51
|
Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 2019; 18:689-706. [PMID: 31292532 DOI: 10.1038/s41573-019-0029-0] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
In the wake of the success of modern immunotherapy, oncolytic viruses (OVs) are currently seen as a potential therapeutic option for patients with cancer who do not respond or fail to achieve durable responses following treatment with immune checkpoint inhibitors. OVs offer a multifaceted therapeutic platform because they preferentially replicate in tumour cells, can be engineered to express transgenes that augment their cytotoxic and immunostimulatory activities, and modulate the tumour microenvironment to optimize immune-mediated tumour eradication, both at locoregional and systemic sites of disease. Lysis of tumour cells releases tumour-specific antigens that trigger both the innate and adaptive immune systems. OVs also represent attractive combination partners with other systemically delivered agents by virtue of their highly favourable safety profiles. Rational combinations of OVs with different immune modifiers and/or antitumour agents, based on mechanisms of tumour resistance to immune-mediated attack, may benefit the large, currently underserved, population of patients who respond poorly to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | | | - Beth Kelly
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Jean-Charles Soria
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA.,Department of Medicine and Medical Oncology, Université Paris-Sud, Orsay, France
| |
Collapse
|
52
|
Yang Y, Xu W, Peng D, Wang H, Zhang X, Wang H, Xiao F, Zhu Y, Ji Y, Gulukota K, Helseth DL, Mangold KA, Sullivan M, Kaul K, Wang E, Prabhakar BS, Li J, Wu X, Wang L, Seth P. An Oncolytic Adenovirus Targeting Transforming Growth Factor β Inhibits Protumorigenic Signals and Produces Immune Activation: A Novel Approach to Enhance Anti-PD-1 and Anti-CTLA-4 Therapy. Hum Gene Ther 2019; 30:1117-1132. [PMID: 31126191 DOI: 10.1089/hum.2019.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In an effort to develop a new therapy for cancer and to improve antiprogrammed death inhibitor-1 (anti-PD-1) and anticytotoxic T lymphocyte-associated protein (anti-CTLA-4) responses, we have created a telomerase reverse transcriptase promoter-regulated oncolytic adenovirus rAd.sT containing a soluble transforming growth factor receptor II fused with human IgG Fc fragment (sTGFβRIIFc) gene. Infection of breast and renal tumor cells with rAd.sT produced sTGFβRIIFc protein with dose-dependent cytotoxicity. In immunocompetent mouse 4T1 breast tumor model, intratumoral delivery of rAd.sT inhibited both tumor growth and lung metastases. rAd.sT downregulated the expression of several transforming growth factor β (TGFβ) target genes involved in tumor growth and metastases, inhibited Th2 cytokine expression, and induced Th1 cytokines and chemokines, and granzyme B and perforin expression. rAd.sT treatment also increased the percentage of CD8+ T lymphocytes, promoted the generation of CD4+ T memory cells, reduced regulatory T lymphocytes (Tregs), and reduced bone marrow-derived suppressor cells. Importantly, rAd.sT treatment increased the percentage of CD4+ T lymphocytes, and promoted differentiation and maturation of antigen-presenting dendritic cells in the spleen. In the immunocompetent mouse Renca renal tumor model, similar therapeutic effects and immune activation results were observed. In the 4T1 mammary tumor model, rAd.sT improved the inhibition of tumor growth and lung and liver metastases by anti-PD-1 and anti-CTLA-4 antibodies. Analysis of the human breast and kidney tumors showed that a significant number of tumor tissues expressed high levels of TGFβ and TGFβ-inducible genes. Therefore, rAd.sT could be a potential enhancer of anti-PD-1 and anti-CTLA-4 therapy for treating breast and kidney cancers.
Collapse
Affiliation(s)
- Yuefeng Yang
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, an Affiliate of the University of Chicago, Evanston, Illinois
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, an Affiliate of the University of Chicago, Evanston, Illinois
| | - Di Peng
- Department of Urology, The Third Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Hao Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaoyan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yitan Zhu
- Program of Computational Genomics and Medicine, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Yuan Ji
- Program of Computational Genomics and Medicine, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Kamalakar Gulukota
- Center for Personalized Medicine, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Donald L Helseth
- Center for Personalized Medicine, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Kathy A Mangold
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Megan Sullivan
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Karen Kaul
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Edward Wang
- Biostatistics and Clinical Research Informatics, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois
| | - Jinnan Li
- Department of Urology, The Third Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Xuejie Wu
- Department of Urology, The Third Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Lisheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, an Affiliate of the University of Chicago, Evanston, Illinois
| |
Collapse
|
53
|
Overexpression of Smac by an Armed Vesicular Stomatitis Virus Overcomes Tumor Resistance. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:188-195. [PMID: 31312717 PMCID: PMC6610632 DOI: 10.1016/j.omto.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/15/2019] [Indexed: 01/04/2023]
Abstract
Despite reports of successful clinical cases, many tumors appear to resist infection by oncolytic viruses (OVs). To circumvent this problem, an armed vesicular stomatitis virus was constructed by inserting a transgene to express Smac/DIABLO during virus infection (VSV-S). Endogenous Smac in HeLa cells was diminished during wtVSV infection, whereas the Smac level was enhanced during VSV-S infection. Apoptosis was readily induced by VSV-S, but not wtVSV, infection. More importantly, the tumor volume was reduced to a larger extent when xenografts of 4T1 cells in BALB/c mice and OV-resistant T-47D cells in nude mice were intratumorally injected with VSV-S. VSV-S represents a novel mechanism to overcome tumor resistance, resulting in more significant tumor regression due to enhanced apoptosis.
Collapse
|
54
|
Affiliation(s)
- Claudia Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
55
|
Margolis N, Markovits E, Markel G. Reprogramming lymphocytes for the treatment of melanoma: From biology to therapy. Adv Drug Deliv Rev 2019; 141:104-124. [PMID: 31276707 DOI: 10.1016/j.addr.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
This decade has introduced drastic changes in melanoma therapy, predominantly due to the materialization of the long promise of immunotherapy. Cytotoxic T cells are the chief component of the immune system, which are targeted by different strategies aimed to increase their capacity against melanoma cells. To this end, reprogramming of T cells occurs by T cell centered manipulation, targeting the immunosuppressive tumor microenvironment or altering the whole patient. These are enabled by delivery of small molecules, functional monoclonal antibodies, different subunit vaccines, as well as living lymphocytes, native or genetically engineered. Current FDA-approved therapies are focused on direct T cell manipulation, such as immune checkpoint inhibitors blocking CTLA-4 and/or PD-1, which paves the way for an effective immunotherapy backbone available for combination with other modalities. Here we review the biology and clinical developments that enable melanoma immunotherapy today and in the future.
Collapse
|
56
|
Machiels JP, Salazar R, Rottey S, Duran I, Dirix L, Geboes K, Wilkinson-Blanc C, Pover G, Alvis S, Champion B, Fisher K, McElwaine-Johnn H, Beadle J, Calvo E. A phase 1 dose escalation study of the oncolytic adenovirus enadenotucirev, administered intravenously to patients with epithelial solid tumors (EVOLVE). J Immunother Cancer 2019; 7:20. [PMID: 30691536 PMCID: PMC6348630 DOI: 10.1186/s40425-019-0510-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/13/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Enadenotucirev is a chimeric adenovirus with demonstrated preclinical tumor-selective cytotoxicity and a short half-life. Further clinical mechanism of action data showed that enadenotucirev can gain access to and replicate within different types of epithelial tumors. This phase 1 dose escalation study assessed intravenous (IV) dose escalation with enadenotucirev to establish the maximum tolerated dose (MTD) and subsequently identify a suitable schedule for repeated cycles. METHODS Sixty-one patients with advanced epithelial tumors unresponsive to conventional therapy were enrolled and received enadenotucirev monotherapy as part of this study. During the phase 1a dose escalation (n = 22) and expansion (n = 9), delivery of enadenotucirev between 1 × 1010 and 1 × 1013 viral particles (vp) on days 1, 3, and 5 (single cycle) was used to determine an appropriate MTD. Subsequent treatment cohorts (phase 1a, n = 6 and phase 1b, n = 24) examined the feasibility of repeated dosing cycles in either 3-weekly or weekly dosing regimens. RESULTS Enadenotucirev displayed a predictable and manageable safety profile at doses up to the MTD of 3 × 1012 vp, irrespective of infusion time or dosing schedule. The most commonly reported treatment-emergent adverse events (TEAEs) of grade 3 or higher were hypoxia, lymphopenia, and neutropenia. The frequency of all TEAEs (notably pyrexia and chills) was highest within 24 h of the first enadenotucirev infusion and decreased upon subsequent dosing. Additionally, delivery of three doses of enadenotucirev over 5 days optimized pharmacokinetic and chemokine profiles in the circulation over time. CONCLUSIONS This study provides key clinical data in patients with solid epithelial tumors following treatment with IV enadenotucirev monotherapy and supports further investigation of enadenotucirev in combination with other therapeutic agents at doses up to the MTD of 3 × 1012 vp. TRIAL REGISTRATION ( ClinicalTrials.gov Identifier: NCT02028442 ). Trial registration date: 07 January 2014 - Retrospectively registered.
Collapse
Affiliation(s)
- Jean-Pascal Machiels
- Department of Medical Oncology, Institut Roi Albert II, Cliniques universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale, Université catholique de Louvain, Brussels, Belgium
| | - Ramon Salazar
- Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Sylvie Rottey
- Drug Research Unit Ghent, Ghent University Hospital, Ghent, Belgium
| | - Ignacio Duran
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Luc Dirix
- Saint-Augustinus Hospital, Antwerp, Belgium
| | - Karen Geboes
- Department of Gastroenterology and Digestive Oncology, Ghent University Hospital, Ghent, Belgium
| | | | - Gillian Pover
- PsiOxus Therapeutics Limited, 4-10 The Quadrant, Barton Lane, Abingdon, UK
| | - Simon Alvis
- PsiOxus Therapeutics Limited, 4-10 The Quadrant, Barton Lane, Abingdon, UK
| | - Brian Champion
- PsiOxus Therapeutics Limited, 4-10 The Quadrant, Barton Lane, Abingdon, UK.
| | - Kerry Fisher
- PsiOxus Therapeutics Limited, 4-10 The Quadrant, Barton Lane, Abingdon, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - John Beadle
- PsiOxus Therapeutics Limited, 4-10 The Quadrant, Barton Lane, Abingdon, UK
| | - Emiliano Calvo
- START Madrid, Centro Integral Oncológico Clara Campal, Hospital Madrid Norte Sanchinarro, Madrid, Spain
| |
Collapse
|
57
|
Extremely Low Organ Toxicity and Strong Antitumor Activity of miR-34-Regulated Oncolytic Coxsackievirus B3. MOLECULAR THERAPY-ONCOLYTICS 2019; 12:246-258. [PMID: 30891489 PMCID: PMC6406029 DOI: 10.1016/j.omto.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
Oncolytic virotherapies have emerged as new modalities for cancer treatment. We previously reported that coxsackievirus B3 (CVB3) is a novel oncolytic virus (OV) with a strong ability to lyse human non-small cell lung cancer cells; however, its non-specific toxicity against normal cells remains to be resolved. To improve its safety profile, microRNA target sequences complementary to miR-34a/c, which is expressed preferentially in normal cells, were inserted into the 5′ UTR or 3′ UTR of the CVB3 genome. In the presence of miR-34a/c, the gene-modified CVB3 could not replicate in normal cells. We also found that the pathogenicity of CVB3 was reduced to a greater extent by targeting miR-34a than miR-34c; in addition, it was more effective to insert the target sequences into the 3′ UTR rather than the 5′ UTR of the viral genome. Ultimately, we developed a double-miR-34a targeting virus (53a-CVB) by inserting miR-34a targets in both the 5′ UTR and 3′ UTR of the virus. 53a-CVB was minimally toxic to cells in normal tissue, but maintained nearly its full oncolytic activity in mice xenografted with human lung cancer. 53a-CVB is the first miR-34-regulated OV and represents a promising platform for the development of safe and effective anti-cancer therapies.
Collapse
|
58
|
Le TMD, Jung BK, Li Y, Duong HTT, Nguyen TL, Hong JW, Yun CO, Lee DS. Physically crosslinked injectable hydrogels for long-term delivery of oncolytic adenoviruses for cancer treatment. Biomater Sci 2019; 7:4195-4207. [DOI: 10.1039/c9bm00992b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A dual pH- and temperature-responsive physically crosslinked and injectable hydrogel system was developed for efficient and long-term delivery of oncolytic adenoviruses (Ads).
Collapse
Affiliation(s)
- Thai Minh Duy Le
- School of Chemical Engineering and Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Bo-Kyeong Jung
- Department of Bioengineering
- College of Engineering
- Hanyang University
- Seoul
- Republic of Korea
| | - Yi Li
- School of Chemical Engineering and Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Huu Thuy Trang Duong
- School of Chemical Engineering and Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering and Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Jin Woo Hong
- Department of Bioengineering
- College of Engineering
- Hanyang University
- Seoul
- Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering
- College of Engineering
- Hanyang University
- Seoul
- Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering and Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon
- Republic of Korea
| |
Collapse
|
59
|
Antonelli G, Pistello M. Virology: a scientific discipline facing new challenges. Clin Microbiol Infect 2018; 25:133-135. [PMID: 30580032 DOI: 10.1016/j.cmi.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 11/15/2022]
Affiliation(s)
- G Antonelli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, and Policlinico "Umberto I" Hospital, "Sapienza" University of Rome, Italy.
| | - M Pistello
- Retrovirus Centre and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
60
|
Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend. Front Immunol 2018; 9:2909. [PMID: 30619273 PMCID: PMC6297829 DOI: 10.3389/fimmu.2018.02909] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy, where the patient's own immune system is exploited to eliminate tumor cells, has become one of the most prominent new cancer treatment options in the last decade. The main hurdle for classical cancer vaccines is the need to identify tumor- and patient specific antigens to include in the vaccine. Therefore, in situ vaccination represents an alternative and promising approach. This type of immunotherapy involves the direct intratumoral administration of different immunomodulatory agents and uses the tumor itself as the source of antigen. The ultimate aim is to convert an immunodormant tumor microenvironment into an immunostimulatory one, enabling the immune system to eradicate all tumor lesions in the body. In this review we will give an overview of different strategies, which can be exploited for the immunomodulation of the tumor microenvironment and their emerging role in the treatment of cancer patients.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah K. Maenhout
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
61
|
Rothermel LD, Zager JS. Engineered oncolytic viruses to treat melanoma: where are we now and what comes next? Expert Opin Biol Ther 2018; 18:1199-1207. [PMID: 30392405 DOI: 10.1080/14712598.2018.1544614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Melanoma treatments have evolved rapidly in the past decade and have included the use of intratumoral injections of engineered oncolytic viruses. One such oncolytic virus is talimogene laherparepvec (T-VEC), which is the first approved therapy of its kind for use in recurrent, unresectable stage IIIB-IVM1a melanoma. Additional oncolytic viruses and their uses in combination with other interventions are currently under investigation. AREAS COVERED Oncolytic viruses are being evaluated as immunotherapies for a variety of advanced malignancies. In this article, we review T-VEC, the only FDA-approved engineered oncolytic virus, in addition to ongoing research regarding other oncolytic viruses for the treatment of advanced melanomas. Finally, we discuss opportunities to improve these therapies through viral, host, and tumor-related modifications. EXPERT OPINION Engineered and naturally oncolytic viruses have demonstrable local and systemic efficacy as immunotherapies in cancer. T-VEC leads the way with improved survival outcomes for unresectable, stage IIIB-IVM1a melanoma as a monotherapy, and is demonstrating superior results in combination with systemic checkpoint inhibitors. Additional viral vectors show acceptable safety profiles and varying degrees of efficacy in targeting melanoma. The indications for use of oncolytic viruses will expand as their efficacy and appropriate usage is better understood in coming years.
Collapse
Affiliation(s)
| | - Jonathan S Zager
- b Department of Cutaneous Oncology and Sarcoma , Moffitt Cancer Center , Tampa , FL , USA
| |
Collapse
|
62
|
Guedan S, Alemany R. CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Front Immunol 2018; 9:2460. [PMID: 30405639 PMCID: PMC6207052 DOI: 10.3389/fimmu.2018.02460] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells has resulted in unprecedented rates of long-lasting complete responses in patients with leukemia and lymphoma. However, despite the impressive results in patients with hematologic malignancies, CAR-T cells have showed limited effect against solid cancers. New approaches will need to simultaneously overcome the multiple challenges that CAR-T cells encounter in solid tumors, including the immunosuppressive tumor microenvironment and heterogeneity of antigen expression. Oncolytic viruses are lytic and immunogenic anti-cancer agents with the potential to synergize with CAR-T cells for the treatment of solid tumors. In addition, viruses can be further modified to deliver therapeutic transgenes selectively to the tumor microenvironment, which could enhance the effector functions of tumor-specific T cells. This review summarizes the major limitations of CAR-T cells in solid tumors and discusses the potential role for oncolytic viruses as partners for CAR-T cells in the fight against cancer.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Catala d'Oncologia, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
63
|
Phan M, Watson MF, Alain T, Diallo JS. Oncolytic Viruses on Drugs: Achieving Higher Therapeutic Efficacy. ACS Infect Dis 2018; 4:1448-1467. [PMID: 30152676 DOI: 10.1021/acsinfecdis.8b00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 20 years there has been a dramatic expansion in the testing of oncolytic viruses (OVs) for the treatment of cancer. OVs are unique biotherapeutics that induce multimodal responses toward tumors, from direct cytopathic effects on cancer cells, to tumor associated blood vessel disruption, and ultimately potent stimulation of anti-tumor immune activation. These agents are highly targeted and can be efficacious as cancer treatments resulting in some patients experiencing complete tumor regression and even cures from OV monotherapy. However, most patients have limited responses with viral replication in tumors often found to be modest and transient. To augment OV replication, increase bystander killing of cancer cells, and/or stimulate stronger targeted anti-cancer immune responses, drug combination approaches have taken center stage for translation to the clinic. Here we comprehensively review drugs that have been combined with OVs to increase therapeutic efficacy, examining the proposed mechanisms of action, and we discuss trends in pharmaco-viral immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Michael Phan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Margaret F. Watson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
64
|
Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur J Pharmacol 2018; 837:117-126. [PMID: 30179611 DOI: 10.1016/j.ejphar.2018.08.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses are a fast-developing cancer treatment field. Numerous viruses have been tested in clinical trials and three are approved. The first, Rigvir, is an immunomodulator with anti-tumour effect for treatment of melanoma, local treatment of skin and subcutaneous metastases of melanoma, for prevention of relapse and metastasis after radical surgery registered in Latvia, Georgia, Armenia and Uzbekistan. The aim of the present review is to summarize the development of Rigvir. Approximately 60 viruses were screened preclinically. Clinical safety and efficacy trials were with 5 oncolytic enteroviruses. Safety of the selected and melanoma-adapted ECHO-7 virus Rigvir was tested in over 180 patients with no severe adverse events observed. Pre-registration efficacy studies involved over 700 cancer patients: over 540 melanoma patients, and patients with late stage stomach (ca. 90), colorectal cancer (ca. 60), and other cancers. Patients were treated with Rigvir for 3 years after surgery and compared to immunotherapy: 3- and 5-year overall survival appeared to be increased in Rigvir treated patients. In post-marketing retrospective studies, Rigvir-treated stage II melanoma patients showed a 6.67-fold decreased risk for disease progression in comparison to those that had been observed according to guidelines, and stage IB and stage II melanoma patients that had received Rigvir therapy had 4.39-6.57-fold lower mortality. The results are confirmed and extended by case reports. Several immunological markers have been measured. In conclusion, Rigvir is an oncotropic and oncolytic virus for treatment of melanoma; the results will be confirmed and updated by modern clinical studies.
Collapse
Affiliation(s)
- Pēteris Alberts
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia.
| | - Andra Tilgase
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia
| | - Agnija Rasa
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia
| | - Katrīna Bandere
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia
| | - Dite Venskus
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia
| |
Collapse
|
65
|
Johan MP, Kubo T, Furuta T, Sakuda T, Sakaguchi T, Nakanishi M, Ochi M, Adachi N. Metastatic tumor cells detection and anti-metastatic potential with vesicular stomatitis virus in immunocompetent murine model of osteosarcoma. J Orthop Res 2018; 36:2562-2569. [PMID: 29637599 DOI: 10.1002/jor.23911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Sarcomas are associated with a high incidence of lung metastasis, which leads to a high-risk of cancer death. This study was performed to explore the pre-clinical theranostic potential of a novel fully functional recombinant vesicular stomatitis virus carrying imaging gene Katushka (rVSV-K), as virotherapy and circulating tumor cells (CTCs) detection in the syngeneic mouse model of osteosarcoma with spontaneous pulmonary metastases. Recombinant VSV-K was generated and evaluated in vitro on human and murine osteosarcoma cells. Spontaneous osteosarcoma metastases were established in immune-competent mice by implanting subcutaneously syngeneic osteosarcoma LM8 cells. The vector was injected into the tumor-bearing mice via jugular vein either once or repeatedly. To assess effectiveness, primary tumor growth and development of lung metastasis as well as survival were evaluated. We found that rVSV-K efficiently replicated in and killed all osteosarcoma cell lines in time-dependent manners. Both single or repeated systemic injections of the virus did not inhibit the growth of the primary tumor, but the repeated administration could effectively suppress the development of lung metastases and was likely responsible for the observed increase in survival. Furthermore, we demonstrated, for the first time, that CTCs in blood samples from syngeneic osteosarcoma-bearing mice were successfully detected by utilizing rVSV-K ex vivo. Our results show that repeated systemic injections of rVSV-K are an effective anti-metastatic agent against osteosarcoma in immune-competent mice and this virus to be a useful tool for detection of osteosarcoma CTCs, suggesting that further development of future viral-based theranostic approach in patients with osteosarcoma is warranted. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2562-2569, 2018.
Collapse
Affiliation(s)
- Muhammad P Johan
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Orthopedic and Traumatology, Faculty of Medicine, Hasanuddin University, Jln. Perintis Kemerdekaan KM.10, Tamalanrea, Makassar, 90245, Indonesia
| | - Tadahiko Kubo
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taisuke Furuta
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomohiko Sakuda
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mahito Nakanishi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 4, Tsukuba, Ibaraki, 305-8562, Japan
| | - Mitsuo Ochi
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
66
|
Leoni V, Vannini A, Gatta V, Rambaldi J, Sanapo M, Barboni C, Zaghini A, Nanni P, Lollini PL, Casiraghi C, Campadelli-Fiume G. A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog 2018; 14:e1007209. [PMID: 30080893 PMCID: PMC6095629 DOI: 10.1371/journal.ppat.1007209] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/16/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) showed efficacy in clinical trials and practice. Most of them gain cancer-specificity from deletions/mutations in genes that counteract the host response, and grow selectively in cancer cells defective in anti-viral response. Because of the deletions/mutations, they are frequently attenuated or over-attenuated. We developed next-generation oHSVs, which carry no deletion/mutation, gain cancer-specificity from specific retargeting to tumor cell receptors-e.g. HER2 (human epidermal growth factor receptor 2)-hence are fully-virulent in the targeted cancer cells. The type of immunotherapy they elicit was not predictable, since non-attenuated HSVs induce and then dampen the innate response, whereas deleted/attenuated viruses fail to contrast it, and since the retargeted oHSVs replicate efficiently in tumor cells, but spare other cells in the tumor. We report on the first efficacy study of HER2-retargeted, fully-virulent oHSVs in immunocompetent mice. Their safety profile was very high. Both the unarmed R-LM113 and the IL-12-armed R-115 inhibited the growth of the primary HER2-Lewis lung carcinoma-1 (HER2-LLC1) tumor, R-115 being constantly more efficacious. All the mice that did not die because of the primary treated tumors, were protected from the growth of contralateral untreated tumors. The long-term survivors were protected from a second contralateral tumor, providing additional evidence for an abscopal immunotherapeutic effect. Analysis of the local response highlighted that particularly R-115 unleashed the immunosuppressive tumor microenvironment, i.e. induced immunomodulatory cytokines, including IFNγ, T-bet which promoted Th1 polarization. Some of the tumor infiltrating cells, e.g. CD4+, CD335+ cells were increased in the tumors of all responders mice, irrespective of which virus was employed, whereas CD8+, Foxp3+, CD141+ were increased and CD11b+ cells were decreased preferentially in R-115-treated mice. The durable response included a breakage of tolerance towards both HER2 and the wt tumor cells, and underscored a systemic immunotherapeutic vaccine response.
Collapse
Affiliation(s)
- Valerio Leoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Julie Rambaldi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Mara Sanapo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Nanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Costanza Casiraghi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
67
|
For the Success of Oncolytic Viruses: Single Cycle Cures or Repeat Treatments? (One Cycle Should Be Enough). Mol Ther 2018; 26:1876-1880. [PMID: 30029891 DOI: 10.1016/j.ymthe.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
68
|
Ungerechts G, Engeland CE, Buchholz CJ, Eberle J, Fechner H, Geletneky K, Holm PS, Kreppel F, Kühnel F, Lang KS, Leber MF, Marchini A, Moehler M, Mühlebach MD, Rommelaere J, Springfeld C, Lauer UM, Nettelbeck DM. Virotherapy Research in Germany: From Engineering to Translation. Hum Gene Ther 2018; 28:800-819. [PMID: 28870120 DOI: 10.1089/hum.2017.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.
Collapse
Affiliation(s)
- Guy Ungerechts
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany .,3 Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Christine E Engeland
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian J Buchholz
- 4 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany .,5 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Heidelberg, Germany
| | - Jürgen Eberle
- 6 Charité -Universitätsmedizin Berlin, Department of Dermatology, Skin Cancer Centre Charité , Berlin, Germany
| | - Henry Fechner
- 7 Technische Universität Berlin, Institute of Biotechnology , Department of Applied Biochemistry, Berlin, Germany
| | - Karsten Geletneky
- 8 Department of Neurosurgery, Klinikum Darmstadt , Darmstadt, Germany
| | - Per Sonne Holm
- 9 Department of Urology, Klinikum rechts der Isar, Technical University Munich , Munich, Germany
| | - Florian Kreppel
- 10 Chair of Biochemistry and Molecular Medicine, Center for Biomedical Research and Education (ZBAF), Faculty of Health, University Witten/Herdecke (UW/H), Witten, Germany
| | - Florian Kühnel
- 11 Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Karl Sebastian Lang
- 12 Institute of Immunology, Medical Faculty, University of Duisburg-Essen , Essen, Germany
| | - Mathias F Leber
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonio Marchini
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany .,14 Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Markus Moehler
- 15 University Medical Center Mainz , I. Dept. of Internal Medicine, Mainz, Germany
| | - Michael D Mühlebach
- 16 Product Testing of Immunological Veterinary Medicinal Products, Paul-Ehrlich-Institut , Langen, Germany
| | - Jean Rommelaere
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Springfeld
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany
| | - Ulrich M Lauer
- 17 Department of Clinical Tumor Biology, Medical University Hospital , Tübingen, Germany .,18 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Tübingen, Germany
| | | |
Collapse
|
69
|
McCloskey CW, Rodriguez GM, Galpin KJC, Vanderhyden BC. Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics. Cancers (Basel) 2018; 10:cancers10080244. [PMID: 30049987 PMCID: PMC6115831 DOI: 10.3390/cancers10080244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has emerged as one of the most promising approaches for ovarian cancer treatment. The tumor microenvironment (TME) is a key factor to consider when stimulating antitumoral responses as it consists largely of tumor promoting immunosuppressive cell types that attenuate antitumor immunity. As our understanding of the determinants of the TME composition grows, we have begun to appreciate the need to address both inter- and intra-tumor heterogeneity, mutation/neoantigen burden, immune landscape, and stromal cell contributions. The majority of immunotherapy studies in ovarian cancer have been performed using the well-characterized murine ID8 ovarian carcinoma model. Numerous other animal models of ovarian cancer exist, but have been underutilized because of their narrow initial characterizations in this context. Here, we describe animal models that may be untapped resources for the immunotherapy field because of their shared genomic alterations and histopathology with human ovarian cancer. We also shed light on the strengths and limitations of these models, and the knowledge gaps that need to be addressed to enhance the utility of preclinical models for testing novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
70
|
Suksanpaisan L, Xu R, Tesfay MZ, Bomidi C, Hamm S, Vandergaast R, Jenks N, Steele MB, Ota-Setlik A, Akhtar H, Luckay A, Nowak R, Peng KW, Eldridge JH, Clarke DK, Russell SJ, Diaz RM. Preclinical Development of Oncolytic Immunovirotherapy for Treatment of HPV POS Cancers. MOLECULAR THERAPY-ONCOLYTICS 2018; 10:1-13. [PMID: 29998190 PMCID: PMC6037044 DOI: 10.1016/j.omto.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022]
Abstract
Immunotherapy for HPVPOS malignancies is attractive because well-defined, viral, non-self tumor antigens exist as targets. Several approaches to vaccinate therapeutically against HPV E6 and E7 antigens have been adopted, including viral platforms such as VSV. A major advantage of VSV expressing these antigens is that VSV also acts as an oncolytic virus, leading to direct tumor cell killing and induction of effective anti-E6 and anti-E7 T cell responses. We have also shown that addition of immune adjuvant genes, such as IFNβ, further enhances safety and/or efficacy of VSV-based oncolytic immunovirotherapies. However, multiple designs of the viral vector are possible—with respect to levels of immunogen expression and method of virus attenuation—and optimal designs have not previously been tested head-to-head. Here, we tested three different VSV engineered to express a non-oncogenic HPV16 E7/6 fusion protein for their immunotherapeutic and oncolytic properties. We assessed their profiles of efficacy and toxicity against HPVPOS and HPVNEG murine tumor models and determined the optimal route of administration. Our data show that VSV is an excellent platform for the oncolytic immunovirotherapy of tumors expressing HPV target antigens, combining a balance of efficacy and safety suitable for evaluation in a first-in-human clinical trial.
Collapse
Affiliation(s)
| | - Rong Xu
- Profectus Biosciences, Inc., Pearl River, NY 10965, USA
| | | | | | - Stefan Hamm
- Profectus Biosciences, Inc., Pearl River, NY 10965, USA
| | | | - Nathan Jenks
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael B Steele
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hinna Akhtar
- Profectus Biosciences, Inc., Pearl River, NY 10965, USA
| | - Amara Luckay
- Profectus Biosciences, Inc., Pearl River, NY 10965, USA
| | - Rebecca Nowak
- Profectus Biosciences, Inc., Pearl River, NY 10965, USA
| | - Kah Whye Peng
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, MN 55905, USA.,Vyriad, Inc., Rochester, MN 55902, USA.,Deparment of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Stephen J Russell
- Vyriad, Inc., Rochester, MN 55902, USA.,Deparment of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
71
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
72
|
Martin NT, Bell JC. Oncolytic Virus Combination Therapy: Killing One Bird with Two Stones. Mol Ther 2018; 26:1414-1422. [PMID: 29703699 PMCID: PMC5986726 DOI: 10.1016/j.ymthe.2018.04.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 02/08/2023] Open
Abstract
Over the last 60 years an eclectic collection of microbes has been tested in a variety of pre-clinical models as anti-cancer agents. At the forefront of this research are a number of virus-based platforms that have shown exciting activity in a variety of pre-clinical models and are collectively referred to as oncolytic viruses. Our true understanding of the potential and limitations of this therapeutic modality has been substantially advanced through clinical studies carried out over the last 25 years. Perhaps not surprising, as with all other cancer therapeutics, it has become clear that current oncolytic virus therapeutics on their own are unlikely to be effective in the majority of patients. The greatest therapeutic gains will therefore be made through thoughtful combination strategies built upon an understanding of cancer biology.
Collapse
Affiliation(s)
- Nikolas Tim Martin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - John Cameron Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
73
|
Nguyen T, Avci NG, Shin DH, Martinez-Velez N, Jiang H. Tune Up In Situ Autovaccination against Solid Tumors with Oncolytic Viruses. Cancers (Basel) 2018; 10:E171. [PMID: 29857493 PMCID: PMC6025332 DOI: 10.3390/cancers10060171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
With the progress of immunotherapy in cancer, oncolytic viruses (OVs) have attracted more and more attention during the past decade. Due to their cancer-selective and immunogenic properties, OVs are considered ideal candidates to be combined with immunotherapy to increase both specificity and efficacy in cancer treatment. OVs preferentially replicate in and lyse cancer cells, resulting in in situ autovaccination leading to adaptive anti-virus and anti-tumor immunity. The main challenge in OV approaches is how to redirect the host immunity from anti-virus to anti-tumor and optimize the clinical outcome of cancer patients. Here, we summarize the conceptual updates on oncolytic virotherapy and immunotherapy in cancer, and the development of strategies to enhance the virus-mediated anti-tumor immune response, including: (1) arm OVs with cytokines to modulate innate and adaptive immunity; (2) combining OVs with immune checkpoint inhibitors to release T cell inhibition; (3) combining OVs with immune co-stimulators to enhance T cell activation. Future studies need to be enforced on developing strategies to augment the systemic effect on metastasized tumors.
Collapse
Affiliation(s)
- Teresa Nguyen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner St., Houston, TX 77030, USA.
| | - Naze G Avci
- Neurosurgery Research, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner St., Houston, TX 77030, USA.
| | | | - Hong Jiang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner St., Houston, TX 77030, USA.
| |
Collapse
|
74
|
Ahn J, Xia T, Rabasa Capote A, Betancourt D, Barber GN. Extrinsic Phagocyte-Dependent STING Signaling Dictates the Immunogenicity of Dying Cells. Cancer Cell 2018; 33:862-873.e5. [PMID: 29706455 PMCID: PMC6177226 DOI: 10.1016/j.ccell.2018.03.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/04/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
Abstract
The ability of dying cells to activate antigen-presenting cells (APCs) is carefully controlled to avoid unwarranted inflammatory responses. Here, we show that engulfed cells containing cytosolic double-stranded DNA species (viral or synthetic) or cyclic di-nucleotides (CDNs) are able to stimulate APCs via extrinsic STING (stimulator of interferon genes) signaling, to promote antigen cross-presentation. In the absence of STING agonists, dying cells were ineffectual in the stimulation of APCs in trans. Cytosolic STING activators, including CDNs, constitute cellular danger-associated molecular patterns (DAMPs) only generated by viral infection or following DNA damage events that rendered tumor cells highly immunogenic. Our data shed insight into the molecular mechanisms that drive appropriate anti-tumor adaptive immune responses, while averting harmful autoinflammatory disease, and provide a therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Cell Biology, The University of Miami Miller School of Medicine, University of Miami, 511 Papanicolaou Building, 1550 NW 10th Avenue, Miami, FL 33136, USA
| | - Tianli Xia
- Department of Cell Biology, The University of Miami Miller School of Medicine, University of Miami, 511 Papanicolaou Building, 1550 NW 10th Avenue, Miami, FL 33136, USA
| | - Ailem Rabasa Capote
- Department of Cell Biology, The University of Miami Miller School of Medicine, University of Miami, 511 Papanicolaou Building, 1550 NW 10th Avenue, Miami, FL 33136, USA
| | - Dillon Betancourt
- Department of Cell Biology, The University of Miami Miller School of Medicine, University of Miami, 511 Papanicolaou Building, 1550 NW 10th Avenue, Miami, FL 33136, USA
| | - Glen N Barber
- Department of Cell Biology, The University of Miami Miller School of Medicine, University of Miami, 511 Papanicolaou Building, 1550 NW 10th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
75
|
|
76
|
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20:e3015. [PMID: 29575374 DOI: 10.1002/jgm.3015] [Citation(s) in RCA: 511] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/07/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical. We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | | | - Mohammad R Abedi
- Department of Laboratory Medicine, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
77
|
Russell SJ, Barber GN. Oncolytic Viruses as Antigen-Agnostic Cancer Vaccines. Cancer Cell 2018; 33:599-605. [PMID: 29634947 PMCID: PMC5918693 DOI: 10.1016/j.ccell.2018.03.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
Selective destruction of neoplastic tissues by oncolytic viruses (OVs) leads to antigen-agnostic boosting of neoantigen-specific cytotoxic T lymphocyte (CTL) responses, making OVs ideal companions for checkpoint blockade therapy. Here we discuss the mechanisms whereby OVs modulate both adjuvanticity and antigenicity of tumor cells. Suppression of antitumor immunity after OV therapy has not been observed, possibly because viral antigen expression diminishes as the antiviral response matures, thereby progressively honing the CTL response to tumor neoantigens. By combining direct in situ tumor destruction with the ability to boost antitumor immunity, OVs also have the potential to be powerful standalone cancer therapies.
Collapse
Affiliation(s)
- Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
78
|
Atherton MJ, Stephenson KB, Tzelepis F, Bakhshinyan D, Nikota JK, Son HH, Jirovec A, Lefebvre C, Dvorkin-Gheva A, Ashkar AA, Wan Y, Stojdl DF, Belanger EC, Breau RH, Bell JC, Saad F, Singh SK, Diallo JS, Lichty BD. Transforming the prostatic tumor microenvironment with oncolytic virotherapy. Oncoimmunology 2018; 7:e1445459. [PMID: 29900060 PMCID: PMC5993491 DOI: 10.1080/2162402x.2018.1445459] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) was estimated to have the second highest global incidence rate for male non-skin tumors and is the fifth most deadly in men thus mandating the need for novel treatment options. MG1-Maraba is a potent and versatile oncolytic virus capable of lethally infecting a variety of prostatic tumor cell lines alongside primary PCa biopsies and exerts direct oncolytic effects against large TRAMP-C2 tumors in vivo. An oncolytic immunotherapeutic strategy utilizing a priming vaccine and intravenously administered MG1-Maraba both expressing the human six-transmembrane antigen of the prostate (STEAP) protein generated specific CD8+ T-cell responses against multiple STEAP epitopes and resulted in functional breach of tolerance. Treatment of mice with bulky TRAMP-C2 tumors using oncolytic STEAP immunotherapy induced an overt delay in tumor progression, marked intratumoral lymphocytic infiltration with an active transcriptional profile and up-regulation of MHC class I. The preclinical data generated here offers clear rationale for clinically evaluating this approach for men with advanced PCa.
Collapse
Affiliation(s)
- Matthew J. Atherton
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | | | - Fanny Tzelepis
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | - Hwan Hee Son
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Anna Jirovec
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Charles Lefebvre
- Stojdl Lab, CHEO Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ali A. Ashkar
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - David F. Stojdl
- Turnstone Biologics, Ottawa, Canada
- Stojdl Lab, CHEO Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Eric C. Belanger
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | | | - John C. Bell
- Turnstone Biologics, Ottawa, Canada
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Fred Saad
- Department of Surgery, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada
| | - Sheila K. Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jean-Simone Diallo
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Brian D. Lichty
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
- Turnstone Biologics, Ottawa, Canada
| |
Collapse
|
79
|
Dual Ligand Insertion in gB and gD of Oncolytic Herpes Simplex Viruses for Retargeting to a Producer Vero Cell Line and to Cancer Cells. J Virol 2018; 92:JVI.02122-17. [PMID: 29263257 PMCID: PMC5827396 DOI: 10.1128/jvi.02122-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/03/2023] Open
Abstract
Oncolytic viruses gain cancer specificity in several ways. Like the majority of viruses, they grow better in cancer cells that are defective in mounting the host response to viruses. Often, they are attenuated by deletion or mutation of virulence genes that counteract the host response or are naturally occurring oncolytic mutants. In contrast, retargeted viruses are not attenuated or deleted; their cancer specificity rests on a modified, specific tropism for cancer receptors. For herpes simplex virus (HSV)-based oncolytics, the detargeting-retargeting strategies employed so far were based on genetic modifications of gD. Recently, we showed that even gH or gB can serve as retargeting tools. To enable the growth of retargeted HSVs in cells that can be used for clinical-grade virus production, a double-retargeting strategy has been developed. Here we show that several sites in the N terminus of gB are suitable to harbor the 20-amino-acid (aa)-long GCN4 peptide, which readdresses HSV tropism to Vero cells expressing the artificial GCN4 receptor and thus enables virus cultivation in the producer noncancer Vero-GCN4R cell line. The gB modifications can be combined with a minimal detargeting modification in gD, consisting in the deletion of two residues, aa 30 and 38, and replacement of aa 38 with the scFv to human epidermal growth factor receptor 2 (HER2), for retargeting to the cancer receptor. The panel of recombinants was analyzed comparatively in terms of virus growth, cell-to-cell spread, cytotoxicity, and in vivo antitumor efficacy to define the best double-retargeting strategy. IMPORTANCE There is increasing interest in oncolytic viruses, following FDA and the European Medicines Agency (EMA) approval of HSV OncovexGM-CSF, and, mainly, because they greatly boost the immune response to the tumor and can be combined with immunotherapeutic agents, particularly checkpoint inhibitors. A strategy to gain cancer specificity and avoid virus attenuation is to retarget the virus tropism to cancer-specific receptors of choice. Cultivation of fully retargeted viruses is challenging, since they require cells that express the cancer receptor. We devised a strategy for their cultivation in producer noncancer Vero cell derivatives. Here, we developed a double-retargeting strategy, based on insertion of one ligand in gB for retargeting to a Vero cell derivative and of anti-HER2 ligand in gD for cancer retargeting. These modifications were combined with a minimally destructive detargeting strategy. This study and its companion paper explain the clinical-grade cultivation of retargeted oncolytic HSVs and promote their translation to the clinic.
Collapse
|
80
|
Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: First in class oncolytic virotherapy. Hum Vaccin Immunother 2018; 14:839-846. [PMID: 29420123 PMCID: PMC5893211 DOI: 10.1080/21645515.2017.1412896] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oncolytic viruses represent a novel drug class in which native or modified viruses mediate tumor regression through selective replication within and lysis of tumor cells as well as induction of systemic antitumor immunity capable of eradicating tumor at distant, uninjected sites. Talimogene laherparepvec (TVEC) is a type I herpes simplex virus genetically modified to preferentially replicate in tumor cells, enhance antigen loading of MHC class I molecules and express granulocyte-macrophage colony-stimulating factor to increase tumor-antigen presentation by dendritic cells. It is presently the only oncolytic virus approved by the FDA with an indication for advanced melanoma based upon improved durable response rate in a randomized, phase III trial. Clinical trials are underway in melanoma investigating TVEC as neoadjuvant monotherapy and in combination with checkpoint inhibitors for unresectable disease as well as in an array of other malignancies. It is appropriate to review TVEC's biology mechanism of action, clinical indication and future directions as a prototype of the burgeoning class of oncolytic viruses.
Collapse
Affiliation(s)
- Robert M Conry
- a Medicine/Division of Hematology and Oncology, University of Alabama at Birmingham , Birmingham , AL , USA
| | - Brian Westbrook
- b Medicine, University of Alabama at Birmingham , Birmingham , AL , USA
| | - Svetlana McKee
- a Medicine/Division of Hematology and Oncology, University of Alabama at Birmingham , Birmingham , AL , USA
| | | |
Collapse
|
81
|
Abstract
The clinical effectiveness of immunotherapies for prostate cancer remains subpar compared with that for other cancers. The goal of most immunotherapies is the activation of immune effectors, such as T cells and natural killer cells, as the presence of these activated mediators positively correlates with patient outcomes. Clinical evidence shows that prostate cancer is immunogenic, accessible to the immune system, and can be targeted by antitumour immune responses. However, owing to the detrimental effects of prostate-cancer-associated immunosuppression, even the newest immunotherapeutic approaches fail to initiate the clinically desired antitumour immune reaction. Oncolytic viruses, originally used for their preferential cancer-killing activity, are now being recognized for their ability to overturn cancer-associated immune evasion and promote otherwise absent antitumour immunity. This oncolytic-virus-induced subversion of tumour-associated immunosuppression can potentiate the effectiveness of current immunotherapeutics, including immune checkpoint inhibitors (for example, antibodies against programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1), and cytotoxic T lymphocyte antigen 4 (CTLA4)) and chemotherapeutics that induce immunogenic cell death (for example, doxorubicin and oxaliplatin). Importantly, oncolytic-virus-induced antitumour immunity targets existing prostate cancer cells and also establishes long-term protection against future relapse. Hence, the strategic use of oncolytic viruses as monotherapies or in combination with current immunotherapies might result in the next breakthrough in prostate cancer immunotherapy.
Collapse
|
82
|
Burgess HM, Pourchet A, Hajdu CH, Chiriboga L, Frey AB, Mohr I. Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus. MOLECULAR THERAPY-ONCOLYTICS 2018; 8:71-81. [PMID: 29888320 PMCID: PMC5991893 DOI: 10.1016/j.omto.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Through the action of two virus-encoded decapping enzymes (D9 and D10) that remove protective caps from mRNA 5′-termini, Vaccinia virus (VACV) accelerates mRNA decay and limits activation of host defenses. D9- or D10-deficient VACV are markedly attenuated in mice and fail to counter cellular double-stranded RNA-responsive innate immune effectors, including PKR. Here, we capitalize upon this phenotype and demonstrate that VACV deficient in either decapping enzyme are effective oncolytic viruses. Significantly, D9- or D10-deficient VACV displayed anti-tumor activity against syngeneic mouse tumors of different genetic backgrounds and human hepatocellular carcinoma xenografts. Furthermore, D9- and D10-deficient VACV hyperactivated the host anti-viral enzyme PKR in non-tumorigenic cells compared to wild-type virus. This establishes a new genetic platform for oncolytic VACV development that is deficient for a major pathogenesis determinant while retaining viral genes that support robust productive replication like those required for nucleotide metabolism. It further demonstrates how VACV mutants unable to execute a fundamental step in virus-induced mRNA decay can be unexpectedly translated into a powerful anti-tumor therapy.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Aldo Pourchet
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Cristina H Hajdu
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Alan B Frey
- Department of Cell Biology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Ian Mohr
- Department of Microbiology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
83
|
Al-Zaher AA, Moreno R, Fajardo CA, Arias-Badia M, Farrera M, de Sostoa J, Rojas LA, Alemany R. Evidence of Anti-tumoral Efficacy in an Immune Competent Setting with an iRGD-Modified Hyaluronidase-Armed Oncolytic Adenovirus. MOLECULAR THERAPY-ONCOLYTICS 2018; 8:62-70. [PMID: 29888319 PMCID: PMC5991897 DOI: 10.1016/j.omto.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/25/2018] [Indexed: 11/17/2022]
Abstract
To enhance adenovirus-mediated oncolysis, different approaches that tackle the selectivity, tumor penetration, and spreading potential of oncolytic adenoviruses have been reported. We have previously demonstrated that insertion of the internalizing Arginine-Glycine-Aspartic (iRGD) tumor-penetrating peptide at the C terminus of the fiber or transgenic expression of a secreted hyaluronidase can improve virus tumor targeting and spreading. Here we report a new oncolytic adenovirus ICOVIR17K-iRGD in which both modifications have been incorporated. In xenografted A549 tumors in nude mice, ICOVIR17K-iRGD shows higher efficacy than the non-iRGD counterpart. To gain insights into the role of the immune system in oncolysis, we have studied ICOVIR17K-iRGD in the tumor isograft mouse model CMT64.6, partially permissive to human adenovirus 5 replication, in immunodeficient or immunocompetent mice. Whereas no efficacy was observed in the immunodeficient setting due to insufficient viral replication, partial efficacy and a polymorphonuclear and CD8+ T cell infiltrate were observed in the immunocompetent mice. The results indicate that the elicitation of a virus-induced anti-tumoral immune response is responsible for the observed partial anti-tumoral effect.
Collapse
Affiliation(s)
- Ahmed Abdullah Al-Zaher
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Moreno
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos Alberto Fajardo
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marcel Arias-Badia
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martí Farrera
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jana de Sostoa
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luis Alfonso Rojas
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
84
|
Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends Immunol 2017; 39:209-221. [PMID: 29275092 DOI: 10.1016/j.it.2017.11.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses (OVs) represent a new class of cancer immunotherapeutics. Administration of OVs to cancer-bearing hosts induces two distinct immunities: antiviral and antitumor. While antitumor immunity is beneficial, antiviral immune responses are often considered detrimental for the efficacy of OV-based therapy. The existing dogma postulates that anti-OV immune responses restrict viral replication and spread, and thus reduce direct OV-mediated killing of cancer cells. Accordingly, a myriad of therapeutic strategies aimed at mitigating anti-OV immune responses is presently being tested. Here, we advocate that OV-induced antiviral immune responses hold intrinsic anticancer benefits and are essential for establishing clinically desired antitumor immunity. Thus, to achieve the optimal efficacy of OV-based cancer immunotherapies, strategic management of anti-OV immune responses is of critical importance.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, NS, Canada; Department of Biology, Dalhousie University, NS, Canada; Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada; These authors contributed equally to this work
| | - Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; These authors contributed equally to this work
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W Lee
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, NS, Canada; Share senior co-authorship.
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Share senior co-authorship.
| |
Collapse
|
85
|
Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98:2895-2911. [PMID: 29143726 DOI: 10.1099/jgv.0.000980] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncolytic virus (OV) therapy is an anti-cancer approach that uses viruses that preferentially infect, replicate in and kill cancer cells. Vesicular stomatitis virus (VSV, a rhabdovirus) is an OV that is currently being tested in the USA in several phase I clinical trials against different malignancies. Several factors make VSV a promising OV: lack of pre-existing human immunity against VSV, a small and easy to manipulate genome, cytoplasmic replication without risk of host cell transformation, independence of cell cycle and rapid growth to high titres in a broad range of cell lines facilitating large-scale virus production. While significant advances have been made in VSV-based OV therapy, room for improvement remains. Here we review recent studies (published in the last 5 years) that address 'old' and 'new' challenges of VSV-based OV therapy. These studies focused on improving VSV safety, oncoselectivity and oncotoxicity; breaking resistance of some cancers to VSV; preventing premature clearance of VSV; and stimulating tumour-specific immunity. Many of these approaches were based on combining VSV with other therapeutics. This review also discusses another rhabdovirus closely related to VSV, Maraba virus, which is currently being tested in Canada in phase I/II clinical trials.
Collapse
Affiliation(s)
- Sébastien A Felt
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
86
|
Di Nicola M, Apetoh L, Bellone M, Colombo MP, Dotti G, Ferrone S, Muscolini M, Hiscott J, Anichini A, Pupa SM, Braud FD, Del Vecchio M. Innovative Therapy, Monoclonal Antibodies and Beyond. Cytokine Growth Factor Rev 2017; 38:1-9. [PMID: 29029813 DOI: 10.1016/j.cytogfr.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
The seventh Edition of "Innovative Therapy, Monoclonal Antibodies and Beyond" Meeting took place in Milan, Italy, on January 27, 2017. The two sessions of the meeting were focused on: 1) Preclinical assays and novel biotargets; and 2) monoclonal antibodies, cell therapies and targeted molecules. Between these two sessions, a lecture entitled "HLA-antigens modulation and response to immune checkpoint inhibitor immunotherapy" was also presented. Despite the impressive successes in cancer immunotherapy in recent years, the response to immune based interventions occurs only in a minority of patients (∼20%). Several basic and translational mechanisms of resistance to immune checkpoint blockers (ICBs) were discussed during the meeting: 1. the impact of tumor microenvironment on the activity of immune system; 2. strategies to inhibit the cross-talk between extracellular matrix and myeloid-derived suppressor cells (MDSC) in the preclinical setting; 3. microRNA expression as a biomarker and as a target of therapy in non-small cell lung cancer (NSCLC); 4. the significance of complement activation pathways in response to immune checkpoint inhibitors; 5. the immunosuppressive activity of the microbiota by inducing IL-17 producing cells; and 6. modulation of HLA antigens as possible markers of response to ICB therapy. In order to overcome the deficiency in active anti-tumor T cells, several clinically applicable combination strategies were also discussed: 1. strategies to enhance the anticancer effects of immunogenic cell death inducing-chemotherapy; 2. the use of CAR T-cells in solid tumors; 3. the use of combination strategies involving oncolytic viruses and ICBs; 4. combinations of new ICBs with anti-PD-1/CTLA-4 therapy; and 4. combinations of targeted therapies and ICBs in melanoma. Overall, this conference emphasized the many novel strategies that are being investigated to improve the overall patient response to cancer immunotherapy. Optimization of biomarkers to accurately select patients who will respond to immunotherapy, coupled with combination strategies to improve long term patient survival remain critical challenges in the immuno-oncology field.
Collapse
Affiliation(s)
- M Di Nicola
- Unit of Immunotherapy and Anticancer Innovative Therapeutics, Milan, Italy; Medical Oncology Unit, Dept of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - L Apetoh
- INSERM, U1231, Dijon, France; 4Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - M Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - M P Colombo
- Centre Georges François Leclerc, Dijon, France
| | - G Dotti
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - S Ferrone
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - M Muscolini
- Laboratorio Pasteur, Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - J Hiscott
- Laboratorio Pasteur, Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - A Anichini
- Human Tumor Immunobiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F de Braud
- Medical Oncology Unit, Dept of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M Del Vecchio
- Medical Oncology Unit, Dept of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; Unit of Melanoma Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| |
Collapse
|
87
|
Ceppi F, Beck-Popovic M, Bourquin JP, Renella R. Opportunities and challenges in the immunological therapy of pediatric malignancy: a concise snapshot. Eur J Pediatr 2017; 176:1163-1172. [PMID: 28803259 DOI: 10.1007/s00431-017-2982-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
Over the last 50 years, collaborative clinical trials have reduced the number of children dying from pediatric cancer significantly. Unfortunately, certain tumor types have remained resistant to conventional surgical, radiotherapy and chemotherapy combinations, and relapsing and/or refractory disease remains associated with dismal outcomes. Recently, renewed attention has been given to the role for immunotherapies in pediatric oncology. In fact, these combine several attractive features, including (but possibly not limited to) the specificity for cancer cells, potentially in vivo persistence and longevity, and potency against refractory disease. In this narrative review designed for the academic pediatrician, we will concisely review the biological underpinnings behind the immunological therapy of pediatric neoplasms and illustrate the current humoral, cellular approaches, and novel drugs targeting the immune checkpoint, oncolytic viruses, and tumor vaccines. We will also comment on the future directions, challenges, and open questions faced by the field. What is Known: • Cancer immunotherapy drives immune cells and its humoral weaponry to eliminate tumor cells. • This occurs by recognizing antigens ideally expressed only on tumoral, but not normal/healthy, cells. What is New: • Clinical immunotherapy trials have shown responses in children with relapsing/refractory neoplasms. • Novel humoral/cellular immunotherapies, immune checkpoint inhibitors, oncolytic viruses, and tumor vaccines are currently being investigated in pediatric oncology.
Collapse
Affiliation(s)
- Francesco Ceppi
- Pediatric Hematology-Oncology Research Laboratory & Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department Woman-Mother-Child, University Hospital of Lausanne, Lausanne, Switzerland
| | - Maja Beck-Popovic
- Pediatric Hematology-Oncology Research Laboratory & Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department Woman-Mother-Child, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jean-Pierre Bourquin
- Leukemia Research Program and Division of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory & Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department Woman-Mother-Child, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
88
|
Santiago DN, Heidbuechel JPW, Kandell WM, Walker R, Djeu J, Engeland CE, Abate-Daga D, Enderling H. Fighting Cancer with Mathematics and Viruses. Viruses 2017; 9:E239. [PMID: 28832539 PMCID: PMC5618005 DOI: 10.3390/v9090239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
After decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority. Mathematical modeling can provide support in this arena by making use of experimental and clinical data to generate hypotheses about the mechanisms underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly complex models can be applied to account for therapeutically relevant parameters such as components of the immune system. In this review, we describe current developments in oncolytic virotherapy and mathematical modeling to discuss the benefit of integrating different modeling approaches into biological and clinical experimentation. Conclusively, we propose a mutual combination of these research fields to increase the value of the preclinical development and the therapeutic efficacy of the resulting treatments.
Collapse
Affiliation(s)
- Daniel N Santiago
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | | | - Wendy M Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA.
| | - Rachel Walker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Julie Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Christine E Engeland
- German Cancer Research Center, Heidelberg University, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, Department of Translational Oncology, Department of Medical Oncology, 69120 Heidelberg, Germany.
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
89
|
Erkes DA, Wilski NA, Snyder CM. Intratumoral infection by CMV may change the tumor environment by directly interacting with tumor-associated macrophages to promote cancer immunity. Hum Vaccin Immunother 2017; 13:1778-1785. [PMID: 28604162 DOI: 10.1080/21645515.2017.1331795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) is a herpesvirus that induces an extremely robust and sustained immune response. For this reason, CMV has been proposed as a vaccine vector to promote immunity to both pathogens and cancer. However, exploration of CMV as a vaccine vector is at an early stage and there are many questions. Using a mouse melanoma model, we recently found that a CMV-based vaccine induced large populations of melanoma-specific T cells, but was not effective at slowing tumor growth unless it was injected directly into the tumor. These surprising results have led us to hypothesize that CMV may be adept at modulating the tumor micro-environment through its infection of macrophages. Importantly, injection of CMV into the growing tumor synergized with blockade of the PD-1 checkpoint to clear well-established tumors. Here, we discuss our results in the context of CMV-based vaccines for pathogens and cancer.
Collapse
Affiliation(s)
- Dan A Erkes
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| | - Nicole A Wilski
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| | - Christopher M Snyder
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|