51
|
Murck H, Spitznagel H, Ploch M, Seibel K, Schaffler K. Hypericum extract reverses S-ketamine-induced changes in auditory evoked potentials in humans - possible implications for the treatment of schizophrenia. Biol Psychiatry 2006; 59:440-5. [PMID: 16165104 DOI: 10.1016/j.biopsych.2005.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/15/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Auditory evoked potentials (AEP) provide a correlate of cognitive dysfunction in schizophrenia. Both cognitive dysfunction and AEP-characteristics might be related to reduced glutamatergic neurotransmission as induced by glutamate-antagonist like ketamine. Hypericum extract LI160 has demonstrated a ketamine-antagonising effect. We examined whether LI160 reverses changes of a low dose ketamine on AEP in healthy subjects. METHODS We performed a double-blind randomized treatment with either 2 x 750 mg LI 160 or placebo given one week, using a crossover design, in 16 health subjects. A test-battery including AEPs, the oculodynamic test (ODT) and a cognitive test were performed before and after an infusion with 4 mg of S-ketamine over a period of 1 hour. RESULTS S-ketamine lead to a significant decrease in the N100-P200 peak to peak (ptp) amplitude after the placebo treatment, whereas ptp was significantly increased by S-ketamine infusion in the LI160 treated subjects. The ODT and the cognitive testing revealed no significant effect of ketamine-infusion and therefore no interaction between treatment groups. CONCLUSIONS AEP measures are sensitive means to assess the effect of low dose ketamine. Provided that ketamine mimics cognitive deficits in schizophrenia, LI160 might be effective to treat these symptoms.
Collapse
|
52
|
Silva RCB, Sandner G, Brandão ML. Unilateral electrical stimulation of the inferior colliculus of rats modifies the prepulse modulation of the startle response (PPI): effects of ketamine and diazepam. Behav Brain Res 2005; 160:323-30. [PMID: 15863228 DOI: 10.1016/j.bbr.2004.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/16/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
The magnitude of an acoustic startle response can be reduced by a weak stimulus presented immediately before the startle-eliciting noise. This phenomenon has been termed prepulse inhibition of the startle reaction (PPI). Previous studies indicated that the primary neural pathways mediating PPI belong to the brain stem and that the inferior colliculus (IC) was crucial. Its destruction reduced PPI. Stimulations applied to brain areas may be as deleterious as lesions. Therefore, we looked for the possibility of a brain stimulation applied to the IC during a PPI test to reduce also PPI. Rats were implanted with chronic electrodes, their tips being aimed at the IC. They were located within or close to the inter-colliculus nucleus. A train of stimulations was applied and PPI was tested alternately during and between periods of stimulation. As the most common method used to attenuate PPI consists in administrating drugs, for example ketamine, we also tested the effect of this drug. Another drug was also tested, diazepam, since it alters the functioning of the IC without any known effect on PPI. This allowed a comparative analysis of the neurobiological and the pharmacological effects. It appeared that the stimulation decreased PPI quantitatively as much as ketamine (6 mg/kg) without an effect of the basic startle reaction. These effects did not interfere with each other. Diazepam (1 mg/kg) did not modify PPI, neither under stimulation nor per se. Only for a very high dose (4 mg/kg), a sedative and myo-relaxant one the basic startle and PPI were altered.
Collapse
Affiliation(s)
- R C B Silva
- I.N.S.E.R.M., U666, Institut de Physiologie, Faculté de médecine, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
53
|
Millan MJ. N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 2005; 179:30-53. [PMID: 15761697 DOI: 10.1007/s00213-005-2199-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 02/04/2005] [Indexed: 01/23/2023]
Abstract
RATIONALE Activation of "co-agonist" N-methyl-D-aspartate (NMDA) and Glycine(B) sites is mandatory for the operation of NMDA receptors, which play an important role in the control of mood, cognition and motor function. OBJECTIVES This article outlines the complex regulation of activity at Glycine(B)/NMDA receptors by multiple classes of endogenous ligand. It also summarizes the evidence that a hypoactivity of Glycine(B)/NMDA receptors contributes to the pathogenesis of psychotic states, and that drugs which enhance activity at these sites may possess antipsychotic properties. RESULTS Polymorphisms in several genes known to interact with NMDA receptors are related to an altered risk for schizophrenia, and psychotic patients display changes in levels of mRNA encoding NMDA receptors, including the NR1 subunit on which Glycine(B) sites are located. Schizophrenia is also associated with an overall decrease in activity of endogenous agonists at Glycine(B)/NMDA sites, whereas levels of endogenous antagonists are elevated. NMDA receptor "open channel blockers," such as phencyclidine, are psychotomimetic in man and in rodents, and antipsychotic agents attenuate certain of their effects. Moreover, mice with genetically invalidated Glycine(B)/NMDA receptors reveal similar changes in behaviour. Finally, in initial clinical studies, Glycine(B) agonists and inhibitors of glycine reuptake have been found to potentiate the ability of "conventional" antipsychotics to improve negative and, albeit modestly, cognitive and positive symptoms. In contrast, therapeutic effects of clozapine are not reinforced, likely since clozapine itself enhances activity at NMDA receptors. CONCLUSIONS Reduced activity at NMDA receptors is implicated in the aetiology of schizophrenia. Correspondingly, drugs that (directly or indirectly) increase activity at Glycine(B) sites may be of use as adjuncts to other classes of antipsychotic agent. However, there is an urgent need for broader clinical evaluation of this possibility, and, to date, there is no evidence that stimulation of Glycine(B) sites alone improves psychotic states.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
54
|
Oranje B, Gispen-de Wied CC, Westenberg HGM, Kemner C, Verbaten MN, Kahn RS. Increasing dopaminergic activity: effects of L-dopa and bromocriptine on human sensory gating. J Psychopharmacol 2004; 18:388-94. [PMID: 15358983 DOI: 10.1177/026988110401800310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Schizophrenic patients show a loss of sensory gating, which is reflected in a reduced P50 suppression. Because most of the symptoms in schizophrenia can be reduced by antagonists of the dopaminergic (D2) system, the loss in sensory gating might be related to an increased dopaminergic activity. Therefore, in the present study, the effects of increased dopaminergic neurotransmisson on sensory gating in healthy volunteers were investigated. In a double-blind, balanced, placebo-controlled design, healthy male volunteers were challenged in two separate studies with either 300 mg L-dopa (precursor of dopamine) or placebo (n=16) and 1.25 mg bromocriptine (D2 agonist) or placebo (n=17). Subsequently, they were tested for their sensory gating (P50 suppression). P50 suppression values in the placebo condition were comparable to those found in literature. Although both L-dopa and bromocriptine reduced P50 amplitude, they did so in an equal ratio for both the response to the conditioning (C) and the testing (T) stimuli, therefore not resulting in a reduction of the P50 suppression ratio (T/C). In the present study, neither L-dopa nor bromocriptine reduced sensory gating in healthy volunteers. This suggests that an increased dopaminergic activity in humans is not responsible for the reduction in sensory gating as seen, for example, in schizophrenia.
Collapse
Affiliation(s)
- B Oranje
- Center for Neuropsychiatric Schizophrenia Research, Department of Psychiatry afd E, Bispebjerg University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
55
|
Oranje B, Kahn RS, Kemner C, Verbaten MN. Modulating sensorimotor gating in healthy volunteers: the effects of desipramine and haloperidol. Psychiatry Res 2004; 127:195-205. [PMID: 15296819 DOI: 10.1016/j.psychres.2004.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Revised: 11/17/2003] [Accepted: 04/07/2004] [Indexed: 11/28/2022]
Abstract
In schizophrenia both an involvement of a reduced prefrontal dopaminergic activity and an enhanced noradrenergic activity have been suggested. In addition, patients suffering from schizophrenia show reduced sensorimotor gating and reduced habituation. If there is a causality between these neurotransmitters and these processes, then either a reduction in dopaminergic activity or an enhanced noradrenergic activity in healthy volunteers would result in reduced sensorimotor gating and reduced habituation. In the present study, a group of 12 healthy male volunteers was tested four times in a prepulse inhibition (PPI) paradigm 2.5 h following administration of placebo/placebo, placebo/desipramine (50 mg), placebo/haloperidol (2 mg) and desipramine (50 mg)/haloperidol (2 mg). A significant reduction of percentage PPI was found in all active treatments compared with placebo/placebo, while no treatment effects on habituation were found. Furthermore, a significant increase in heart rate was found in both desipramine treatments, from 120 min following oral intake onwards. Both desipramine and haloperidol reduced PPI, which suggests that an enhanced noradrenergic activity and a reduced dopaminergic activity lead to a reduction in sensorimotor gating. Since reduced sensorimotor gating is found in schizophrenia, these results supply further evidence for a reduced prefrontal dopaminergic activity and an enhanced noradrenergic activity in schizophrenia. Furthermore, the combination of haloperidol and desipramine did not have a synergistic effect on PPI, which indicates an interaction between the compounds. The site for this interaction is most likely located in the prefrontal cortex, since evidence is accumulating that extracellular dopamine concentration is regulated by noradrenergic terminals, particularly in the frontal areas of the brain. Since no effects on habituation were found, this suggests that neither enhanced noradrenergic nor decreased dopaminergic activity is involved in this process.
Collapse
Affiliation(s)
- Bob Oranje
- Department of Psychopharmacology, Faculty of Pharmaceutical Sciences, Rudolf Magnus Institute for Neurosciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
56
|
Joy B, McMahon RP, Shepard PD. Effects of acute and chronic clozapine on D-amphetamine-induced disruption of auditory gating in the rat. Psychopharmacology (Berl) 2004; 174:274-82. [PMID: 14726994 DOI: 10.1007/s00213-003-1731-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RATIONALE Auditory gating deficits observed in patients with schizophrenia have been modeled in animals administered the indirect-acting monoaminergic agonist, D-amphetamine (AMPH). The atypical antipsychotic drug clozapine (CLOZ) reverses the disruption of auditory gating in schizophrenic patients. However, its effects on psychostimulant-induced deficits in animals have yet to be assessed. OBJECTIVES In the present series of experiments, an auditory evoked potential paradigm was used to: (a) confirm the ability of AMPH to alter auditory gating in the anesthetized rat, (b) specify the nature of the accompanying change(s) in evoked potential waveforms and (c) determine the effects of CLOZ administration on AMPH-induced alterations in auditory gating. METHODS We compared the effects of acute (5 mg/kg, i.p.) and chronic (28 days, 0.5 mg/ml in drinking water) CLOZ on AMPH-induced (1.8 mg/kg, i.p.) alterations in evoked potentials recorded in the hippocampus of anesthetized rats during presentation of a pair of identical tones. Gating was assessed by comparing the amplitude of conditioning and test responses in CLOZ and AMPH-treated rats. RESULTS The ratio of test to conditioning response amplitude (T/C ratio) was not altered by vehicle or CLOZ alone. However, T/C ratio was significantly increased following AMPH due to suppression of the conditioning response. Acute but not chronic CLOZ attenuated but did not prevent the increase in T/C ratio. CONCLUSIONS Qualitative differences between the idiopathic gating deficits observed in schizophrenic patients and AMPH-induced increases in T/C ratio in animals limit this models utility as a means of evaluating the ability of atypical antipsychotic drugs to restore normal sensory gating.
Collapse
Affiliation(s)
- Brian Joy
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | | | | |
Collapse
|
57
|
Abstract
AbstractN-methyl-d-aspartate receptor (NMDAR) dysfunction plays a crucial role in schizophrenia, leading to impairments in cognitive coordination. NMDAR agonists (e.g., glycine) ameliorate negative and cognitive symptoms, consistent with NMDAR models. However, not all types of cognitive coordination use NMDAR. Further, not all aspects of cognitive coordination are impaired in schizophrenia, suggesting the need for specificity in applying the cognitive coordination construct.
Collapse
|
58
|
Abstract
AbstractPhillips & Silverstein's focus on schizophrenia as a failure of “cognitive coordination” is welcome. They note that a simple hypothesis of reduced Gamma synchronisation subserving impaired coordination does not fully account for recent observations. We suggest that schizophrenia reflects a dynamic compensation to a core deficit of coordination, expressed either as hyper- or hyposynchronisation, with neurotransmitter systems and arousal as modulatory mechanisms.
Collapse
|
59
|
Abstract
AbstractNumerous searches have failed to identify a single co-occurrence of total blindness and schizophrenia. Evidence that blindness causes loss of certain NMDA-receptor functions is balanced by reports of compensatory gains. Connections between visual and anterior cingulate NMDA-receptor systems may help to explain how blindness could protect against schizophrenia.
Collapse
|
60
|
Setting domain boundaries for convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x0328002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe claim that the disorganized subtype of schizophrenia results from glutamate hypofunction is enhanced by consideration of current subtypology of schizophrenia, symptom definition, interdependence of neurotransmitters, and the nature of the data needed to support the hypothesis. Careful specification clarifies the clinical reality of disorganization as a feature of schizophrenia and increases the utility of the subtype.
Collapse
|
61
|
Abstract
AbstractAlthough context-processing deficits may be core features of schizophrenia, context remains a poorly defined concept. To test Phillips & Silverstein's model, we need to operationalize context more precisely. We offer several useful ways of framing context and discuss enhancing or facilitating schizophrenic patients' performance under different contextual situations. Furthermore, creativity may be a byproduct of cognitive uncoordination.
Collapse
|
62
|
Abstract
AbstractImpairments in cognitive coordination in schizophrenia are supported by phenomenological data that suggest deficits in the processing of visual context. Although the target article is sympathetic to such a phenomenological perspective, we argue that the relevance of phenomenological data for a wider understanding of consciousness in schizophrenia is not sufficiently addressed by the authors.
Collapse
|
63
|
Guarding against over-inclusive notions of “context”: Psycholinguistic and electrophysiological studies of specific context functions in schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03470027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPhillips & Silverstein offer an exciting synthesis of ongoing efforts to link the clinical and cognitive manifestations of schizophrenia with cellular accounts of its pathophysiology. We applaud their efforts but wonder whether the highly inclusive notion of “context” adequately captures some important details regarding schizophrenia and NMDA/glutamate function that are suggested by work on language processing and cognitive electrophysiology.
Collapse
|
64
|
Abstract
AbstractMechanisms that contribute to perceptual processing dysfunction in schizophrenia were examined by Phillips & Silverstein, and formulated as involving disruptions in both local and higher-level coordination of signals. We agree that dysfunction in the coordination of cognitive functions (disconnection) is also indicated for many of the linguistic processing deficits documented for schizophrenia. We suggest, however, that it may be necessary to add a timing mechanism to the theoretical account.
Collapse
|
65
|
Abstract
AbstractSchizophrenics exhibit a deficit in theory of mind (ToM), but an intact theory of biology (ToB). One explanation is that ToM relies on an independent module that is selectively damaged. Phillips & Silverstein's analyses suggest an alternative: ToM requires the type of coordination that is impaired in schizophrenia, whereas ToB is spared because this type of coordination is not involved.
Collapse
|
66
|
Abstract
AbstractThe additional arguments and evidence supplied by the commentaries strengthen the hypothesis that underactivity of NMDA receptors produces impaired cognitive coordination in schizophrenia. This encourages the hope that though the distance from molecules to mind is great, it can nevertheless be traversed. We therefore predict that in this decade or the next molecular psychology will be seen to be as fundamental to our understanding of mind as molecular biology is to our understanding of life.
Collapse
|
67
|
Abstract
AbstractIt is proposed that cortical activity is normally coordinated across synaptically connected areas and that this coordination supports cognitive coherence relations. This view is consistent with the NMDA- hypoactivity hypothesis of the target article in regarding disorganization symptoms in schizophrenia as arising from disruption of normal interareal coordination. This disruption may produce abnormal contextual effects in the cortex that lead to anomalous cognitive coherence relations.
Collapse
|
68
|
Abstract
AbstractThis commentary compares clinical aspects of ketamine with the amphetamine model of schizophrenia. Hallucinations and loss of insight, associated with amphetamine, seem more schizophrenia-like. Flat affect encountered with ketamine is closer to the clinical presentation in schizophrenia. We argue that flat affect is not a sign of schizophrenia, but rather, arisk factorfor chronic schizophrenia.
Collapse
|
69
|
Cortical connectivity in high-frequency beta-rhythm in schizophrenics with positive and negative symptoms. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03440028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractIn chronic schizophrenic patients with both positive and negative symptoms (see Table 1), interhemispheric connections at the high frequency beta2-rhythm are absent during cognitive tasks, in contrast to normal controls, who have many interhemispheric connections at this frequency in the same situation. Connectivity is a fundamental brain feature, evidently greatly promoted by the NMDA system. It is a more reliable measure of brain function than the spectral power of this rhythm.
Collapse
|
70
|
Duncan E, Szilagyi S, Schwartz M, Kunzova A, Negi S, Efferen T, Peselow E, Chakravorty S, Stephanides M, Harmon J, Bugarski-Kirola D, Gonzenbach S, Rotrosen J. Prepulse inhibition of acoustic startle in subjects with schizophrenia treated with olanzapine or haloperidol. Psychiatry Res 2003; 120:1-12. [PMID: 14500109 DOI: 10.1016/s0165-1781(03)00161-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of the acoustic startle response and of its inhibition by the presentation of a non-startling preliminary stimulus (prepulse inhibition, PPI) have revealed deficits in PPI in schizophrenic subjects compared to healthy controls. Animal studies indicate that atypical antipsychotics improve PPI deficits induced by NMDA antagonists more consistently than typical antipsychotics. The effect of medication status on PPI in schizophrenia is unresolved in the literature. In the current study the effects on PPI of the atypical antipsychotic olanzapine and the typical antipsychotic haloperidol were compared to the unmedicated state in subjects with schizophrenia. In a between-group design, 11 schizophrenic subjects on olanzapine, 16 subjects on haloperidol, and 14 subjects who were on no medication received acoustic startle testing with PPI determination. ANOVAs revealed no significant differences in startle to pulse alone stimuli, habituation of startle, or PPI between the olanzapine, haloperidol and unmedicated groups. These 41 subjects with schizophrenia were compared to a group of 21 historical healthy controls and found to have reduced PPI. These data do not indicate a preferential effect of olanzapine compared to haloperidol on sensorimotor gating in schizophrenia. The results are consistent with the hypothesis that PPI impairments are relatively stable across treatment conditions.
Collapse
Affiliation(s)
- Erica Duncan
- Emory University School of Medicine, GA, Atlanta, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Where the rubber meets the road: The importance of implementation. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPhillips & Silverstein argue that a range of cognitive disturbances in schizophrenia result from a deficit in cognitive coordination attributable to NMDA receptor dysfunction. We suggest that the viability of this hypothesis would be further supported by explicit implementation in a computational framework that can produce quantitative estimates of the behavior of both healthy individuals and individuals with schizophrenia.
Collapse
|
72
|
Context, connection, and coordination: The need to switch. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03370025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractContext, connection, and coordination (CCC) describe well where the problems that apply to thought-disordered patients with schizophrenia lie. But they may be part of the experience of those with other symptom constellations. Switching is an important mechanism to allow context to be applied appropriately to changing circumstances. In some cases, NMDA-voltage modulations may be central, but gain and shift are also functions that monoaminergic systems express in CCC.
Collapse
|
73
|
Synchronous dynamics for cognitive coordination: But how? Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03450024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAlthough interesting, the hypotheses proposed by Phillips & Silverstein lack unifying structure both in specific mechanisms and in cited evidence. They provide little to support the notion that low-level sensory processing and high-level cognitive coordination share dynamic grouping by synchrony as a common processing mechanism. We suggest that more realistic large-scale modeling at multiple levels is needed to address these issues.
Collapse
|
74
|
A wide-spectrum coordination model of schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe target article presents a model for schizophrenia extending four levels of abstraction: molecules, cells, cognition, and syndrome. An important notion in the model is that of coordination, applicable to both the level of cells and of cognition. The molecular level provides an “implementation” of the coordination at the cellular level, which in turn underlies the coordination at the cognitive level, giving rise to the clinical symptoms.
Collapse
|
75
|
Abstract
AbstractTo understand schizophrenia, a linking hypothesis is needed that shows how brain mechanisms lead to behavioral functions in normals, and also how breakdowns in these mechanisms lead to behavioral symptoms of schizophrenia. Such a linking hypothesis is now available that complements the discussion offered by Phillips & Silverstein (P&S).
Collapse
|
76
|
Spatial integration in perception and cognition: An empirical approach to the pathophysiology of schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03260027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractEvidence for a dysfunction in cognitive coordination in schizophrenia is emerging, but it is not specific enough to prove (or disprove) this long-standing hypothesis. Many aspects of the external world are spatially mapped in the brain. A comprehensive internal representation relies on integration of information across space. Focus on spatial integration in the perceptual and cognitive processes will generate empirical data that shed light on the pathophysiology of schizophrenia.
Collapse
|
77
|
Inferring contextual field interactions from scalp EEG. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03390028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary highlights methods for using scalp EEG to make inferences about contextual field interactions, which, in view of the target article, may be specially relevant to the study of schizophrenia. Although scalp EEG has limited spatial resolution, prior knowledge combined with experimental manipulations may be used to strengthen inferences about underlying brain processes. Both spatial and temporal context are discussed within the framework of nonlinear interactions. Finally, results from a visual contour integration EEG pilot study are summarized in view of a hypothesis that relates receptive field and contextual field processing to evoked and induced activity, respectively.
Collapse
|
78
|
Reconciling schizophrenic deficits in top-down and bottom-up processes: Not yet. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03360029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary challenges the authors to use their computational modeling techniques to support one of their central claims: that schizophrenic deficits in bottom-up (Gestalt-type tasks) and top-down (cognitive control tasks) context processing tasks arise from the same dysfunction. Further clarification about the limits of cognitive coordination would also strengthen the hypothesis.
Collapse
|
79
|
Cognitive coordination deficits: A necessary but not sufficient factor in the development of schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03290026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe Phillips & Silverstein model of NMDA-mediated coordination deficits provides a useful heuristic for the study of schizophrenic cognition. However, the model does not specifically account for the development of schizophrenia-spectrum disorders. The P&S model is compared to Meehl's seminal model of schizotaxia, schizotypy, and schizophrenia, as well as the model of schizophrenic cognitive dysfunction posited by McCarley and colleagues.
Collapse
|
80
|
NMDA-receptor hypofunction versus excessive synaptic elimination as models of schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03320023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWe propose that the primary cause of schizophrenia is a pathological extension of synaptic pruning involving local connectivity that unfolds ordinarily during adolescence. Computer simulations suggest that this pathology provides reasonable accounts of a range of symptoms in schizophrenia, and is consistent with recent postmortem and genetic studies. NMDA-receptors play a regulatory role in maintaining and/or eliminating cortical synapses, and therefore may play a pathophysiological role.
Collapse
|
81
|
Is sensory gating a form of cognitive coordination? Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03340026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractNeurophysiological investigations of the past two decades have consistently demonstrated a deficit in sensory gating associated with schizophrenia. Phillips & Silverstein interpret this impairment as being consistent with cognitive coordination dysfunction. However, the physiological mechanisms that underlie sensory gating have not been shown to involve gamma-band oscillations or NMDA-receptors, both of which are critical neural elements in the cognitive coordination model.
Collapse
|
82
|
Why do schizophrenic patients hallucinate? Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03410029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPhillips & Silverstein argue that schizophrenia is a result of a deficit of the contextual coordination of neuronal responses. The authors propose that NMDA-receptors control these modulatory effects. However, hallucinations, which are among the principle symptoms of schizophrenia, imply a flaw in the interactions between neurons that is more fundamental than just a general weakness of contextual modulation.
Collapse
|
83
|
Schizophrenic cognition: Taken out of context? Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03310027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThis commentary addresses: (a) the problems of definition which have been prominent in the use of the term context in schizophrenia research; (b) potentially useful distinctions and links with other theories of schizophrenic cognition; and (c) possible pathways to schizophrenic symptoms. It is suggested that at least two major aspects of the operation of context may be distinguished and that both may be impaired in schizophrenia.
Collapse
|
84
|
NMDA synapses can bias competition between object representations and mediate attentional selection. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03400022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractPhillips & Silverstein emphasize the gain-control properties of NMDA synapses in cognitive coordination. We endorse their view and suggest that NMDA synapses play a crucial role in biased attentional competition and (visual) working memory. Our simulations show that NMDA synapses can control the storage rate of visual objects. We discuss specific predictions of our model about cognitive effects of NMDA-antagonists and schizophrenia.
Collapse
|
85
|
Combating fuzziness with computational modeling. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03460020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPhillips & Silverstein's ambitious link between receptor abnormalities and the symptoms of schizophrenia involves a certain amount of fuzziness: No detailed mechanism is suggested through which the proposed abnormality would lead to psychological traits. We propose that detailed simulation of brain regions, using model neural networks, can aid in understanding the relation between biological abnormality and psychological dysfunction in schizophrenia.
Collapse
|