51
|
Prosser RS, Evanics F, Kitevski JL, Al-Abdul-Wahid MS. Current Applications of Bicelles in NMR Studies of Membrane-Associated Amphiphiles and Proteins,. Biochemistry 2006; 45:8453-65. [PMID: 16834319 DOI: 10.1021/bi060615u] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review covers current trends in studies of membrane amphiphiles and membrane proteins using both fast tumbling bicelles and magnetically aligned bicelle media for both solution state and solid state NMR. The fast tumbling bicelles provide a versatile biologically mimetic membrane model, which in many cases is preferable to micelles, both because of the range of lipids and amphiphiles that may be combined and because radius of curvature effects and strain effects common with micelles may be avoided. Drug and small molecule binding and partitioning studies should benefit from their application in fast tumbling bicelles, tailored to mimic specific membranes. A wide range of topology and immersion depth studies have been shown to be effective in fast tumbling bicelles, while residual dipolar couplings add another dimension to structure refinement possibilities, particularly for situations in which the peptide is uniformly labeled with 15N and 13C. Solid state NMR studies of polytopic transmembrane proteins demonstrate that it is possible to express, purify, and reconstitute membrane proteins, ranging in size from single transmembrane domains to seven-transmembrane GPCRs, into bicelles. The line widths and quality of the resulting 15NH dipole-15N chemical shift spectra demonstrate that there are no insurmountable obstacles to the study of large membrane proteins in magnetically aligned media.
Collapse
Affiliation(s)
- R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road, North Mississauga, ON, Canada L5L 1C6.
| | | | | | | |
Collapse
|
52
|
Sankararamakrishnan R. Recognition of GPCRs by Peptide Ligands and Membrane Compartments theory: Structural Studies of Endogenous Peptide Hormones in Membrane Environment. Biosci Rep 2006; 26:131-58. [PMID: 16773462 DOI: 10.1007/s10540-006-9014-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One of the largest family of cell surface proteins, G-protein coupled receptors (GPCRs) regulate virtually all known physiological processes in mammals. With seven transmembrane segments, they respond to diverse range of extracellular stimuli and represent a major class of drug targets. Peptidergic GPCRs use endogenous peptides as ligands. To understand the mechanism of GPCR activation and rational drug design, knowledge of three-dimensional structure of receptor–ligand complex is important. The endogenous peptide hormones are often short, flexible and completely disordered in aqueous solution. According to “Membrane Compartments Theory”, the flexible peptide binds to the membrane in the first step before it recognizes its receptor and the membrane-induced conformation is postulated to bind to the receptor in the second step. Structures of several peptide hormones have been determined in membrane-mimetic medium. In these studies, micelles, reverse micelles and bicelles have been used to mimic the cell membrane environment. Recently, conformations of two peptide hormones have also been studied in receptor-bound form. Membrane environment induces stable secondary structures in flexible peptide ligands and membrane-induced peptide structures have been correlated with their bioactivity. Results of site-directed mutagenesis, spectroscopy and other experimental studies along with the conformations determined in membrane medium have been used to interpret the role of individual residues in the peptide ligand. Structural differences of membrane-bound peptides that belong to the same family but differ in selectivity are likely to explain the mechanism of receptor selectivity and specificity of the ligands. Knowledge of peptide 3D structures in membrane environment has potential applications in rational drug design.
Collapse
|
53
|
Matsumori N, Morooka A, Murata M. Detailed Description of the Conformation and Location of Membrane-Bound Erythromycin A Using Isotropic Bicelles. J Med Chem 2006; 49:3501-8. [PMID: 16759093 DOI: 10.1021/jm051210v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although many nonpeptidic drugs target biological membrane and membrane proteins, it is still difficult to define the membrane-bound structure of the drugs. In this study, we utilized bicelles as a membrane model, since the bicelles, which have planar lipid bilayer portions, are thought to be a more appropriate and practical membrane model than micelles. Bicelles with a small diameter allow for measurements of liquid NMR due to fast tumbling in solution. We targeted erythromycin A (EA) as a membrane-binding compound because it is pointed out that the drug interacts with lysosomal membranes, inhibits phospholipase A, and consequently induces phospholipidosis as a side effect. The conformation of EA in the bicelle was successfully determined on the basis of coupling constants and NOEs. Measurements of intermolecular NOEs and paramagnetic relaxation times revealed that the drug is located shallowly in the membrane surface, with the dimethylamino group being close to the phosphate, and the macrolide portion adjacent to upper sides of the acyl chains. This study shows the general utility of isotropic bicelles for detailed conformational and orientational studies of membrane-associated nonpeptidic drugs.
Collapse
Affiliation(s)
- Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
54
|
Andersson A, Mäler L. Size and shape of fast-tumbling bicelles as determined by translational diffusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:2447-9. [PMID: 16519439 DOI: 10.1021/la053177l] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this study, the size and shape of an isotropic bicelle have been determined by measuring the translational diffusion as a function of the volume fraction of the lipids. A linear relation between the diffusion coefficients is obtained for both DMPC and DHPC in the bicelles. The slope of this linear function, which is strongly shape-dependent, is found to be different for the two molecules. This difference is direct evidence that the two molecules are not fully mixed in the bicelle. The shape- combined with the size-dependence of the diffusion coefficient allows us to calculate both the size and shape of the bicelle.
Collapse
Affiliation(s)
- August Andersson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
55
|
Ouellet M, Bernard G, Voyer N, Auger M. Insights on the interactions of synthetic amphipathic peptides with model membranes as revealed by 31P and 2H solid-state NMR and infrared spectroscopies. Biophys J 2006; 90:4071-84. [PMID: 16533836 PMCID: PMC1459497 DOI: 10.1529/biophysj.105.077339] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the interaction between synthetic amphipathic peptides and model membranes by solid-state NMR and infrared spectroscopies. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers were synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure. To shed light on their membrane interaction, (31)P and (2)H solid-state NMR experiments were performed on both peptides in interaction with dimyristoylphosphatidylcholine vesicles in the absence and presence of cholesterol, dimyristoylphosphatidylglycerol vesicles, and oriented bicelles. (31)P NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are weakly yet markedly affected by the presence of the peptides, whereas (31)P NMR experiments on bicelles indicate no significant changes in the morphology and orientation of the bicelles. On the other hand, (2)H NMR experiments on vesicles reveal that the acyl chain order is affected differently depending on the membrane lipidic composition and on the peptide hydrophobic length. Finally, infrared spectroscopy was used to study the interfacial region of the bilayer. Based on these studies, mechanisms of membrane perturbation are proposed for the 14-mer and 21-mer peptides in interaction with model membranes depending on the bilayer composition and peptide length.
Collapse
Affiliation(s)
- Marise Ouellet
- Département de Chimie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
56
|
Chandrasekhar I, van Gunsteren WF, Zandomeneghi G, Williamson PTF, Meier BH. Orientation and Conformational Preference of Leucine-Enkephalin at the Surface of a Hydrated Dimyristoylphosphatidylcholine Bilayer: NMR and MD Simulation. J Am Chem Soc 2005; 128:159-70. [PMID: 16390143 DOI: 10.1021/ja054785q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The morphogenic opiate pentapeptide leucine-enkephalin (lenk) in a hydrated dimyristoylphosphatidylcholine (DMPC) bilayer is studied using NMR spectroscopy and molecular dynamics simulation. Contrary to the frequent assumption that the peptide attains a single fixed conformation in the presence of membranes, we find that the lenk molecule is flexible, switching between specific bent conformations. The constraints to the orientation of the aromatic rings that are identified by the NMR experiment are found by the MD simulation to be related to the depth of the peptide in the bilayer. The motion of the N-H vectors of the peptide bonds with respect to the magnetic field direction as observed by MD largely explain the magnitude of the observed residual dipolar coupling (RDC), which are much reduced over the static (15)N-(1)H coupling. The measured RDCs are nevertheless significantly larger than the predicted ones, possibly due the absence of long-time motions in the simulations. The conformational behavior of lenk at the DMPC surface is compared to that in the aqueous solution, both in the neutral and in the zwitterionic forms.
Collapse
|
57
|
Dave PC, Nusair NA, Inbaraj JJ, Lorigan GA. Electron paramagnetic resonance studies of magnetically aligned phospholipid bilayers utilizing a phospholipid spin label: The effect of cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:141-51. [PMID: 16061199 DOI: 10.1016/j.bbamem.2005.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 11/16/2022]
Abstract
X-band EPR spectroscopy has been employed to study the dynamic properties of magnetically aligned phospholipid bilayers (bicelles) utilizing a variety of phosphocholine spin labels (n-PCSL) as a function of cholesterol content. The utilization of both perpendicular and parallel aligned bicelles in EPR spectroscopy provides a more detailed structural and orientational picture of the phospholipid bilayers. The magnetically aligned EPR spectra of the bicelles and the hyperfine splitting values reveal that the addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC bicelles. The corresponding molecular order parameter, Smol, of the DMPC/DHPC bicelles increased upon addition of cholesterol. Cholesterol also decreased the rotational motion and increased the degree of anisotropy in the interior region of the bicelles. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other model membrane systems and that the magnetically aligned bicelles are an excellent model membrane system.
Collapse
Affiliation(s)
- Paresh C Dave
- Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056, USA
| | | | | | | |
Collapse
|
58
|
Katsaras J, Harroun TA, Pencer J, Nieh MP. “Bicellar” Lipid Mixtures as used in Biochemical and Biophysical Studies. Naturwissenschaften 2005; 92:355-66. [PMID: 16021408 DOI: 10.1007/s00114-005-0641-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade "bicellar" lipid mixtures composed of the long-chain dimyristoyl phosphatidylcholine (DMPC) and the short-chain dihexanoyl PC (DHPC) molecules have emerged as a powerful medium for studying membrane associated, biologically relevant macromolecules and assemblies. Depending on temperature, lipid concentration and composition these lipid mixtures can assume a variety of morphologies, some of them alignable in the presence of a magnetic field. This article will examine the biophysical studies that have elucidated the various morphologies assumed by these lipid mixtures, and their use in the biochemical studies of biomolecules.
Collapse
Affiliation(s)
- John Katsaras
- National Research Council, Chalk River Laboratories, Chalk River, Ontario, Canada.
| | | | | | | |
Collapse
|
59
|
Dave PC, Tiburu EK, Damodaran K, Lorigan GA. Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy. Biophys J 2004; 86:1564-73. [PMID: 14990483 PMCID: PMC1303991 DOI: 10.1016/s0006-3495(04)74224-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phospholamban (PLB) is a 52-amino acid integral membrane protein that regulates the flow of Ca(2+) ions in cardiac muscle cells. In the present study, the transmembrane domain of PLB (24-52) was incorporated into phospholipid bilayers prepared from 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC). Solid-state (31)P and (2)H NMR experiments were carried out to study the behavior of POPC bilayers in the presence of the hydrophobic peptide PLB at temperatures ranging from 30 degrees C to 60 degrees C. The PLB peptide concentration varied from 0 mol % to 6 mol % with respect to POPC. Solid-state (31)P NMR spectroscopy is a valuable technique to study the different phases formed by phospholipid membranes. (31)P NMR results suggest that the transmembrane protein phospholamban is incorporated successfully into the bilayer and the effects are observed in the lipid lamellar phase. Simulations of the (31)P NMR spectra were carried out to reveal the formation of different vesicle sizes upon PLB insertion. The bilayer vesicles fragmented into smaller sizes by increasing the concentration of PLB with respect to POPC. Finally, molecular order parameters (S(CD)) were calculated by performing (2)H solid-state NMR studies on deuterated POPC (sn-1 chain) phospholipid bilayers when the PLB peptide was inserted into the membrane.
Collapse
Affiliation(s)
- Paresh C Dave
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
60
|
Dave PC, Inbaraj JJ, Lorigan GA. Electron paramagnetic resonance studies of magnetically aligned phospholipid bilayers utilizing a phospholipid spin label. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:5801-8. [PMID: 16459595 DOI: 10.1021/la036377a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
X-band electron paramagnetic resonance (EPR) spectroscopy was used to study the structural and dynamic properties of magnetically aligned phospholipid bilayers utilizing a variety of phosphocholine spin labels (PCSL) as a function oftemperature. 1-Palmitoyl-2-[n-(4,4-dimethyloxazolidine-N-oxyl)stearoyl]-sn-glycero-3-phosphocholine (n-PCSL) in which a nitroxide group was attached to the different acyl chain positions of the phospholipid (n = 5, 7, 12, and 14) were used as an EPR spin probe to investigate magnetically aligned phospholipid bilayers from the plateau (near to the headgroup) region to the end of the acyl chain (center of the bilayers). The addition of certain types of paramagnetic lanthanide ions changes the overall magnetic susceptibility anisotropy tensor of the bicelles, such that the bicelles flip with their bilayer normal either parallel or perpendicular to the magnetic field. The present study reveals for the first time that, in the case of the n-PCSL, the bilayer normal is aligned parallel and perpendicular to the magnetic field in the presence of lanthanide ions having positive delta(chi) (e.g., Tm3+) and negative delta(chi) (e.g., Dy3+), respectively. The magnetic alignment of the bilayers and the corresponding segmental molecular order parameter, S(mol), were investigated as a function of the temperature. The S(mol) values decrease in the following order, 5-PCSL > 7-PCSL > 12-PCSL > 14-PCSL, for the magnetically aligned phospholipid bilayers. Also, the variable temperature study indicates that, by increasing the temperature, the order parameters S(mol) decreased for all the n-PCSLs. The results indicate that magnetically aligned phospholipid bilayers represent an excellent model membrane system for X-band EPR studies.
Collapse
Affiliation(s)
- Paresh C Dave
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | |
Collapse
|
61
|
Chatterjee C, Majumder B, Mukhopadhyay C. Pulsed-Field Gradient and Saturation Transfer Difference NMR Study of Enkephalins in the Ganglioside GM1 Micelle. J Phys Chem B 2004. [DOI: 10.1021/jp037553r] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chiradip Chatterjee
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India, and NMR Facility, Department of Biophysics, Bose Institute, P1/12, CIT Scheme 7M, Kolkata 700 054, India
| | - Barun Majumder
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India, and NMR Facility, Department of Biophysics, Bose Institute, P1/12, CIT Scheme 7M, Kolkata 700 054, India
| | - Chaitali Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India, and NMR Facility, Department of Biophysics, Bose Institute, P1/12, CIT Scheme 7M, Kolkata 700 054, India
| |
Collapse
|
62
|
Marcotte I, Separovic F, Auger M, Gagné SM. A multidimensional 1H NMR investigation of the conformation of methionine-enkephalin in fast-tumbling bicelles. Biophys J 2004; 86:1587-600. [PMID: 14990485 PMCID: PMC1303993 DOI: 10.1016/s0006-3495(04)74226-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 11/07/2003] [Indexed: 11/22/2022] Open
Abstract
Enkephalins are pentapeptides found in the central nervous system. It is believed that these neuropeptides interact with the nerve cell membrane to adopt a conformation suitable for their binding to an opiate receptor. In this work, we have determined the three-dimensional structure of methionine-enkephalin (Menk) in fast-tumbling bicelles using multidimensional (1)H NMR. Bicelles were selected as model membranes because both their bilayer organization and composition resemble those of natural biomembranes. The effect of the membrane composition on the peptide conformation was explored using both zwitterionic (PC bicelles) and negatively charged bicelles (Bic/PG). Pulsed field gradient experiments allowed the determination of the proportion of Menk bound to the model membranes. Approximately 60% of the water-soluble enkephalin was found to associate to the bicellar systems. Structure calculations from torsion angle and NOE-based distance constraints suggest the presence of both micro - and delta-selective conformers of Menk in each system and slightly different conformers in PC bicelles and Bic/PG. As opposed to previous studies of enkephalins in membrane mimetic systems, our results show that these opiate peptides could adopt several conformations in a membrane environment, which is consistent with the flexibility and poor selectivity of enkephalins.
Collapse
Affiliation(s)
- Isabelle Marcotte
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada, G1K 7P4
| | | | | | | |
Collapse
|
63
|
Sizun C, Aussenac F, Grelard A, Dufourc EJ. NMR methods for studying the structure and dynamics of oncogenic and antihistaminic peptides in biomembranes. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:180-186. [PMID: 14745798 DOI: 10.1002/mrc.1336] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present several applications of both wide-line and magic angle spinning (MAS) solid-state NMR of bicelles in which are embedded fragments of a tyrosine kinase receptor or enkephalins. The magnetically orientable bicelle membranes are shown to be of particular interest for studying the functional properties of lipids and proteins in a state that is very close to their natural environment. Quadrupolar, dipolar and chemical shielding interactions can be used to determine minute alterations of internal membrane dynamics and the orientation of peptides with respect to the membrane plane. MAS of bicelles can in turn lead to high-resolution proton spectra of hydrated membranes. Using deuterium-proton contrast methods one can then obtain pseudo-high-resolution proton spectra of peptides or proteins embedded in deuterated membranes and determine their atomic 3D structure using quasi-conventional liquid-state NMR methods.
Collapse
Affiliation(s)
- Christina Sizun
- Institut Européen de Chimie et Biologie, Ecole Polytechnique, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | | | | |
Collapse
|
64
|
Marcotte I, Ouellet M, Auger M. Insights on the interaction of met-enkephalin with negatively charged membranes—an infrared and solid-state NMR spectroscopic study. Chem Phys Lipids 2004; 127:175-87. [PMID: 14726000 DOI: 10.1016/j.chemphyslip.2003.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enkephalins are pentapeptides found in the human nervous system, where they are involved in the relief of pain. The interaction of these neuropeptides with the nerve cell membranes would be a key-step in the receptor binding. We have used both Fourier-transform infrared and solid-state NMR spectroscopies to shed light on the interactions responsible for the association of enkephalins with negatively charged membranes. More specifically, we have investigated the interaction of methionine-enkephalin (Menk) with DMPG and DMPS vesicles. Our results suggest that Menk interacts electrostatically with both model membranes via its terminal NH3+ group. However, the peptide induced the formation of elongated DMPG vesicles in the magnetic field. On the other hand, the association of Menk with DMPS bilayers was concentration-dependent and disrupted the membrane at high peptide concentrations. The different effect of methionine-enkephalin with the two types of anionic membranes is most likely related to the different fluidity of these systems.
Collapse
Affiliation(s)
- Isabelle Marcotte
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules (CERSIM), Université Laval, Québec, Qué., Canada G1K 7P4
| | | | | |
Collapse
|