51
|
Zhai Y, Han D, Pan Y, Wang S, Fang J, Wang P, Liu XW. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering. Enzyme Microb Technol 2014; 69:38-45. [PMID: 25640723 DOI: 10.1016/j.enzmictec.2014.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023]
Abstract
Guanosine 5'-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5'-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.
Collapse
Affiliation(s)
- Yafei Zhai
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Donglei Han
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Ying Pan
- The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Shuaishuai Wang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Peng Wang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xian-wei Liu
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China.
| |
Collapse
|
52
|
Meunier L, Garthoff JA, Schaafsma A, Krul L, Schrijver J, van Goudoever JB, Speijers G, Vandenplas Y. Locust bean gum safety in neonates and young infants: an integrated review of the toxicological database and clinical evidence. Regul Toxicol Pharmacol 2014; 70:155-69. [PMID: 24997231 DOI: 10.1016/j.yrtph.2014.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
Locust bean gum (LBG) is a galactomannan polysaccharide used as thickener in infant formulas with the therapeutic aim to treat uncomplicated gastroesophageal reflux (GER). Since its use in young infants below 12weeks of age is not explicitly covered by the current scientific concept of the derivation of health based guidance values, the present integrated safety review aimed to compile all the relevant preclinical toxicological studies and to combine them with substantial evidence gathered from the clinical paediatric use as part of the weight of evidence supporting the safety in young infants below 12weeks of age. LBG was demonstrated to have very low toxicity in preclinical studies mainly resulting from its indigestible nature leading to negligible systemic bioavailability and only possibly influencing tolerance. A standard therapeutic level of 0.5g/100mL in thickened infant formula is shown to confer a sufficiently protective Margin of Safety. LBG was not associated with any adverse toxic or nutritional effects in healthy term infants, while there are limited case-reports of possible adverse effects in preterms receiving the thickener inappropriately. Altogether, it can be concluded that LBG is safe for its intended therapeutic use in term-born infants to treat uncomplicated regurgitation from birth onwards.
Collapse
Affiliation(s)
- Leo Meunier
- Danone Food Safety Center, Utrecht, The Netherlands.
| | | | | | | | - Jaap Schrijver
- Danone Nutricia Early Life Nutrition, Schiphol Airport, The Netherlands
| | - Johannes B van Goudoever
- Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Pediatrics, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Nieuwegein, The Netherlands
| | - Yvan Vandenplas
- Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|