51
|
Levadny V, Colombini M, Li XX, Aguilella VM. Electrostatics explains the shift in VDAC gating with salt activity gradient. Biophys J 2002; 82:1773-83. [PMID: 11916837 PMCID: PMC1301975 DOI: 10.1016/s0006-3495(02)75528-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We have analyzed voltage-dependent anion-selective channel (VDAC) gating on the assumption that the states occupied by the channel are determined mainly by their electrostatic energy. The voltage dependence of VDAC gating both in the presence and in the absence of a salt activity gradient was explained just by invoking electrostatic interactions. A model describing this energy in the main VDAC states has been developed. On the basis of the model, we have considered how external factors cause the redistribution of the channels among their conformational states. We propose that there is a difference in the electrostatic interaction between the voltage sensor and fixed charge within the channel when the former is located in the cis side of membrane as opposed to the trans. This could be the main cause of the shift in the probability curve. The theory describes satisfactorily the experimental data (Zizi et al., Biophys. J. 1998. 75:704-713) and explains some peculiarities of VDAC gating. The asymmetry of the probability curve was related to the apparent location of the VDAC voltage sensor in the open state. By analyzing published experimental data, we concluded that this apparent location is influenced by the diffusion potential. Also discussed is the possibility that VDAC gating at high voltage may be better described by assuming that the mobile charge consists of two parts that have to overcome different energetic barriers in the channel-closing process.
Collapse
Affiliation(s)
- Victor Levadny
- Departamento de Ciencias Experimentales, Universidad Jaume I, 12080 Castellón, Spain
| | | | | | | |
Collapse
|
52
|
Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M. Dynamics of nucleotides in VDAC channels: structure-specific noise generation. Biophys J 2002; 82:193-205. [PMID: 11751308 PMCID: PMC1302461 DOI: 10.1016/s0006-3495(02)75386-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleotide penetration into the voltage-dependent mitochondrial ion channel (VDAC) reduces single-channel conductance and generates excess current noise through a fully open channel. VDAC channels were reconstituted into planar phospholipid membranes bathed in 1.0 M NaCl. At a given nucleotide concentration, the average decrease in small-ion channel conductance induced by mononucleotides ATP, ADP, AMP, and UTP and dinucleotides beta- and alpha-NADH, NAD, and NADPH are very close. However, the excess current noise is about seven times higher in the presence of NADPH than in the presence of ATP and is about 40 times higher than in the presence of UTP. The nucleotide-generated low-frequency noise obeys the following sequence: beta-NADPH > beta-NADH = alpha-NADH > ATP > ADP > beta-NAD > or = AMP > UTP. Measurements of bulk-phase diffusion coefficients and of the effective charge of the nucleotides in 1.0 M NaCl suggest that differences in size and charge cannot be the major factors responsible for the ability to generate current noise. Thus, although the ability of nucleotides to partition into the channel's pore, as assessed by the reduction in conductance, is very similar, the ability to generate current noise involves a detailed recognition of the three-dimensional structure of the nucleotide by the VDAC channel. A possible mechanism for this selectivity is two noise-generating processes operating in parallel.
Collapse
|
53
|
Levadny V, Colombini M, Aguilella VM. A model of VDAC structural rearrangement in the presence of a salt activity gradient. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)01116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
54
|
Levadny V, Aguilella V. Reversal Potential of a Wide Ion Channel. Nonuniform Charge Distribution Effects. J Phys Chem B 2001. [DOI: 10.1021/jp011379u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Victor Levadny
- Departamento de Ciencias Experimentales, Universidad Jaume I, 12080 Castellón, Spain
| | - Vicente Aguilella
- Departamento de Ciencias Experimentales, Universidad Jaume I, 12080 Castellón, Spain
| |
Collapse
|
55
|
Song J, Midson C, Blachly-Dyson E, Forte M, Colombini M. The topology of VDAC as probed by biotin modification. J Biol Chem 1998; 273:24406-13. [PMID: 9733730 DOI: 10.1074/jbc.273.38.24406] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The outer membrane of mitochondria contains channels called VDAC (mitochondrial porin), which are formed by a single 30-kDa protein. Cysteine residues introduced by site-directed mutagenesis at sites throughout Neurospora crassa VDAC (naturally devoid of cysteine) were specifically biotinylated prior to reconstitution into planar phospholipid membranes. From previous studies, binding of streptavidin to single biotinylated sites results in one of two effects: reduced single-channel conductance without blockage of voltage gating (type 1) or locking of the channels in a closed conformation (type 2). All sites react with streptavidin only from one side of the membrane. Here, we extend this approach to VDAC molecules containing two cysteines and determine the location of each biotinylated residue with respect to the other within the membrane. When a combination of a type 1 and a type 2 site was used, each site could be observed to react with streptavidin. Two sets of sites located on opposite surfaces of the membrane were identified, thereby establishing the transmembrane topology of VDAC. A revised folding pattern for VDAC, consisting of 1 alpha helix and 13 beta strands, is proposed by combining these results with previously obtained information on which sites are lining the aqueous pore.
Collapse
Affiliation(s)
- J Song
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
56
|
Zizi M, Byrd C, Boxus R, Colombini M. The voltage-gating process of the voltage-dependent anion channel is sensitive to ion flow. Biophys J 1998; 75:704-13. [PMID: 9675172 PMCID: PMC1299745 DOI: 10.1016/s0006-3495(98)77560-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is a voltage-gated channel from the mitochondrial outer membrane. It has two gating processes: one at positive potentials and the other at negative potentials. The energetics of VDAC gating are quite different when measured in the presence or absence of an ion gradient. A positive potential on the high-salt side results in channel closure at lower transmembrane potentials. The midpoint potential (V0) shifted from 25 to 5.7 mV, with an activity gradient for KCl of 0.6 versus 0.06. The opposite occurred for negative potentials on the high-salt side (V0 shifted from -25 to -29 mV). Thus the salt gradient favored closure for one gating process and opening for the other. These results could be explained if part of the electrochemical potential of the gradients present were transferred to the gating mechanism. If the kinetic energy of the ion flow were coupled to the gating process, the effects of the gradient would depend on the mass and velocities of these ions. This was tested by using a series of different salts (KCl, NaCl, LiCl, KBr, K acetate, Na butyrate, and RbBr) under an identical activity gradient. The kinetic energy correlated very well with the measured shifts in free energy of the channel gating. This was true for both polarities. Thus the gating of VDAC is influenced by ion flow. These results are consistent in sign and direction with the voltage gating process in VDAC, which is believed to involve the movement of a positively charged portion of the wall of the channel out of the membrane.
Collapse
Affiliation(s)
- M Zizi
- Department of Physiology, K.U. Leuven Medical School, Campus Gasthuijsberg, Leuven 3000, Belgium
| | | | | | | |
Collapse
|
57
|
Bainbridge G, Gokce I, Lakey JH. Voltage gating is a fundamental feature of porin and toxin beta-barrel membrane channels. FEBS Lett 1998; 431:305-8. [PMID: 9714531 DOI: 10.1016/s0014-5793(98)00761-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Beta-barrel pores are found in outer membrane porins of gram-negative bacteria, bacterial toxins and mitochondrial channels. Apart from the beta-barrel the three groups show no close sequence or structural homology but these pores exhibit symmetrical voltage gating when reconstituted into planar lipid bilayers. The structures of several of these are known and many site-directed mutants have been examined. As a result it seems evident that the gating is a common characteristic of these unrelated large pores and is not generated by specialised structures in the pore lumen.
Collapse
Affiliation(s)
- G Bainbridge
- Department of Biochemistry and Genetics, The Medical School, University of Newcastle Upon Tyne, UK
| | | | | |
Collapse
|
58
|
Mannella CA. Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol 1998; 121:207-18. [PMID: 9615439 DOI: 10.1006/jsbi.1997.3954] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The voltage-dependent, anion-selective channel (VDAC) is generally considered the main pathway for metabolite diffusion across the mitochondrial outer membrane. It also interacts with several mitochondrial and cytosolic proteins, including kinases and cytochrome c. Sequence analysis and circular dichroism suggest that the channel is a bacterial porin-like beta-barrel. However, unlike bacterial porins, VDAC does not form tight trimeric complexes and is easily gated (reversibly closed) by membrane potential and low pH. Circular dichroism indicates that the protein undergoes a major conformational change at pH < 5, involving decreased beta-sheet and increased alpha-helical content. Electron microscopy of two-dimensional crystals of fungal VDAC provides direct information about the size and shape of its lumen and suggests that the N-terminal domain forms a mobile alpha-helix. It is proposed that the N-terminal domain normally resides in a groove in the lumen wall and that gating stimuli favor its displacement, destabilizing the putative beta-barrel. Partial closure would result from subsequent larger-scale structural rearrangements in the protein, possibly corresponding to the conformational change observed at pH < 5.
Collapse
Affiliation(s)
- C A Mannella
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| |
Collapse
|
59
|
Song J, Midson C, Blachly-Dyson E, Forte M, Colombini M. The sensor regions of VDAC are translocated from within the membrane to the surface during the gating processes. Biophys J 1998; 74:2926-44. [PMID: 9635747 PMCID: PMC1299634 DOI: 10.1016/s0006-3495(98)78000-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The motion of the sensor regions in a mitochondrial voltage-gated channel called VDAC were probed by attaching biotin at specific locations and determining its ability to bind to added streptavidin. Site-directed mutagenesis was used to introduce single cysteine residues into Neurospora crassa VDAC (naturally lacks cysteine). These were chemically biotinylated and reconstituted into planar phospholipid membranes. In the 19 sites examined, only two types of results were observed upon streptavidin addition: in type 1, channel conductance was reduced, but voltage gating could proceed; in type 2, channels were locked in a closed state. The result at type 1 sites is interpreted as streptavidin binding to sites in static regions close to the channel opening. The binding sterically interferes with ion flow. The result at type 2 sites indicates that these are located on a mobile domain and coincide with the previously identified sensor regions. The findings are consistent with closure resulting from the movement of a domain from within the transmembrane regions to the membrane surface. No single site was accessible to streptavidin from both membrane surfaces, indicating that the motion is limited. From the streptavidin-induced reduction in conductance at type 1 sites, structural information was obtained about the location of these sites.
Collapse
Affiliation(s)
- J Song
- Department of Biology, University of Maryland, College Park 20742, USA
| | | | | | | | | |
Collapse
|
60
|
Koppel DA, Kinnally KW, Masters P, Forte M, Blachly-Dyson E, Mannella CA. Bacterial expression and characterization of the mitochondrial outer membrane channel. Effects of n-terminal modifications. J Biol Chem 1998; 273:13794-800. [PMID: 9593723 DOI: 10.1074/jbc.273.22.13794] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several forms of the voltage-dependent anion-selective channel (VDAC) have been expressed at high yield in Escherichia coli. Full-length constructs of the proteins of Neurospora crassa and Saccharomyces cerevisiae (ncVDAC and scVDAC) have been made with 20-residue-long, thrombin-cleavable, His6-containing N-terminal extensions. ncVDAC purified from bacteria or mitochondria displays a far-UV CD spectrum (in 1% lauryl dimethylamine oxide at pH 6-8) similar to that of bacterial porins, indicating extensive beta-sheet structure. Under the same conditions, the CD spectrum of bacterially expressed scVDAC indicates lower beta-sheet content, albeit higher than that of mitochondrial scVDAC under the same conditions. In phospholipid bilayers, the bacterially expressed proteins (with or without N-terminal extensions) form typical VDAC-like channels with stable, large conductance open states (4-4.5 nanosiemens in 1 M KCl) and voltage-dependent transitions to a predominant substate (about 2 nanosiemens). A variant of scVDAC missing the first eight residues and having no N-terminal extension also has been expressed in E. coli. The truncated protein has a CD spectrum similar to that of mitochondrial scVDAC, but its channel activity is abnormal, exhibiting an unstable open state and rapid transitions between multiple subconductance levels.
Collapse
Affiliation(s)
- D A Koppel
- Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, USA
| | | | | | | | | | | |
Collapse
|
61
|
Laver DR, Peter WG. Interpretation of substates in ion channels: unipores or multipores? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 67:99-140. [PMID: 9446932 DOI: 10.1016/s0079-6107(97)00008-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D R Laver
- John Curtin School of Medical Research, Australian National University, Camberra, ACT, Australia
| | | |
Collapse
|
62
|
Mannella CA. Minireview: on the structure and gating mechanism of the mitochondrial channel, VDAC. J Bioenerg Biomembr 1997; 29:525-31. [PMID: 9559853 DOI: 10.1023/a:1022489832594] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is considerable evidence that the voltage-gated mitochondrial channel VDAC forms a beta-barrel pore. Inferences about the number and tilt of beta-strands can be drawn from comparisons with bacterial beta-barrel pores whose structures have been determined by x-ray crystallography. A structural model for VDAC is proposed (based on sequence analysis and electron crystallography) in which the open state is like that of bacterial porins with several important differences. Because VDAC does not occur as close-packed trimers, there are probably fewer interpore contacts than in the bacterial porins. VDAC also appears to lack a large, fixed intraluminal segment and may not have as extensive a region of uniformly 35 degrees -tilted beta-strands as do the bacterial porins. These structural differences would be expected to render VDAC's beta-barrel less stable than its bacterial counterparts, making major conformational changes like those associated with gating more energetically feasible. A possible gating mechanism is suggested in which movement of the N-terminal alpha-helix out of the lumen wall triggers larger-scale structural changes.
Collapse
Affiliation(s)
- C A Mannella
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| |
Collapse
|
63
|
Rostovtseva T, Colombini M. VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J 1997; 72:1954-62. [PMID: 9129800 PMCID: PMC1184392 DOI: 10.1016/s0006-3495(97)78841-6] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mitochondrial channel, VDAC, forms large (3 nm in diameter) aqueous pores through membranes. We measured ATP flow (using the luciferin/luciferase method) through these channels after reconstitution into planar phospholipid membranes. In the open state of VDAC, as many as 2 x 10(6) ATP molecules can flow through one channel per second. The half-maximum rate occurs at approximately 75 mM ATP. The permeability of a single channel for ATP is 1.1 x 10(-14) cm3/s (about 1 cm/s after correcting for cross-sectional area), which is 100 times less than the permeability for chloride and 10 times less than that for succinate. Channel closure results in a 50% reduction in conductance, showing that monovalent ions are still quite permeable, yet ATP flux is almost totally blocked. This is consistent with an electrostatic barrier that results in inversion of the selectivity of the channel and could be an example of how large channels selectively control the flow of charged metabolites. Thus VDAC is ideally suited to controlling the flow of ATP between the cytosol and the mitochondrial spaces.
Collapse
Affiliation(s)
- T Rostovtseva
- Department of Zoology, University of Maryland, College Park 20742, USA
| | | |
Collapse
|
64
|
Rostovtseva T, Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem 1996; 271:28006-8. [PMID: 8910409 DOI: 10.1074/jbc.271.45.28006] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A voltage-gated channel, called VDAC (mitochondrial porin) is known to be responsible for most of the metabolite flux across the mitochondrial outer membrane. Here, direct measurements of ATP flux through VDAC channels reconstituted into planar phospholipid membranes establish that VDAC is sufficient to provide passage for ATP efflux from mitochondria. Further, the gating of the channel can shut down ATP flux completely while, simultaneously, allowing the flow of small ions. Thus, these channels are ideally suited to control ATP flux through the mitochondrial outer membrane and, consequently, mitochondrial function. The block to ATP flow through the closed state is likely to be not steric but electrostatic.
Collapse
Affiliation(s)
- T Rostovtseva
- Laboratories of Cell Biology, Department of Zoology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
65
|
Shao L, Kinnally KW, Mannella CA. Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa. Biophys J 1996; 71:778-86. [PMID: 8842216 PMCID: PMC1233534 DOI: 10.1016/s0006-3495(96)79277-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The protein that forms the voltage-gated channel VDAC (or mitochondrial porin) has been purified from Neurospora crassa. At room temperature and pH 7, the circular dichoism (CD) spectrum of VDAC suspended in octyl beta-glucoside is similar to those of bacterial porins, consistent with a high beta-sheet content. When VDAC is reconstituted into phospholipid liposomes at pH 7, a similar CD spectrum is obtained and the liposomes are rendered permeable to sucrose. Heating VDAC in octyl beta-glucoside or in liposomes results in thermal denaturation. The CD spectrum irreversibly changes to one consistent with total loss of beta-sheet content, and VDAC-containing liposomes irreversibly lose sucrose permeability. When VDAC is suspended at room temperature in octyl beta-glucoside at pH < 5 or in sodium dodecyl sulfate at pH 7, its CD spectrum is consistent with partial loss of beta-sheet content. The sucrose permeability of VDAC-containing liposomes is decreased at low pH and restored at pH 7. Similarly, the pH-dependent changes in the CD spectrum of VDAC suspended in octyl beta-glucoside also are reversible. These results suggest that VDAC undergoes a reversible conformational change at low pH involving reduced beta-sheet content and loss of pore-forming activity.
Collapse
Affiliation(s)
- L Shao
- Division of Molecular Medicine, Wadsworth Center, Albany, New York, USA
| | | | | |
Collapse
|
66
|
Popp B, Court DA, Benz R, Neupert W, Lill R. The role of the N and C termini of recombinant Neurospora mitochondrial porin in channel formation and voltage-dependent gating. J Biol Chem 1996; 271:13593-9. [PMID: 8662769 DOI: 10.1074/jbc.271.23.13593] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To investigate the role of the N and C termini in channel function and voltage-dependent gating of mitochondrial porin, we expressed wild-type and mutant porins from Neurospora crassa as His-tag fusion products in Escherichia coli. Large quantities of the proteins were purified by chromatography across a nickle-nitrilotriacetic acid-agarose column under denaturing conditions. The purified His-tagged wild-type protein could be functionally reconstituted in the presence of detergent and sterol and behaved in black lipid bilayer membranes indistinguishably from native porin isolated from Neurospora crassa mitochondria. Mutants of porin lacking part of the N terminus (DeltaN2-12porin, DeltaN3-20porin), part of the C terminus (DeltaC269-283porin), or both (DeltaN2-12/DeltaC269-283porin) also showed channel forming activity. The mutant porin lacking the C terminus had a smaller single channel conductance than the wild-type protein, but its other biophysical properties were identical. DeltaN2-12porin and DeltaN3-20porin formed noisy channels with decreased channel stability. These channels were still voltage-dependent. DeltaN2-12/DeltaC269-283porin lost channel stability and had altered gating characteristics. These results are discussed with respect to different models that have been proposed in the literature for the structure of mitochondrial porin channels.
Collapse
Affiliation(s)
- B Popp
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
67
|
Mannella CA, Neuwald AF, Lawrence CE. Detection of likely transmembrane beta strand regions in sequences of mitochondrial pore proteins using the Gibbs sampler. J Bioenerg Biomembr 1996; 28:163-9. [PMID: 9132415 DOI: 10.1007/bf02110647] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mitochondrial channel VDAC is presumed to fold as a beta-barrel although the number and identity of transmembrane beta-strands in the protein are controversial. Previously, a novel multiple alignment algorithm called the Gibbs sampler was used to detect a residue-frequency motif in sequences of bacterial outer-membrane proteins that corresponds to transmembrane beta-strands in bacterial porins of known structure (Neuwald et al., 1995, Protein Science, 4, 1618. In the present study, this bacterial motif has been used to screen sets of mitochondrial membrane protein sequences, with matches occurring in only two classes of proteins: VDACs and the outer-membrane protein import pore (1SP42, M0M38). These results suggest a structural (and perhaps evolutionary) relatedness between the bacterial and mitochondrial pore proteins, with the mitochondrial subsequences that match the bacterial motif corresponding to transmembrane beta-strands as in the porins.
Collapse
Affiliation(s)
- C A Mannella
- The Wadsworth Center, Empire State Plaza, The University at Albany, SUNY, Albany, New York 12201-0509, USA
| | | | | |
Collapse
|
68
|
Song J, Colombini M. Indications of a common folding pattern for VDAC channels from all sources. J Bioenerg Biomembr 1996; 28:153-61. [PMID: 9132414 DOI: 10.1007/bf02110646] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous research on the mitochondrial channel VDAC from the yeast S. cerevisiae had identified protein strands forming the wall of VDAC's aqueous pore. Here we report the results of analyzing the primary sequences of VDAC from various sources to see if the transmembrane folding pattern identified from this yeast is conserved for VDAC of different species. We analyzed the primary sequences of VDAC from higher plants, fungi, invertebrates, and vertebrates and found that all have a very similar "beta-pattern" profile with 12-15 peaks indicating potential sided beta strands that are candidates for protein strands forming the wall of the aqueous pore. All these VDAC sequences can be put into the 13 transmembrane strand folding pattern previously identified for yeast VDAC. These folding patterns agree with available experimental data: both electrophysiological and protease digestion data. Although the primary sequences of VDAC from very diverse organisms show low homology, sequence similarity in the proposed corresponding 13 transmembrane strands is substantial. Competing proposals utilizing 16 transmembrane beta strands are in conflict with electrophysiological experimental observations and violate the constraints on such strands, such as no charged amino acids facing the phospholipid membrane and sufficient number of residues to span the membrane.
Collapse
Affiliation(s)
- J Song
- Laboratories of Cell Biology, Department of Zoology, University of Maryland, College Park 20742, USA
| | | |
Collapse
|
69
|
Affiliation(s)
- C A Mannella
- The Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
70
|
Colombini M, Blachly-Dyson E, Forte M. VDAC, a channel in the outer mitochondrial membrane. ION CHANNELS 1996; 4:169-202. [PMID: 8744209 DOI: 10.1007/978-1-4899-1775-1_5] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- M Colombini
- Department of Zoology, University of Maryland, College Park 20742, USA
| | | | | |
Collapse
|
71
|
Stanley S, Dias JA, D'Arcangelis D, Mannella CA. Peptide-specific antibodies as probes of the topography of the voltage-gated channel in the mitochondrial outer membrane of Neurospora crassa. J Biol Chem 1995; 270:16694-700. [PMID: 7542652 DOI: 10.1074/jbc.270.28.16694] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The voltage-dependent anion-selective channel (VDAC) in mitochondrial outer membranes is formed by a polypeptide (M(r) 31,000) coded by a nuclear gene whose cDNA sequence is known for several organisms. Antibodies have been raised against synthetic peptides corresponding to four different regions in the predicted sequence of the VDAC polypeptide of the fungus Neurospora crassa (residues 1-20, amino terminus; 195-210, 251-268, and 272-283, carboxyl terminus). Specificity of the antibodies has been characterized in terms of binding to peptides or fungal mitochondria on microtiter plates and binding to mitochondrial proteins of several species in Western blots. Reactivity of three of the four antibodies with fungal mitochondria in suspension increases with lysis of outer membranes, indicating that the respective epitopes (including those near the amino and carboxyl termini) are exposed on the surface of the outer membrane that faces inside the mitochondrion. Preincubation of mitochondria with a polyanion that modulates VDAC voltage dependence strongly inhibits binding of the antibody against residues 251-268, whose epitopes are on the outer mitochondrial surface.
Collapse
Affiliation(s)
- S Stanley
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
72
|
Zizi M, Thomas L, Blachly-Dyson E, Forte M, Colombini M. Oriented channel insertion reveals the motion of a transmembrane beta strand during voltage gating of VDAC. J Membr Biol 1995; 144:121-9. [PMID: 7541083 DOI: 10.1007/bf00232798] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Yeast VDAC channels (isolated from the mitochondrial outer membrane) form large aqueous pores whose walls are believed to consist of 1 alpha helix and 12 beta strands. Each channel has two voltage-gating processes: one closes the channels at positive potentials, the other at negative. When VDAC is reconstituted into phospholipid (soybean) membranes, the two gating processes have virtually the same steepness of voltage dependence and the same midpoint voltage. Substituting lysine for glutamate at either end of one putative beta strand (E145K or E152K) made the channels behave asymmetrically, increasing the voltage dependence of one gating process but not the other. The asymmetry was the same whether 1 or 100 channels were in the membrane, indicating oriented channel insertion. However, the direction of insertion varied from membrane to membrane, indicating that the insertion of the first channel was random and subsequent insertions were directed by the previously inserted channel(s). This raises the prospect of an auto-directed insertion with possible implications to protein targeting in cells. Each of the mutations affected a different gating process because the double mutant increased voltage dependence of both processes. Thus this strand may slide through the membrane in one direction or the other depending on the gating process. We propose that the model of folding for VDAC be altered to move this strand into the sensor region of the protein where it may act as a tether and guide/restrict the motion of the sensor.
Collapse
Affiliation(s)
- M Zizi
- Department of Zoology, University of Maryland, College Park 20742, USA
| | | | | | | | | |
Collapse
|
73
|
Konstantinova SA, Mannella CA, Skulachev VP, Zorov DB. Immunoelectron microscopic study of the distribution of porin on outer membranes of rat heart mitochondria. J Bioenerg Biomembr 1995; 27:93-9. [PMID: 7543088 DOI: 10.1007/bf02110336] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution of porin on the outer membranes of rat heart mitochondria has been studied by means of immunogold labelling with antibodies to the N-terminal part of the human protein. It was found that only a minority of isolated, unfixed mitochondria are labelled by these antibodies, with the gold particles frequently organized in threads or bands. Extensive immunogold labelling is frequently observed on regions of outer membranes stripped away from mitochondria and on regions separating two mitochondrial compartments whose cristae display different configurations (possibly representing two mitoplasts covered by a common outer membrane). Also, pairs of connected mitochondria are sometimes heavily labelled in the "neck" regions, which may represent the junctions involved in electrical communication between mitochondria in cardiac tissue.
Collapse
Affiliation(s)
- S A Konstantinova
- Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | |
Collapse
|
74
|
Krämer R. Functional principles of solute transport systems: concepts and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:1-34. [PMID: 7511415 DOI: 10.1016/0005-2728(94)90189-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Krämer
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany
| |
Collapse
|
75
|
Colombini M. Chapter 4 Anion Channels in the Mitochondrial Outer Membrane. CURRENT TOPICS IN MEMBRANES 1994. [DOI: 10.1016/s0070-2161(08)60819-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
76
|
Pottosin II. One of the chloroplast envelope ion channels is probably related to the mitochondrial VDAC. FEBS Lett 1993; 330:211-4. [PMID: 7689985 DOI: 10.1016/0014-5793(93)80275-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The voltage dependence of large conductance channels in the intact chloroplast envelope of Nitellopsis obtusa was examined using the patch-clamp technique. The channel switched to the lower conducting substates with amplitudes of around 45 and 20% of that in the open state when potentials larger than 30 mV were applied. The steepness of the voltage dependence approximately corresponds to 4 elementary charges being transferred across the entire voltage drop to close the channel both at positive and negative potentials. The transition to the closed substates could also be induced by König's polyanion, a well known modulator of the mitochondrial outer membrane channel.
Collapse
Affiliation(s)
- I I Pottosin
- Laboratory of Membrane Biophysics, Russian Academy of Sciences, Pushchino Moscow Region
| |
Collapse
|
77
|
Zambrowicz EB, Colombini M. Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior. Biophys J 1993; 65:1093-100. [PMID: 7694668 PMCID: PMC1225826 DOI: 10.1016/s0006-3495(93)81148-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123-135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations.
Collapse
Affiliation(s)
- E B Zambrowicz
- Department of Zoology, University of Maryland at College Park 20742
| | | |
Collapse
|
78
|
Thomas L, Blachly-Dyson E, Colombini M, Forte M. Mapping of residues forming the voltage sensor of the voltage-dependent anion-selective channel. Proc Natl Acad Sci U S A 1993; 90:5446-9. [PMID: 7685903 PMCID: PMC46737 DOI: 10.1073/pnas.90.12.5446] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependence and substitutions that decreased positive charge decreased voltage dependence by an appropriate amount. In contrast to the plasma membrane K+ and Na+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.
Collapse
Affiliation(s)
- L Thomas
- Department of Zoology, University of Maryland, College Park 20742
| | | | | | | |
Collapse
|
79
|
Sorgato MC, Moran O. Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit Rev Biochem Mol Biol 1993; 28:127-71. [PMID: 7683593 DOI: 10.3109/10409239309086793] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid diffusion of hydrophilic molecules across the outer membrane of mitochondria has been related to the presence of a protein of 29 to 37 kDa, called voltage-dependent anion channel (VDAC), able to generate large aqueous pores when integrated in planar lipid bilayers. Functional properties of VDAC from different origins appear highly conserved in artificial membranes: at low transmembrane potentials, the channel is in a highly conducting state, but a raise of the potential (both positive and negative) reduces drastically the current and changes the ionic selectivity from slightly anionic to cationic. It has thus been suggested that VDAC is not a mere molecular sieve but that it may control mitochondrial physiology by restricting the access of metabolites of different valence in response to voltage and/or by interacting with a soluble protein of the intermembrane space. The latest application of the patch clamp and tip-dip techniques, however, has indicated both a different electric behavior of the outer membrane and that other proteins may play a role in the permeation of molecules. Biochemical studies, use of site-directed mutants, and electron microscopy of two-dimensional crystal arrays of VDAC have contributed to propose a monomeric beta barrel as the structural model of the channel. An important insight into the physiology of the inner membrane of mammalian mitochondria has come from the direct observation of the membrane with the patch clamp. A slightly anionic, voltage-dependent conductance of 107 pS and one of 9.7 pS, K(+)-selective and ATP-sensitive, are the best characterized at the single channel level. Under certain conditions, however, the inner membrane can also show unselective nS peak transitions, possibly arising from a cooperative assembly of multiple substrates.
Collapse
Affiliation(s)
- M C Sorgato
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | |
Collapse
|
80
|
Blachly-Dyson E, Zambronicz E, Yu W, Adams V, McCabe E, Adelman J, Colombini M, Forte M. Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53930-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
81
|
Preston RR, Saimi Y, Martinac B, Kung C. Genetic analysis of ion channels of prokaryotes and lower eukaryotes. Curr Opin Genet Dev 1992; 2:780-4. [PMID: 1281029 DOI: 10.1016/s0959-437x(05)80139-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R R Preston
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|