for example, to move and sustain the body mass in the new habitat) and the necessity to tolerate new conditions of abiotic stress may have changed the physiological constraints in the early terrestrial panpulmonates and triggered adaptations at the mitochondrial level.
Collapse
Affiliation(s)
- Pedro E Romero
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institute for Ecology, Evolution & Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany. .,Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima 14, Peru.
| | - Alexander M Weigand
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.,Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute for Ecology, Evolution & Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
52
|
Hill GE. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol Evol 2016; 6:5831-42. [PMID: 27547358 PMCID: PMC4983595 DOI: 10.1002/ece3.2338] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial genes are widely used in taxonomy and systematics because high mutation rates lead to rapid sequence divergence and because such changes have long been assumed to be neutral with respect to function. In particular, the nucleotide sequence of the mitochondrial gene cytochrome c oxidase subunit 1 has been established as a highly effective DNA barcode for diagnosing the species boundaries of animals. Rarely considered in discussions of mitochondrial evolution in the context of systematics, speciation, or DNA barcodes, however, is the genomic architecture of the eukaryotes: Mitochondrial and nuclear genes must function in tight coordination to produce the complexes of the electron transport chain and enable cellular respiration. Coadaptation of these interacting gene products is essential for organism function. I extend the hypothesis that mitonuclear interactions are integral to the process of speciation. To maintain mitonuclear coadaptation, nuclear genes, which code for proteins in mitochondria that cofunction with the products of mitochondrial genes, must coevolve with rapidly changing mitochondrial genes. Mitonuclear coevolution in isolated populations leads to speciation because population-specific mitonuclear coadaptations create between-population mitonuclear incompatibilities and hence barriers to gene flow between populations. In addition, selection for adaptive divergence of products of mitochondrial genes, particularly in response to climate or altitude, can lead to rapid fixation of novel mitochondrial genotypes between populations and consequently to disruption in gene flow between populations as the initiating step in animal speciation. By this model, the defining characteristic of a metazoan species is a coadapted mitonuclear genotype that is incompatible with the coadapted mitochondrial and nuclear genotype of any other population.
Collapse
Affiliation(s)
- Geoffrey E. Hill
- Department Biological ScienceAuburn University331 Funchess HallAuburnAlabama36849‐5414
| |
Collapse
|
53
|
Rodrigues da Costa MJ, Siqueira do Amaral PJ, Pieczarka JC, Sampaio MI, Rossi RV, Mendes-Oliveira AC, Rodrigues Noronha RC, Nagamachi CY. Cryptic Species in Proechimys goeldii (Rodentia, Echimyidae)? A Case of Molecular and Chromosomal Differentiation in Allopatric Populations. Cytogenet Genome Res 2016; 148:199-210. [PMID: 27255109 DOI: 10.1159/000446562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
The spiny rats of the genus Proechimys have a wide distribution in the Amazon, covering all areas of endemism of this region. We analyzed the karyotype and cytochrome b (Cyt b) sequences in Proechimys goeldii from 6 localities representing 3 interfluves of the eastern Amazon. A clear separation of P. goeldii into 2 monophyletic clades was observed, both chromosomally and based on Cyt b sequences: cytotype A (2n = 26x2640;/27x2642;, NF = 42) for samples from the Tapajos-Xingu interfluve and cytotype B (2n = 24x2640;/25x2642;, NF = 42) for samples from the Xingu-Tocantins interfluve and east of the Tocantins River. The karyotypes differ in a pericentric inversion and a centric fusion/fission and an average nucleotide divergence of 6.1%, suggesting cryptic species. Meiotic analysis confirmed the presence of a XX/XY1Y2 multiple sex chromosome determination system for both karyotypes. The karyotypes also vary from the literature (2n = 24, NF = 42, XX/XY). The autosome translocated to the X chromosome is different both in size and morphology to P. cf. longicaudatus, which also has a multiple sex chromosome determination system (2n = 14x2640;/15x2640;x2642;/16x2640;/17x2642;, NF = 14). The Xingu River is a barrier that separates populations of P. goeldii, thus maintaining their allopatric nature and providing an explanation for the molecular and cytogenetic patterns observed for the Xingu River but not the Tocantins River.
Collapse
|
54
|
Timmermans MJTN, Barton C, Haran J, Ahrens D, Culverwell CL, Ollikainen A, Dodsworth S, Foster PG, Bocak L, Vogler AP. Family-Level Sampling of Mitochondrial Genomes in Coleoptera: Compositional Heterogeneity and Phylogenetics. Genome Biol Evol 2015; 8:161-75. [PMID: 26645679 PMCID: PMC4758238 DOI: 10.1093/gbe/evv241] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2015] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were obtained with the nhPhyML ("nonhomogeneous") algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees.
Collapse
Affiliation(s)
- Martijn J T N Timmermans
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Life Sciences, Imperial College London - Silwood Park Campus, Ascot, United Kingdom Department of Natural Sciences, Middlesex University, Hendon Campus, London, United Kingdom
| | - Christopher Barton
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Julien Haran
- Department of Life Sciences, Natural History Museum, London, United Kingdom Present address: INRA, UR633 Zoologie Forestière, Orléans, France
| | - Dirk Ahrens
- Department of Life Sciences, Natural History Museum, London, United Kingdom Zoologisches Forschungsmuseum Alexander Koenig Bonn, Bonn, Germany
| | - C Lorna Culverwell
- Department of Life Sciences, Natural History Museum, London, United Kingdom Present address: Haartman Institute, Haartmaninkatu 3, University of Helsinki, Helsinki, Finland
| | - Alison Ollikainen
- Department of Life Sciences, Natural History Museum, London, United Kingdom Present address: Department of Medical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Steven Dodsworth
- Department of Life Sciences, Natural History Museum, London, United Kingdom Present address: Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Ladislav Bocak
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Zoology, Faculty of Science UP, Olomouc, Czech Republic
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Life Sciences, Imperial College London - Silwood Park Campus, Ascot, United Kingdom
| |
Collapse
|
55
|
Abstract
Cavia aperea which is a Brazilian guinea pig is found in the South America. Recently the genome sequencing of C. aperea was done, but no more information of its mitochondrial had been reported. Herein, we assembled the complete mitochondrial genome sequence of C. aperea. It is a 16 835 bp long sequence with most mitogenome's characteristic structure; 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, 1 D-loop region, 1 repeat region and 3 STS regions. The GC-content of our fresh sequence is 39%. It can verify the accuracy and utility of newly determined mitogenome sequences by the phylogenetic analysis, based on whole mitogenome alignment with C. porcellus, which is the closest relative to C. aperea. We expect that using the full mitogenome we can address the taxonomic issues and study the related the evolution events.
Collapse
Affiliation(s)
- Wei Cao
- a School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University , Shanghai , China and
| | - Yan Xia
- b BGI Education Center University of Chinese Academy of Sciences , Shenzhen , China
| |
Collapse
|
56
|
Consuegra S, John E, Verspoor E, de Leaniz CG. Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Sel Evol 2015; 47:58. [PMID: 26138253 PMCID: PMC4490732 DOI: 10.1186/s12711-015-0138-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) is frequently used in population genetic studies and is usually considered as a neutral marker. However, given the functional importance of the proteins encoded by the mitochondrial genome, and the prominent role of mitochondria in cellular energy production, the assumption of neutrality is increasingly being questioned. Results We tested for evidence of selection on the mitochondrial genome of the Atlantic salmon, which is a locally adapted and widely farmed species and is distributed across a large latitudinal cline. We analysed 20 independent regions of the salmon mtDNA that represented nine genes (ND1, ND2, ND3, COX1, COX2, ATP6, ND4, ND5, and CYTB). These 20 mtDNA regions were sequenced using a 454 approach from samples collected across the entire European range of this species. We found evidence of positive selection at the ND1, ND3 and ND4 genes, which is supported by at least two different codon-based methods and also by differences in the chemical properties of the amino acids involved. The geographical distribution of some of the mutations indicated to be under selection was not random, and some mutations were private to artic populations. We discuss the possibility that selection acting on the Atlantic salmon mtDNA genome might be related to the need for increased metabolic efficiency at low temperatures. Conclusions The analysis of sequences representing nine mitochondrial genes that are involved in the OXPHOS pathway revealed signatures of positive selection in the mitochondrial genome of the Atlantic salmon. The properties of the amino acids involved suggest that some of the mutations that were identified to be under positive selection might have functional implications, possibly in relation to metabolic efficiency. Experimental evidence, and better understanding of regional phylogeographic structuring, are needed to clarify the potential role of selection acting on the mitochondrial genome of Atlantic salmon and other locally adapted fishes. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0138-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Consuegra
- Department of BioSciences, Swansea University, Swansea, SA2 8PP, UK.
| | - Elgan John
- Department of BioSciences, Swansea University, Swansea, SA2 8PP, UK.
| | - Eric Verspoor
- Inverness College, University of Highlands and Islands, Inverness, IV1 1SA, Scotland, UK.
| | | |
Collapse
|
57
|
Morales HE, Pavlova A, Joseph L, Sunnucks P. Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol Ecol 2015; 24:2820-37. [DOI: 10.1111/mec.13203] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Hernán E. Morales
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Alexandra Pavlova
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Leo Joseph
- Australian National Wildlife Collection; CSIRO National Facilities and Collections; GPO Box 1700 Canberra ACT 2601 Australia
| | - Paul Sunnucks
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| |
Collapse
|
58
|
Caballero S, Duchêne S, Garavito MF, Slikas B, Baker CS. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes. PLoS One 2015; 10:e0123543. [PMID: 25946045 PMCID: PMC4422622 DOI: 10.1371/journal.pone.0123543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 03/04/2015] [Indexed: 01/31/2023] Open
Abstract
A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the ‘river dolphins’, early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three ‘river dolphins’ (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans.
Collapse
Affiliation(s)
- Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
- * E-mail:
| | - Sebastian Duchêne
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
- School of Biological Sciences, The University of Sydney, NSW, Australia
| | - Manuel F. Garavito
- Grupo de Investigaciones en Bioquímica y Biología Molecular de Parásitos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
| | - Beth Slikas
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, Oregon, United States of America
| | - C. Scott Baker
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, Oregon, United States of America
| |
Collapse
|
59
|
Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael R. Garvin
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| | - Joseph P. Bielawski
- Department of Biology; Dalhousie University; Halifax NS Canada
- Department of Mathematics & Statistics; Dalhousie University; Halifax NS Canada
| | | | - Anthony J. Gharrett
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| |
Collapse
|
60
|
Primers for amplification and sequencing the complete mitochondrial genome in Octodontoid rodents. CONSERV GENET RESOUR 2014. [DOI: 10.1007/s12686-014-0163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Melo-Ferreira J, Vilela J, Fonseca MM, da Fonseca RR, Boursot P, Alves PC. The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression. Genome Biol Evol 2014; 6:886-96. [PMID: 24696399 PMCID: PMC4007550 DOI: 10.1093/gbe/evu059] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive.
Collapse
Affiliation(s)
- José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
| | - Joana Vilela
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Portugal
| | - Miguel M. Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Spain
| | - Rute R. da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Portugal
| | - Pierre Boursot
- Institut des Sciences de l’Evolution, Université Montpellier 2, CNRS, IRD, France
| | - Paulo C. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula
| |
Collapse
|
62
|
Tomasco IH, Lessa EP. Two mitochondrial genes under episodic positive selection in subterranean octodontoid rodents. Gene 2014; 534:371-8. [DOI: 10.1016/j.gene.2013.09.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/28/2013] [Accepted: 09/26/2013] [Indexed: 11/27/2022]
|
63
|
Nery MF, Arroyo JI, Opazo JC. Accelerated Evolutionary Rate of the Myoglobin Gene in Long-Diving Whales. J Mol Evol 2013; 76:380-7. [DOI: 10.1007/s00239-013-9572-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
|
64
|
Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae). Mol Phylogenet Evol 2013; 69:728-39. [PMID: 23850499 DOI: 10.1016/j.ympev.2013.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/19/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of phyllostomid bats based on a denser species sampling.
Collapse
|
65
|
Voloch CM, Vilela JF, Loss-Oliveira L, Schrago CG. Phylogeny and chronology of the major lineages of New World hystricognath rodents: insights on the biogeography of the Eocene/Oligocene arrival of mammals in South America. BMC Res Notes 2013; 6:160. [PMID: 23607317 PMCID: PMC3644239 DOI: 10.1186/1756-0500-6-160] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/11/2013] [Indexed: 11/30/2022] Open
Abstract
Background The hystricognath rodents of the New World, the Caviomorpha, are a diverse lineage with a long evolutionary history, and their representation in South American fossil record begins with their occurrence in Eocene deposits from Peru. Debates regarding the origin and diversification of this group represent longstanding issues in mammalian evolution because early hystricognaths, as well as Platyrrhini primates, appeared when South American was an isolated landmass, which raised the possibility of a synchronous arrival of these mammalian groups. Thus, an immediate biogeographic problem is posed by the study of caviomorph origins. This problem has motivated the analysis of hystricognath evolution with molecular dating techniques that relied essentially on nuclear data. However, questions remain about the phylogeny and chronology of the major caviomorph lineages. To enhance the understanding of the evolution of the Hystricognathi in the New World, we sequenced new mitochondrial genomes of caviomorphs and performed a combined analysis with nuclear genes. Results Our analysis supports the existence of two major caviomorph lineages: the (Chinchilloidea + Octodontoidea) and the (Cavioidea + Erethizontoidea), which diverged in the late Eocene. The Caviomorpha/phiomorph divergence also occurred at approximately 43 Ma. We inferred that all family-level divergences of New World hystricognaths occurred in the early Miocene. Conclusion The molecular estimates presented in this study, inferred from the combined analysis of mitochondrial genomes and nuclear data, are in complete agreement with the recently proposed paleontological scenario of Caviomorpha evolution. A comparison with recent studies on New World primate diversification indicate that although the hypothesis that both lineages arrived synchronously in the Neotropics cannot be discarded, the times elapsed since the most recent common ancestor of the extant representatives of both groups are different.
Collapse
|
66
|
Complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Sciuromorpha, Sciuridae) and revision of rodent phylogeny. Mol Biol Rep 2012; 40:1917-26. [PMID: 23114915 DOI: 10.1007/s11033-012-2248-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
In this study, the complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Rodentia, Sciuromorpha, Sciuridae) was sequenced and characterized in detail. The entire mitochondrial genome of P. volans consisted of 16,513 bp and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions. Its gene arrangement pattern was consistent with the mammalian ground pattern. The overall base composition and AT contents were similar to those of other rodent mitochondrial genomes. The light-strand origin generally identified between tRNA ( Asn ) and tRNA ( Cys ) consisted of a secondary structure with an 11-bp stem and an 11-bp loop. The large control region was constructed of three characteristic domains, ETAS, CD, and CSB without any repeat sequences. Each domain contained ETAS1, subsequences A, B, and C, and CSB1, respectively. In order to examine phylogenetic contentious issues of the monophyly of rodents and phylogenetic relationships among five rodent suborders, here, phylogenetic analyses based on nucleotide sequence data of the 35 rodent and 3 lagomorph mitochondrial genomes were performed using the Bayesian inference and maximum likelihood method. The result strongly supported the rodent monophyly with high node confidence values (BP 100 % in ML and BPP 1.00 in BI) and also monophylies of four rodent suborders (BP 85-100 % in ML and BPP 1.00 in BI), except for Anomalumorpha in which only one species was examined here. Also, phylogenetic relationships among the five rodent suborders were suggested and discussed in detail.
Collapse
|
67
|
Mitogenomic analysis of the genus Pseudois: evidence of adaptive evolution of morphological variation in the ATP synthase genes. Mitochondrion 2012; 12:500-5. [PMID: 22820118 DOI: 10.1016/j.mito.2012.07.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/21/2012] [Accepted: 07/10/2012] [Indexed: 12/22/2022]
Abstract
The genus Pseudois includes two variable taxa, blue sheep (Pseudois nayaur) and dwarf blue sheep (Pseudois schaeferi), that exhibit notable geographic variation in morphology and ecological niche, suggesting the potential for significant adaptive differentiation between these two goats. Blue sheep are broadly distributed in the Tibetan Plateau and peripheral mountains through Central Asia, while dwarf blue sheep are only found in the gorges of the upper Yangtze River (Jinsha River) near Batang county, Sichuan province and adjacent mountains. Although they are all adapted to high altitude environments, endangered dwarf blue sheep show unique morphological variation and niche shifts compared to blue sheep. Mitochondria play important roles in oxygen usage and energy metabolism. The energetically demanding lifestyles of these high altitude species may have altered the selective regimes on mitochondrial genes encoding proteins related to cellular respiration. Here, we compared the sequences of 13 protein-coding genes in the mitochondrial genome of dwarf blue sheep with those of blue sheep to understand the genetic basis of morphological variation. Using neighbor-joining, maximum-likelihood and Bayesian approaches, we estimated rates of synonymous (d(S)) and nonsynonymous (d(N)) substitutions. Independent analyses showed that no ω ratio was larger than 1, suggesting that all mitochondrial 13 genes were under the purifying selection. Surprisingly, we found that the ω ratio (d(N)/d(S)) of the ATP synthase complex (ATP6 and ATP8) in blue sheep is sixteen times that of dwarf blue sheep (0.340 compared to 0.021). This result was confirmed by a separate analysis of ATP synthase genes from two additional P. schaeferi individuals and two P. nayaur individuals. We hypothesize that the large body size and diverse feeding styles are factors influencing the nonsynonymous substitutions in the ATP synthase complex of blue sheep.
Collapse
|