51
|
Manzini MC, Perez KR, Riske KA, Bozelli JC, Santos TL, da Silva MA, Saraiva GK, Politi MJ, Valente AP, Almeida FC, Chaimovich H, Rodrigues MA, Bemquerer MP, Schreier S, Cuccovia IM. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1985-99. [DOI: 10.1016/j.bbamem.2014.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/21/2014] [Accepted: 04/05/2014] [Indexed: 02/06/2023]
|
52
|
Koller D, Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2250-9. [PMID: 24853655 DOI: 10.1016/j.bbamem.2014.05.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023]
Abstract
Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in pathogens being resistant to antibiotics. Despite the wealth of information compelling structure-function relationships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitumor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature, which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature, but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| |
Collapse
|
53
|
Wang KF, Nagarajan R, Camesano TA. Antimicrobial peptide alamethicin insertion into lipid bilayer: A QCM-D exploration. Colloids Surf B Biointerfaces 2014; 116:472-81. [DOI: 10.1016/j.colsurfb.2014.01.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 11/30/2022]
|
54
|
Ashrafuzzaman M, Tseng CY, Tuszynski JA. Regulation of channel function due to physical energetic coupling with a lipid bilayer. Biochem Biophys Res Commun 2014; 445:463-8. [PMID: 24530910 DOI: 10.1016/j.bbrc.2014.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 12/12/2022]
Abstract
Regulation of membrane protein functions due to hydrophobic coupling with a lipid bilayer has been investigated. An energy formula describing interactions between lipid bilayer and integral ion channels with different structures, which is based on the screened Coulomb interaction approximation, has been developed. Here the interaction energy is represented as being due to charge-based interactions between channel and lipid bilayer. The hydrophobic bilayer thickness channel length mismatch is found to induce channel destabilization exponentially while negative lipid curvature linearly. Experimental parameters related to channel dynamics are consistent with theoretical predictions. To measure comparable energy parameters directly in the system and to elucidate the mechanism at an atomistic level we performed molecular dynamics (MD) simulations of the ion channel forming peptide-lipid complexes. MD simulations indicate that peptides and lipids experience electrostatic and van der Waals interactions for short period of time when found within each other's proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides (in ion channel) and lipids (in lipid bilayer) due to mainly their charge properties. The results of in silico MD studies taken together with experimental observable parameters and theoretical energetic predictions suggest that the peptides induce ion channels inside lipid membranes due to peptide-lipid physical interactions. This study provides a new insight helping better understand of the underlying mechanisms of membrane protein functions in cell membrane leading to important biological implications.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - C-Y Tseng
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - J A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Canada; Department of Physics, University of Alberta, Edmonton, Canada
| |
Collapse
|
55
|
Zhang Y, Liu Y, Sun Y, Liu Q, Wang X, Li Z, Hao J. In vitro synergistic activities of antimicrobial peptide brevinin-2CE with five kinds of antibiotics against multidrug-resistant clinical isolates. Curr Microbiol 2014; 68:685-92. [PMID: 24474334 DOI: 10.1007/s00284-014-0529-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/02/2013] [Indexed: 11/25/2022]
Abstract
Antimicrobial peptides are the promising candidates for withstanding multidrug-resistant bacteria (MDRB) which were caused by the misuse and extensive use of antibiotics. In this research, in vitro activities of one antimicrobial cationic peptide, brevinin-2CE alone and in combination with five kinds of antibiotics were assessed against clinical isolates of extended-spectrum β-lactamase-producing Escherichia coli and methicillin-resistant Staphylococcus aureus. The results showed that most of the combination groups had synergistic effects. Also, it was obvious that brevinin-2CE had more rapid and severe action on the tested MDRBs which demonstrated that brevinin-2CE and the antibiotics had different antimicrobial mechanisms. Thus, it was presumed that the antimicrobial peptides destroyed the bacterial cells via pore formation mechanisms which lead to the increasing of membrane permeability; and then the other compounds like antibiotics might enter into the cells and accomplish the antimicrobial activities more rapidly and efficiently.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
56
|
Sun TL, Sun Y, Lee CC, Huang HW. Membrane permeability of hydrocarbon-cross-linked peptides. Biophys J 2013; 104:1923-32. [PMID: 23663835 DOI: 10.1016/j.bpj.2013.03.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 11/24/2022] Open
Abstract
Schafmeister, Po, and Verdine (another study) introduced a method using a hydrocarbon linker (staple) to stabilize a peptide in a helical configuration. One intended goal of this scheme is to facilitate the delivery of peptide drugs into target cells. Here, we investigate whether stapled peptides are intrinsically membrane permeable, by performing a case study on a stapled 12-mer peptide named NYAD-1. We found that the native peptide CAI (an HIV-1 inhibitor) does not bind to lipid bilayers, however NYAD-1 indeed permeates through lipid bilayers even at low solution concentrations. To understand the reason for the membrane permeability, we investigated the physical properties of NYAD-1 as a function of bound peptide/lipid molar ratio P/L. We found that NYAD-1 spontaneously binds to a lipid bilayer. At low P/L, the peptide primarily binds on the polar-apolar interface with its helical axis parallel to the bilayer, which has the effect of stretching the membrane area and thinning the membrane. The membrane thinning reaches its maximum at P/L ∼1/15-1/12 in DOPC bilayers. Additional bound peptides have little thinning effect and their helical axes are normal to the plane of bilayers. Thus, the stapled peptide has a membrane interaction behavior similar to helical antimicrobial peptides, such as magainin and melittin. We emphasize that not all peptides that bind to lipid bilayers in the α-helical form behave this way.
Collapse
Affiliation(s)
- Tzu-Lin Sun
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | | | | | | |
Collapse
|
57
|
Gee ML, Burton M, Grevis-James A, Hossain MA, McArthur S, Palombo EA, Wade JD, Clayton AHA. Imaging the action of antimicrobial peptides on living bacterial cells. Sci Rep 2013; 3:1557. [PMID: 23532056 PMCID: PMC3609022 DOI: 10.1038/srep01557] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 03/06/2013] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems.
Collapse
Affiliation(s)
- Michelle L Gee
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Polak A, Bonhenry D, Dehez F, Kramar P, Miklavčič D, Tarek M. On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations. J Membr Biol 2013; 246:843-50. [PMID: 23780415 DOI: 10.1007/s00232-013-9570-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
Electroporation relates to the cascade of events that follows the application of high electric fields and that leads to cell membrane permeabilization. Despite a wide range of applications, little is known about the electroporation threshold, which varies with membrane lipid composition. Here, using molecular dynamics simulations, we studied the response of dipalmitoyl-phosphatidylcholine, diphytanoyl-phosphocholine-ester and diphytanoyl-phosphocholine-ether lipid bilayers to an applied electric field. Comparing between lipids with acyl chains and methyl branched chains and between lipids with ether and ester linkages, which change drastically the membrane dipole potential, we found that in both cases the electroporation threshold differed substantially. We show, for the first time, that the electroporation threshold of a lipid bilayer depends not only on the "electrical" properties of the membrane, i.e., its dipole potential, but also on the properties of its component hydrophobic tails.
Collapse
Affiliation(s)
- Andraž Polak
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000, Ljubljana, Slovenia,
| | | | | | | | | | | |
Collapse
|
59
|
Ghosh SK, Salgin B, Pontoni D, Reusch T, Keil P, Vogel D, Rohwerder M, Reichert H, Salditt T. Structure and Volta potential of lipid multilayers: effect of X-ray irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:815-824. [PMID: 23231362 DOI: 10.1021/la304139w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of hard X-ray radiation on the structure and electrostatics of solid-supported lipid multilayer membranes is investigated using a scanning Kelvin probe (SKP) integrated with a high-energy synchrotron beamline to enable in situ measurements of the membranes' local Volta potential (V(p)) during X-ray structural characterization. The undulator radiation employed does not induce any detectable structural damage, but the V(p) of both bare and lipid-modified substrates is found to undergo strong radiation-induced shifts, almost immediately after X-ray exposure. Sample regions that are macroscopically distant (~cm) from the irradiated region experience an exponential V(p) growth with a characteristic time constant of several minutes. The V(p) variations occurring upon periodic on/off X-ray beam switching are fully or partially reversible depending on the location and time-scale of the SKP measurement. The general relevance of these findings for synchrotron-based characterization of biomolecular thin films is critically reviewed.
Collapse
Affiliation(s)
- S K Ghosh
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Lee CC, Sun Y, Huang H. How type II diabetes-related islet amyloid polypeptide damages lipid bilayers. Biophys J 2012; 102:1059-68. [PMID: 22404928 PMCID: PMC3296043 DOI: 10.1016/j.bpj.2012.01.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022] Open
Abstract
A leading hypothesis for the decimation of insulin-producing β-cells in type 2 diabetes attributes the cause to islet amyloid polypeptide (IAPP) for its deleterious effects on the cell membranes. This idea has produced extensive investigations on human IAPP (hIAPP) and its interactions with lipid bilayers. However, it is still difficult to correlate the peptide-lipid interactions with its effects on islet cells in culture. The hIAPP fibrils have been shown to interact with lipids and damage lipid bilayers, but appear to have no effect on islet cells in culture. Thus, a modified amyloid hypothesis assumes that the toxicity is caused by hIAPP oligomers, which are not preamyloid fibrils or protofibrils. However, so far such oligomers have not been isolated or identified. The hIAPP monomers also bind to lipid bilayers, but the mode of interaction is not clear. Here, we performed two types of experiments that, to our knowledge, have not been done before. We used x-ray diffraction, in conjunction with circular dichroism measurement, to reveal the location of the peptide bound to a lipid bilayer. We also investigated the effects of hIAPP on giant unilamellar vesicles at various peptide concentrations. We obtained the following qualitative results. Monomeric hIAPP binds within the headgroup region and expands the membrane area of a lipid bilayer. At low concentrations, such binding causes no leakage or damage to the lipid bilayer. At high concentrations, the bound peptides transform to β-aggregates. The aggregates exit the headgroup region and bind to the surface of lipid bilayers. The damage by the surface bound β-aggregates depends on the aggregation size. The initial aggregation extracts lipid molecules, which probably causes ion permeation, but no molecular leakage. However, the initial β-aggregates serve as the seed for larger fibrils, in the manner of the Jarrett-Lansbury seeded-polymerization model, that eventually disintegrate lipid bilayers by electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
| | | | - Huey W. Huang
- Department of Physics & Astronomy, Rice University, Houston, Texas
| |
Collapse
|
61
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
62
|
Ghosh SK, Aeffner S, Salditt T. Effect of PIP2 on Bilayer Structure and Phase Behavior of DOPC: An X-ray Scattering Study. Chemphyschem 2011; 12:2633-40. [DOI: 10.1002/cphc.201100154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 06/16/2011] [Indexed: 01/16/2023]
|
63
|
Qian S, Heller WT. Peptide-induced asymmetric distribution of charged lipids in a vesicle bilayer revealed by small-angle neutron scattering. J Phys Chem B 2011; 115:9831-7. [PMID: 21751797 DOI: 10.1021/jp204045t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellular membranes are complex mixtures of lipids, proteins, and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. The membrane structure results from the complex interplay between the wide varieties of molecules present. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than it is for alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state. The results suggest that these membrane-active peptides may have a secondary stressful effect on target cells at low concentrations that results from a disruption of the lipid distribution between the inner and outer leaflets of the bilayer that is independent of the formation of transmembrane pores.
Collapse
Affiliation(s)
- Shuo Qian
- Center for Structural Molecular Biology, Chemical Sciences and Neutron Scattering Science Divisions, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | |
Collapse
|
64
|
Kučerka N, Nieh MP, Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2761-71. [PMID: 21819968 DOI: 10.1016/j.bbamem.2011.07.022] [Citation(s) in RCA: 761] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 10/18/2022]
Abstract
The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.
Collapse
Affiliation(s)
- Norbert Kučerka
- Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario, Canada.
| | | | | |
Collapse
|
65
|
Schneggenburger PE, Beerlink A, Weinhausen B, Salditt T, Diederichsen U. Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:417-36. [PMID: 21181143 PMCID: PMC3070074 DOI: 10.1007/s00249-010-0645-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 11/18/2022]
Abstract
Studying membrane active peptides or protein fragments within the lipid bilayer environment is particularly challenging in the case of synthetically modified, labeled, artificial, or recently discovered native structures. For such samples the localization and orientation of the molecular species or probe within the lipid bilayer environment is the focus of research prior to an evaluation of their dynamic or mechanistic behavior. X-ray scattering is a powerful method to study peptide/lipid interactions in the fluid, fully hydrated state of a lipid bilayer. For one, the lipid response can be revealed by observing membrane thickening and thinning as well as packing in the membrane plane; at the same time, the distinct positions of peptide moieties within lipid membranes can be elucidated at resolutions of up to several angstroms by applying heavy-atom labeling techniques. In this study, we describe a generally applicable X-ray scattering approach that provides robust and quantitative information about peptide insertion and localization as well as peptide/lipid interaction within highly oriented, hydrated multilamellar membrane stacks. To this end, we have studied an artificial, designed β-helical peptide motif in its homodimeric and hairpin variants adopting different states of oligomerization. These peptide lipid complexes were analyzed by grazing incidence diffraction (GID) to monitor changes in the lateral lipid packing and ordering. In addition, we have applied anomalous reflectivity using synchrotron radiation as well as in-house X-ray reflectivity in combination with iodine-labeling in order to determine the electron density distribution ρ(z) along the membrane normal (z axis), and thereby reveal the hydrophobic mismatch situation as well as the position of certain amino acid side chains within the lipid bilayer. In the case of multiple labeling, the latter technique is not only applicable to demonstrate the peptide's reconstitution but also to generate evidence about the relative peptide orientation with respect to the lipid bilayer.
Collapse
Affiliation(s)
- Philipp E. Schneggenburger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - André Beerlink
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| |
Collapse
|
66
|
Cheng JTJ, Hale JD, Elliott M, Hancock REW, Straus SK. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:622-33. [PMID: 21144817 DOI: 10.1016/j.bbamem.2010.11.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/08/2010] [Accepted: 11/20/2010] [Indexed: 11/29/2022]
Abstract
For cationic antimicrobial peptides to become useful therapeutic agents, it is important to understand their mechanism of action. To obtain high resolution data, this involves studying the structure and membrane interaction of these peptides in tractable model bacterial membranes rather than directly utilizing more complex bacterial surfaces. A number of lipid mixtures have been used as bacterial mimetics, including a range of lipid headgroups, and different ratios of neutral to negatively charged headgroups. Here we examine how the structure and membrane interaction of aurein 2.2 and some of its variants depend on the choice of lipids, and how these models correlate with activity data in intact bacteria (MICs, membrane depolarization). Specifically, we investigated the structure and membrane interaction of aurein 2.2 and aurein 2.3 in 1:1 cardiolipin/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (CL/POPG) (mol/mol), as an alternative to 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/POPG and a potential model for Gram positive bacteria such as S. aureus. The structure and membrane interaction of aurein 2.2, aurein 2.3, and five variants of aurein 2.2 were also investigated in 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)/POPG (mol/mol) lipids as a possible model for other Gram positive bacteria, such as Bacillus cereus. Solution circular dichroism (CD) results demonstrated that the aurein peptides adopted α-helical structure in all lipid membranes examined, but demonstrated a greater helical content in the presence of POPE/POPG membranes. Oriented CD and ³¹P NMR results showed that the aurein peptides had similar membrane insertion profiles and headgroup disordering effects on POPC/POPG and CL/POPG bilayers, but demonstrated reduced membrane insertion and decreased headgroup disordering on mixing with POPE/POPG bilayers at low peptide concentrations. Since the aurein peptides behaved very differently in POPE/POPG membrane, minimal inhibitory concentrations (MICs) of the aurein peptides in B. cereus strain C737 were determined. The MIC results indicated that all aurein peptides are significantly less active against B. cereus than against S. aureus and S. epidermidis. Overall, the data suggest that it is important to use a relevant model for bacterial membranes to gain insight into the mode of action of a given antimicrobial peptide in specific bacteria.
Collapse
Affiliation(s)
- John T J Cheng
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | | | | | | | | |
Collapse
|
67
|
Membrane lysis by gramicidin S visualized in red blood cells and giant vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2033-9. [DOI: 10.1016/j.bbamem.2010.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 12/27/2022]
|
68
|
Lipid chain branching at the iso- and anteiso-positions in complex Chlamydia membranes: a molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:323-31. [PMID: 20692231 DOI: 10.1016/j.bbamem.2010.07.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/22/2022]
Abstract
Membranes in the intracellular eubacterial parasite Chlamydia trachomatis consist of the elementary body (EB) and reticular body (RB), and contain methyl branches at the iso- and anteiso-positions for some phospholipid chains. Acyl chain branching is the focus of this study. Molecular dynamics simulations were used to study bilayers of 1-13-methylpentadecanoyl-2-palmitoyl-phosphatidylcholine (13-MpPPC), 1-14-methylpentadecanoyl-2-palmitoyl-phosphatidylcholine (14-MpPPC), and diphytanoylphosphatidylcholine (DPhPC). These three membranes were simulated at 323K and simulations of DPhPC at 298K were also performed for better comparison to existing experimental data. Two simulations of representative EB and RB membranes of C. trachomatis composed of nine different lipid components were performed at 310.15K, to accurately reflect compositions determined by experiment and physiological conditions. Based on nearly 0.5μs of simulation data, we report that branching increases average lipid surface area, area elastic moduli, and lipid axial relaxation times, while decreasing lipid chain order. Branching also has a distinct effect on electron density profiles. Due to their high cholesterol concentrations, the EB and RB membranes were found to have relatively high area elastic moduli, which may have important biological implications.
Collapse
|
69
|
Tristram-Nagle S, Kim DJ, Akhunzada N, Kucerka N, Mathai JC, Katsaras J, Zeidel M, Nagle JF. Structure and water permeability of fully hydrated diphytanoylPC. Chem Phys Lipids 2010; 163:630-7. [PMID: 20447383 DOI: 10.1016/j.chemphyslip.2010.04.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/24/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Diphytanoylphosphatidylcholine (DPhyPC) is a branched chain lipid often used for model membrane studies, including peptide/lipid interactions, ion channels and lipid rafts. This work reports results of volume measurements, water permeability measurements P(f), X-ray scattering from oriented samples, and X-ray and neutron scattering from unilamellar vesicles at T=30 degrees C. We measured the volume/lipid V(L)=1426+/-1A(3). The area/lipid was found to be 80.5+/-1.5A(2) when both X-ray and neutron data were combined with the SDP model analysis (Kucerka, N., Nagle, J.F., Sachs, J.N., Feller, S.E., Pencer, J., Jackson, A., Katsaras, J., 2008. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 95, 2356-2367); this is substantially larger than the area of DOPC which has the largest area of the common linear chain lipids. P(f) was measured to be (7.0+/-1.0)x10(-3)cm/s; this is considerably smaller than predicted by the recently proposed 3-slab model (Nagle, J.F., Mathai, J.C., Zeidel, M.L., Tristram-Nagle, S., 2008. Theory of passive permeability through lipid bilayers. J. Gen. Physiol. 131, 77-85). This disagreement can be understood if there is a diminished diffusion coefficient in the hydrocarbon core of DPhyPC and that is supported by previous molecular dynamics simulations (Shinoda, W., Mikami, M., Baba, T., Hato, M., 2004. Molecular dynamics study on the effects of chain branching on the physical properties of lipid bilayers. 2. Permeability. J. Phys. Chem. B 108, 9346-9356). While the DPhyPC head-head thickness (D(HH)=36.4A), and Hamaker parameter (H=4.5x10(-21)J) were similar to the linear chain lipid DOPC, the bending modulus (K(C)=5.2+/-0.5x10(-21)J) was 30% smaller. Our results suggest that, from the biophysical perspective, DPhyPC belongs to a different family of lipids than phosphatidylcholines that have linear chain hydrocarbon chains.
Collapse
Affiliation(s)
- Stephanie Tristram-Nagle
- Biological Physics Group, Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15:2377-92. [PMID: 19601838 DOI: 10.2174/138161209788682325] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Antimicrobial peptides (AMPs) are multi-functional peptides whose fundamental biological role in vivo has been proposed to be the elimination of pathogenic microorganisms, including Gram-positive and -negative bacteria, fungi, and viruses. Genes encoding these peptides are expressed in a variety of cells in the host, including circulating phagocytic cells and mucosal epithelial cells, demonstrating a wide range of utility in the innate immune system. Expression of these genes is tightly regulated; they are induced by pathogens and cytokines as part of the host defense response, and they can be suppressed by bacterial virulence factors and environmental factors which can lead to increased susceptibility to infection. New research has also cast light on alternative functionalities, including immunomodulatory activities, which are related to their unique structural characteristics. These peptides represent not only an important component of innate host defense against microbial colonization and a link between innate and adaptive immunity, but also form a foundation for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Gill Diamond
- Department of Oral Biology, UMDNJ-New Jersey Dental School, Newark, NJ 07101, USA.
| | | | | | | |
Collapse
|
71
|
Schneggenburger PE, Beerlink A, Worbs B, Salditt T, Diederichsen U. A Novel Heavy-Atom Label for Side-Specific Peptide Iodination: Synthesis, Membrane Incorporation and X-ray Reflectivity. Chemphyschem 2009; 10:1567-76. [DOI: 10.1002/cphc.200900241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
72
|
Kim C, Spano J, Park EK, Wi S. Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1482-96. [PMID: 19409370 DOI: 10.1016/j.bbamem.2009.04.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/22/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
Abstract
Dynamic structures of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers induced in oriented lipid membranes, which are interacting with membrane-acting antimicrobial peptides (AMPs), magainin-2 and aurein-3.3, were explored by 31P and 2H solid-state NMR (ssNMR) spectroscopy. Various types of phospholipid systems, such as POPC-d31, POPC-d31/POPG, and POPC-d31/cholesterol, were investigated to understand the membrane disruption mechanisms of magainin-2 and aurein-3.3 peptides at various peptide-to-lipid (P:L) ratios. The experimental lineshapes of anisotropic 31P and 2H ssNMR spectra measured on these peptide-lipid systems were simulated reasonably well by assuming the presence of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers, in membranes. Furthermore, the observed decrease in the anisotropic frequency span of either 31P or 2H ssNMR spectra of oriented lipid bilayers, particularly when anionic POPG lipids are interacting with AMPs at high P:L ratios, can directly be explained by a thinned membrane surface model with fast lateral diffusive motions of lipids. The spectral analysis protocol we developed enables extraction of the lateral diffusion coefficients of lipids distributed on the curved surfaces of pores and thinned bilayers on a few nanometers scale.
Collapse
Affiliation(s)
- Chul Kim
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
73
|
Huang HW. Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. Biophys J 2009; 96:3263-72. [PMID: 19383470 PMCID: PMC2718316 DOI: 10.1016/j.bpj.2009.01.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/16/2009] [Accepted: 01/23/2009] [Indexed: 11/30/2022] Open
Abstract
The lipid matrix, or the lipid bilayer, of cell membranes is a natural binding site for amphipathic molecules, including antimicrobial peptides, pore-forming proteins, and many drugs. The unique property of pore-forming antimicrobial peptides is that they exhibit a threshold concentration (called the lethal concentration or the minimum inhibitory concentration) for activity, below which no effect is seen. Without this property, antimicrobial peptides would not be effective self-defense weapons, because they would have harmed all cells at any concentration. The question is what gives rise to this unique property? This study provides a free energy description for the origin of a threshold concentration. The same free energy applied differently also explains the binding of drugs that shows no threshold concentrations. The idea is compared with theories of micellar solutions that require a large oligomer size (n 15) to achieve a threshold concentration. The elasticity of lipid bilayers makes the phenomena in membranes different. The majority of antimicrobial peptides have a large negative binding energy to the bilayer interface, but the binding causes an expansion in the membrane area, or equivalently a thinning in the membrane thickness. This elastic energy of membrane thinning elevates the energy level of interfacial binding with the peptide concentration, hence gives rise to a threshold concentration for forming pores containing as few as four peptides.
Collapse
Affiliation(s)
- Huey W. Huang
- Department of Physics and Astronomy, Rice University, Houston, Texas 77251
| |
Collapse
|
74
|
Heinrich F, Ng T, Vanderah DJ, Shekhar P, Mihailescu M, Nanda H, Lösche M. A new lipid anchor for sparsely tethered bilayer lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:4219-29. [PMID: 19714901 DOI: 10.1021/la8033275] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mixed self-assembled monolayers (SAMs) of beta-mercaptoethanol and the new synthetic lipid 1,2-dipalmityl-3-[w-mercaptonona(ethylene oxide)] glycerol (FC 16) were investigated for their ability to form sparsely tethered bilayer lipid membranes (stBLMs) completed with various phospholipids. We investigated the structural and functional properties of FC16-based stBLMs and compared these to stBLMs prepared using a previously characterized synthetic lipid, 1,2-dimyristyl-3-[omega-mercaptohexa(ethylene oxide)] glycerol (WC14). FC16-based stBLMs show increased resistivity to ion transfer and an increase in the submembrane space of approximately 0.5 nm. Importantly, FC16-based stBLMs formed well-defined, complete bilayers with charged phospholipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG). In these, POPG incorporates into the outer monolayer leaflet in the same ratio as in the immersion solution but is excluded from the inner leaflet. In all cases that we have investigated thus far, the area densities of the lipids within the bilayers were on average close to those in free bilayer membranes. For charged phospholipids, FC16 appears to provide a distinct advantage over WC14 for the formation of well-defined stBLMs.
Collapse
Affiliation(s)
- Frank Heinrich
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Sun Y, Hung WC, Chen FY, Lee CC, Huang HW. Interaction of tea catechin (-)-epigallocatechin gallate with lipid bilayers. Biophys J 2009; 96:1026-35. [PMID: 19186140 DOI: 10.1016/j.bpj.2008.11.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022] Open
Abstract
A major component of green tea extracts, catechin (-)-Epigallocatechin gallate (EGCg), has been reported to be biologically active and interacting with membranes. A recent study reported drastic effects of EGCg on giant unilamellar vesicles (GUVs). In particular, EGCg above 30 microM caused GUVs to burst. Here we investigated the effect of EGCg on single GUVs at lower concentrations, believing that its molecular mechanism would be more clearly revealed. We used the micropipette aspiration method, by which the changes of surface area and volume of a GUV could be measured as a result of interaction with EGCg. We also used x-ray diffraction to measure the membrane thinning effect by EGCg. To understand the property of EGCg, we compared its effect with other membrane-active molecules, including pore-forming peptide magainin, the turmeric (curry) extract curcumin, and detergent Triton X100. We found the effect of EGCg somewhat unique. Although EGCg readily binds to lipid bilayers, its membrane area expansion effect is one order of magnitude smaller than curcumin. EGCg also solubilizes lipid molecules from lipid bilayers without forming pores, but its effect is different from that of Triton X100.
Collapse
Affiliation(s)
- Yen Sun
- Department of Physics and Astronomy, Rice University, Houston, Texas 77251, USA
| | | | | | | | | |
Collapse
|
76
|
Domenici F, Panichelli D, Castellano AC. Alamethicin–lipid interaction studied by energy dispersive X-ray diffraction. Colloids Surf B Biointerfaces 2009; 69:216-20. [DOI: 10.1016/j.colsurfb.2008.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/30/2022]
|
77
|
Cheng JTJ, Hale JD, Elliot M, Hancock REW, Straus SK. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J 2009; 96:552-65. [PMID: 19167304 DOI: 10.1016/j.bpj.2008.10.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/09/2008] [Indexed: 12/25/2022] Open
Abstract
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an alpha-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The (31)P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC(3)5 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.
Collapse
Affiliation(s)
- John T J Cheng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
78
|
Kupisz K, Sujak A, Patyra M, Trebacz K, Gruszecki WI. Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2334-40. [DOI: 10.1016/j.bbamem.2008.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/26/2022]
|
79
|
Wi S, Kim C. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study. J Phys Chem B 2008; 112:11402-14. [PMID: 18700738 DOI: 10.1021/jp801825k] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane pores that are induced in oriented membranes by an antimicrobial peptide (AMP), protegrin-1 (PG-1), are investigated by (31)P and (2)H solid state NMR spectroscopy. We incorporated a well-studied peptide, protegrin-1 (PG-1), a beta-sheet AMP, to investigate AMP-induced dynamic supramolecular lipid assemblies at different peptide concentrations and membrane compositions. Anisotropic NMR line shapes specifying toroidal pores and thinned membranes, which are formed in membrane bilayers by the binding of AMPs, have been analyzed for the first time. Theoretical NMR line shapes of lipids distributed on the surface of toroidal pores and thinned membranes reproduce reasonably well the line shape characteristics of our experimentally measured (31)P and (2)H solid-state NMR spectra of oriented lipids binding with PG-1. The lateral diffusions of lipids are also analyzed from the motionally averaged one- and two-dimensional (31)P and (2)H solid-state NMR spectra of oriented lipids that are binding with AMPs.
Collapse
Affiliation(s)
- Sungsool Wi
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
80
|
Abstract
The pH-dependent insertion of pHLIP across membranes is proving to be a useful property for targeting acidic tissues or tumors and delivering drugs attached to its C-terminus. It also serves as a model peptide for studies of protein insertion into membranes, so further elucidation of the insertion mechanism of pHLIP and its features is desirable. We examine how the peptide perturbs a model phosphatidylcholine membrane and how it associates with the lipid bilayer using an array of fluorescence techniques, including fluorescence anisotropy measurements of TMA-DPH anchored in bilayers, quenching of pHLIP fluorescence by brominated lipids and acrylamide, and measurements of energy transfer between aromatic residues of pHLIP and TMA-DPH. When pHLIP is bound to the surface of bilayers near neutral pH, the membrane integrity is preserved whereas the elastic properties of bilayers are changed as reported by an increase of membrane viscosity. When it is inserted, there is little perturbation of the lipids. The results also suggest that pHLIP can bind to the membrane surface in a shallow or a deep mode depending on the phase state of the lipids. Using parallax analysis, the change of the penetration depth of pHLIP was estimated to be 0.4 A from the bilayer center and 2.8 A from the membrane surface after the liquid-to-gel phase transition.
Collapse
|
81
|
Abstract
Interaction of curcumin with lipid bilayers is not well understood. A recent experiment showed that curcumin significantly affected the single-channel lifetime of gramicidin in a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer without affecting its single-channel conductance. We performed two experiments to understand this result. By isothermal titration calorimetry, we measured the partition coefficient of curcumin binding to DOPC bilayers. By x-ray lamellar diffraction, we measured the thickness change of DOPC bilayers as a function of the curcumin/lipid ratio. A nonlinear membrane-thinning effect by curcumin was discovered. The gramicidin data were qualitatively interpreted by the combination of isothermal titration calorimetry and x-ray results. We show that not only does curcumin thin the lipid bilayer, it might also weaken its elasticity moduli. The result implies that curcumin may affect the function of membrane proteins by modifying the properties of the host membrane.
Collapse
|
82
|
Lohner K, Sevcsik E, Pabst G. Chapter Five Liposome-Based Biomembrane Mimetic Systems: Implications for Lipid–Peptide Interactions. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2008. [DOI: 10.1016/s1554-4516(07)06005-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
83
|
Küsel A, Khattari Z, Schneggenburger PE, Banerjee A, Salditt T, Diederichsen U. Conformation and Interaction of ad,l-Alternating Peptide with a Bilayer Membrane: X-ray Reflectivity, CD, and FTIR Spectroscopy. Chemphyschem 2007; 8:2336-43. [DOI: 10.1002/cphc.200700477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
84
|
Huang HW. Peptide-Lipid Interactions and Mechanisms of Antimicrobial Peptides. NOVARTIS FOUNDATION SYMPOSIUM 225 - GRAMICIDIN AND RELATED ION CHANNEL-FORMING PEPTIDES 2007. [DOI: 10.1002/9780470515716.ch12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
85
|
Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN. Infectious Disease: Connecting Innate Immunity to Biocidal Polymers. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2007; 57:28-64. [PMID: 18160969 PMCID: PMC2153456 DOI: 10.1016/j.mser.2007.03.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Infectious disease is a critically important global healthcare issue. In the U.S. alone there are 2 million new cases of hospital-acquired infections annually leading to 90,000 deaths and 5 billion dollars of added healthcare costs. Couple these numbers with the appearance of new antibiotic resistant bacterial strains and the increasing occurrences of community-type outbreaks, and clearly this is an important problem. Our review attempts to bridge the research areas of natural host defense peptides (HDPs), a component of the innate immune system, and biocidal cationic polymers. Recently discovered peptidomimetics and other synthetic mimics of HDPs, that can be short oligomers as well as polymeric macromolecules, provide a unique link between these two areas. An emerging class of these mimics are the facially amphiphilic polymers that aim to emulate the physicochemical properties of HDPs but take advantage of the synthetic ease of polymers. These mimics have been designed with antimicrobial activity and, importantly, selectivity that rivals natural HDPs. In addition to providing some perspective on HDPs, selective mimics, and biocidal polymers, focus is given to the arsenal of biophysical techniques available to study their mode of action and interactions with phospholipid membranes. The issue of lipid type is highlighted and the important role of negative curvature lipids is illustrated. Finally, materials applications (for instance, in the development of permanently antibacterial surfaces) are discussed as this is an important part of controlling the spread of infectious disease.
Collapse
Affiliation(s)
- Gregory J Gabriel
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003
| | | | | | | | | |
Collapse
|
86
|
van den Bogaart G, Mika JT, Krasnikov V, Poolman B. The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis. Biophys J 2007; 93:154-63. [PMID: 17434946 PMCID: PMC1914432 DOI: 10.1529/biophysj.107.106005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dual-color fluorescence-burst analysis was used to study melittin-induced leakage of macromolecules from liposomes of various lipid compositions. To perform dual-color fluorescence-burst analysis, fluorescently labeled size-marker molecules were encapsulated into liposomes, labeled with a second lipid-attached fluorophore. By correlating the fluorescence bursts, resulting from the liposomes diffusing through the detection volume of a dual-color confocal microscope, the distribution of size-marker molecules over the liposomes was determined. It was found that melittin causes leakage via two different mechanisms: 1), For liposomes composed of neutral bilayer-forming lipids, low melittin concentrations induced pore formation with the pore size depending on the melittin concentration. 2), For liposomes containing anionic and/or nonbilayer forming lipids, melittin induced fusion or aggregation of liposomes accompanied by a-specific leakage. Experiments with liposomes prepared from Escherichia coli lipid extracts and intact cells of Lactococcus lactis indicate that both mechanisms are physiologically relevant.
Collapse
Affiliation(s)
- Geert van den Bogaart
- Biochemistry Department, Groningen Biomolecular Science and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
87
|
Abstract
The condensing effect of cholesterol on phospholipid bilayers was systematically investigated for saturated and unsaturated chains, as a function of cholesterol concentration. X-ray lamellar diffraction was used to measure the phosphate-to-phosphate distances, PtP, across the bilayers. The measured PtP increases nonlinearly with the cholesterol concentration until it reaches a maximum. With further increase of cholesterol concentration, the PtP remains at the maximum level until the cholesterol content reaches the solubility limit. The data in all cases can be quantitatively explained with a simple model that cholesterol forms complexes with phospholipids in the bilayers. The phospholipid molecules complexed with cholesterol are lengthened and this lengthening effect extends into the uncomplexed phospholipids surrounding the cholesterol complexes. This long-range thickening effect is similar to the effect of gramicidin on the thickness of lipid bilayers due to hydrophobic matching.
Collapse
Affiliation(s)
- Wei-Chin Hung
- Department of Physics, Chinese Military Academy, Fengshan, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
88
|
Constantin D, Brotons G, Jarre A, Li C, Salditt T. Interaction of alamethicin pores in DMPC bilayers. Biophys J 2007; 92:3978-87. [PMID: 17369412 PMCID: PMC1868975 DOI: 10.1529/biophysj.106.101204] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the x-ray scattering signal of highly aligned multilayers of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine containing pores formed by the antimicrobial peptide alamethicin as a function of the peptide/lipid ratio. We are able to obtain information on the structure factor of the pore fluid, which then yields the interaction potential between pores in the plane of the bilayers. Aside from a hard core with a radius corresponding to the geometric radius of the pore, we find a repulsive lipid-mediated interaction with a range of approximately 30 A and a contact value of 2.4 k(B)T. This result is in qualitative agreement with recent theoretical models.
Collapse
|
89
|
Pan YL, Cheng JTJ, Hale J, Pan J, Hancock REW, Straus SK. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J 2007; 92:2854-64. [PMID: 17259271 PMCID: PMC1831713 DOI: 10.1529/biophysj.106.097238] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The structure and membrane interaction of the antimicrobial peptide aurein 2.2 (GLFDIVKKVVGALGSL-CONH(2)), aurein 2.3 (GLFDIVKKVVGAIGSL-CONH(2)), both from Litoria aurea, and a carboxy C-terminal analog of aurein 2.3 (GLFDIVKKVVGAIGSL-COOH) were studied to determine which features of this class of peptides are key to activity. Circular dichroism and solution-state NMR data indicate that all three peptides adopt an alpha-helical structure in the presence of trifluoroethanol or lipids such as 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a 1:1 mixture of DMPC and 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG). Oriented circular dichroism was used to determine the orientation of the peptides in lipid bilayers over a range of concentrations (peptide/lipid molar ratios (P/L) = 1:15-1:120) in DMPC and 1:1 DMPC/DMPG, in the liquid crystalline state. The results demonstrate that in DMPC all three peptides are surface adsorbed over a range of low peptide concentrations but insert into the bilayers at high peptide concentrations. This finding is corroborated by (31)P-solid-state NMR data of the three peptides in DMPC, which shows that at high peptide concentrations the peptides perturb the membrane. Oriented circular dichroism data of the aurein peptides in 1:1 DMPC/DMPG, on the other hand, show that the peptides with amidated C-termini readily insert into the membrane bilayers over the concentration range studied (P/L = 1:15-1:120), whereas the aurein 2.3 peptide with a carboxy C-terminus inserts at a threshold concentration of P/L* between 1:80 and 1:120. Overall, the data presented here suggest that all three peptides studied interact with phosphatidylcholine membranes in a manner which is similar to aurein 1.2 and citropin 1.1, as reported in the literature, with no correlation to the reported activity. On the other hand, both aurein 2.2 and aurein 2.3 behave similarly in phosphatidylcholine/phosphatidylglycerol (PC/PG) membranes, whereas aurein 2.3-COOH inserts less readily. As this does not correlate with reported activities, minimal inhibitory concentrations of the three peptides against Staphylococcus aureus (strain C622, ATCC 25923) and Staphylococcus epidermidis (strain C621--clinical isolate) were determined. The correlation between structure, membrane interaction, and activity are discussed in light of these results.
Collapse
Affiliation(s)
- Yeang-Ling Pan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | | | | | | | | | | |
Collapse
|
90
|
Khattari Z, Arbely E, Arkin IT, Salditt T. Viral ion channel proteins in model membranes: a comparative study by X-ray reflectivity. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2006; 36:45-55. [PMID: 17019591 PMCID: PMC7080166 DOI: 10.1007/s00249-006-0099-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/09/2006] [Accepted: 08/25/2006] [Indexed: 11/24/2022]
Abstract
We have investigated the effect of the transmembrane domain of three viral ion channel proteins on the lipid bilayer structure by X-ray reflectivity and scattering from oriented planar bilayers. The proteins show a similar effect on the lipid bilayer structural parameters: an increase in the lipid bilayer hydrophobic core, a decrease in the amplitude of the vertical density profile and a systematic change in the ordering of the acyl chains as a function of protein-to-lipid ratio. These results are discussed in a comparative view.
Collapse
Affiliation(s)
- Z. Khattari
- Institut für Röntgenphysik, Universität Göttingen Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - E. Arbely
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat-Ram Jerusalem, 91904 Israel
| | - I. T. Arkin
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat-Ram Jerusalem, 91904 Israel
| | - T. Salditt
- Institut für Röntgenphysik, Universität Göttingen Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
91
|
Shinoda K, Shinoda W, Mikami M. Molecular dynamics simulation of an archaeal lipid bilayer with sodium chloride. Phys Chem Chem Phys 2006; 9:643-50. [PMID: 17242746 DOI: 10.1039/b611543h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have performed molecular dynamics simulations of a bilayer formed by the synthetic archaeal lipid, diphytanyl phosphatidylcholine, in NaCl electrolyte solution at four different concentrations (0-4 M) to investigate how structural and dynamic properties of the model archaeal membrane are changed due to the ionic strength of the solution. The archaeal lipid bilayer shows minor changes in their physical properties, indicating the unusual high stability of the membrane against salt, though small reductions of molecular area and lateral diffusion of the lipid are detected at the highest electrolyte concentration of 4 M. Sodium ions penetrate to the ether-rich region, where the ions are likely bound to the ether oxygen in the sn-1 chain rather than to that in the sn-2 chain. The observed salt bridges among two or three neighboring lipids account for the small reduction in the molecular area. The bound ions together with the counter (chloride) ions give rise to a diffusive electric double layer; as a result, the membrane dipole potential is slightly increased with increasing NaCl concentration.
Collapse
Affiliation(s)
- Keiko Shinoda
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Japan
| | | | | |
Collapse
|
92
|
Khattari Z, Brotons G, Akkawi M, Arbely E, Arkin IT, Salditt T. SARS coronavirus E protein in phospholipid bilayers: an x-ray study. Biophys J 2006; 90:2038-50. [PMID: 16361349 PMCID: PMC1386782 DOI: 10.1529/biophysj.105.072892] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/21/2005] [Indexed: 11/18/2022] Open
Abstract
We investigated the structure of the hydrophobic domain of the severe acute respiratory syndrome E protein in model lipid membranes by x-ray reflectivity and x-ray scattering. In particular, we used x-ray reflectivity to study the location of an iodine-labeled residue within the lipid bilayer. The label imposes spatial constraints on the protein topology. Experimental data taken as a function of protein/lipid ratio P/L and different swelling states support the hairpin conformation of severe acute respiratory syndrome E protein reported previously. Changes in the bilayer thickness and acyl-chain ordering are presented as a function of P/L, and discussed in view of different structural models.
Collapse
Affiliation(s)
- Z Khattari
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Molecular mechanism of antimicrobial peptides: the origin of cooperativity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1292-302. [PMID: 16542637 DOI: 10.1016/j.bbamem.2006.02.001] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/29/2006] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
Based on very extensive studies on four peptides (alamethicin, melittin, magainin and protegrin), we propose a mechanism to explain the cooperativity exhibited by the activities of antimicrobial peptides, namely, a non-linear concentration dependence characterized by a threshold and a rapid rise to saturation as the concentration exceeds the threshold. We first review the structural basis of the mechanism. Experiments showed that peptide binding to lipid bilayers creates two distinct states depending on the bound-peptide to lipid ratio P/L. For P/L below a threshold P/L*, all of the peptide molecules are in the S state that has the following characteristics: (1) there are no pores in the membrane, (2) the axes of helical peptides are oriented parallel to the plane of membrane, and (3) the peptide causes membrane thinning in proportion to P/L. As P/L increases above P/L*, essentially all of the excessive peptide molecules occupy the I state that has the following characteristics: (1) transmembrane pores are detected in the membrane, (2) the axes of helical peptides are perpendicular to the plane of membrane, (3) the membrane thickness remains constant for P/L> or =P/L*. The free energy based on these two states agrees with the data quantitatively. The free energy also explains why lipids of positive curvature (lysoPC) facilitate and lipids of negative curvature (PE) inhibit pore formation.
Collapse
|
94
|
Lee MT, Hung WC, Chen FY, Huang HW. Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation. Biophys J 2005; 89:4006-16. [PMID: 16150963 PMCID: PMC1366966 DOI: 10.1529/biophysj.105.068080] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 08/24/2005] [Indexed: 11/18/2022] Open
Abstract
Recently we have shown that the free energy for pore formation induced by antimicrobial peptides contains a term representing peptide-peptide interactions mediated by membrane thinning. This many-body effect gives rise to the cooperative concentration dependence of peptide activities. Here we performed oriented circular dichroism and x-ray diffraction experiments to study the lipid dependence of this many-body effect. In particular we studied the correlation between lipid's spontaneous curvature and peptide's threshold concentration for pore formation by adding phosphatidylethanolamine and lysophosphocholine to phosphocholine bilayers. Previously it was argued that this correlation exhibited by magainin and melittin supported the toroidal model for the pores. Here we found similar correlations exhibited by melittin and alamethicin. We found that the main effect of varying the spontaneous curvature of lipid is to change the degree of membrane thinning, which in turn influences the threshold concentration for pore formation. We discuss how to interpret the lipid dependence of membrane thinning.
Collapse
Affiliation(s)
- Ming-Tao Lee
- Department of Physics, National Central University, Chung-Li, Taiwan
| | | | | | | |
Collapse
|
95
|
Vitkova V, Méléard P, Pott T, Bivas I. Alamethicin influence on the membrane bending elasticity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:281-6. [PMID: 16211403 DOI: 10.1007/s00249-005-0019-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/22/2005] [Accepted: 08/25/2005] [Indexed: 11/25/2022]
Abstract
We investigate the bending elasticity of lipid membranes with the increase of the alamethicin concentrations in the membrane via analysis of the thermally induced shape fluctuations of quasi-spherical giant vesicles. Our experimental results prove the strong influence of alamethicin molecules on the bending elasticity of diphytanoyl phosphatidylcholine and dilauroyl phosphatidylcholine membranes even in the range of very low peptide concentrations (less than 10(-3) mol/mol in the membrane). The results presented in this work, testify to the peripheral orientation of alamethicin molecules at low peptide concentrations in the membrane for both types of lipid bilayers. An upper limit of the concentration of the peptide in the membrane is determined below which the system behaves as an ideal two-dimensional solution and the peptide molecules have a planar orientation in the membrane.
Collapse
Affiliation(s)
- Victoria Vitkova
- Liquid Crystal Laboratory, Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | | | | | | |
Collapse
|
96
|
Dave PC, Billington E, Pan YL, Straus SK. Interaction of alamethicin with ether-linked phospholipid bilayers: oriented circular dichroism, 31P solid-state NMR, and differential scanning calorimetry studies. Biophys J 2005; 89:2434-42. [PMID: 16055546 PMCID: PMC1366743 DOI: 10.1529/biophysj.105.067678] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 07/18/2005] [Indexed: 11/18/2022] Open
Abstract
The arrangement of the antimicrobial peptide alamethicin was studied by oriented circular dichroism, 31P solid-state NMR, and differential scanning calorimetry in ether-linked phospholipid bilayers composed of 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DHPC). The measurements were performed as a function of alamethicin concentration relative to the lipid concentration, and results were compared to those reported in the literature for ester-linked phospholipid bilayers. At ambient temperature, alamethicin incorporates into the hydrophobic core of DHPC bilayers but results in more lipid disorder than observed for ester-linked 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayers. This orientational disorder appears to depend on lipid properties such as bilayer thickness. Moreover, the results suggest that alamethicin inserts into the hydrophobic core of the bilayers (at high peptide concentration) for both ether- and ester-linked lipids but using a different mechanism, namely toroidal for DHPC and barrel-stave for POPC.
Collapse
Affiliation(s)
- Paresh C Dave
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | |
Collapse
|
97
|
Mecke A, Lee DK, Ramamoorthy A, Orr BG, Banaszak Holl MM. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J 2005; 89:4043-50. [PMID: 16183881 PMCID: PMC1366969 DOI: 10.1529/biophysj.105.062596] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction of an antimicrobial peptide, MSI-78, with phospholipid bilayers has been investigated using atomic force microscopy, circular dichroism, and nuclear magnetic resonance (NMR). Binding of amphipathic peptide helices with their helical axis parallel to the membrane surface leads to membrane thinning. Atomic force microscopy of supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers in the presence of MSI-78 provides images of the membrane thinning process at a high spatial resolution. This data reveals that the membrane thickness is not reduced uniformly over the entire bilayer area. Instead, peptide binding leads to the formation of distinct domains where the bilayer thickness is reduced by 1.1 +/- 0.2 nm. The data is interpreted using a previously published geometric model for the structure of the peptide-lipid domains. In this model, the peptides reside at the hydrophilic-hydrophobic boundary in the lipid headgroup region, which leads to an increased distance between lipid headgroups. This picture is consistent with concentration-dependent 31P and 2H NMR spectra of MSI-78 in mechanically aligned DMPC bilayers. Furthermore, 2H NMR experiments on DMPC-d54 multilamellar vesicles indicate that the acyl chains of DMPC are highly disordered in the presence of the peptide as is to be expected for the proposed structure of the peptide-lipid assembly.
Collapse
Affiliation(s)
- Almut Mecke
- University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
98
|
Mecke A, Lee DK, Ramamoorthy A, Orr BG, Holl MMB. Synthetic and natural polycationic polymer nanoparticles interact selectively with fluid-phase domains of DMPC lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:8588-90. [PMID: 16142931 PMCID: PMC1440293 DOI: 10.1021/la051800w] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polycationic polymers are known to disrupt lipid bilayers. In this letter, we report the dependence of this disruption on the lipid structural phase. DMPC bilayers are exposed to two polycationic polymeric nanoparticles, PAMAM dendrimers and MSI-78. We find that regions of the bilayer that are in the gel phase are unaffected by the presence of polymers, whereas the liquid phase is disrupted.
Collapse
Affiliation(s)
- Almut Mecke
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
99
|
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3:238-50. [PMID: 15703760 DOI: 10.1038/nrmicro1098] [Citation(s) in RCA: 4048] [Impact Index Per Article: 213.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antimicrobial peptides are an abundant and diverse group of molecules that are produced by many tissues and cell types in a variety of invertebrate, plant and animal species. Their amino acid composition, amphipathicity, cationic charge and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of antimicrobial peptide activity, their relevance to how peptides damage and kill microorganisms still need to be clarified. Recently, there has been speculation that transmembrane pore formation is not the only mechanism of microbial killing. In fact several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibit protein synthesis or inhibit enzymatic activity. In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented.
Collapse
Affiliation(s)
- Kim A Brogden
- Department of Periodontics and Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
100
|
Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Lett 2004; 576:205-10. [PMID: 15474038 DOI: 10.1016/j.febslet.2004.09.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 09/06/2004] [Accepted: 09/09/2004] [Indexed: 02/04/2023]
Abstract
The channel activity of colicin E1 was studied in planar lipid bilayers and liposomes. Colicin E1 pore-forming activity was found to depend on the curvature of the lipid bilayer, as judged by the effect on channel activity of curvature-modulating agents. In particular, the colicin-induced trans-membrane current was augmented by lysophosphatidylcholine and reduced by oleic acid, agents promoting positive and negative membrane curvature, respectively. The data obtained imply direct involvement of lipids in the formation of colicin E1-induced pore walls. It is inferred that the toroidal pore model previously validated for small antimicrobial peptides is applicable to colicin E1, a large protein that contains ten alpha-helices in its pore-forming domain.
Collapse
Affiliation(s)
- Alexander A Sobko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|