51
|
Ikeya T, Sasaki A, Sakakibara D, Shigemitsu Y, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Nietlispach D, Wälchli M, Smith BO, Shirakawa M, Güntert P, Ito Y. NMR protein structure determination in living E. coli cells using nonlinear sampling. Nat Protoc 2010; 5:1051-60. [PMID: 20539281 DOI: 10.1038/nprot.2010.69] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cell is a crowded environment in which proteins interact specifically with other proteins, nucleic acids, cofactors and ligands. Atomic resolution structural explanation of proteins functioning in this environment is a main goal of biochemical research. Recent improvements to nuclear magnetic resonance (NMR) hardware and methodology allow the measurement of high-resolution heteronuclear multidimensional NMR spectra of macromolecules in living cells (in-cell NMR). In this study, we describe a protocol for the stable isotope ((13)C, (15)N and (2)H) labeling and structure determination of proteins overexpressed in Escherichia coli cells exclusively on the basis of information obtained in living cells. The protocol combines the preparation of the protein in E. coli cells, the rapid measurement of the three-dimensional (3D) NMR spectra by nonlinear sampling of the indirectly acquired dimensions, structure calculation and structure refinement. Under favorable circumstances, this in-cell NMR approach can provide high-resolution 3D structures of proteins in living environments. The protocol has been used to solve the first 3D structure of a protein in living cells for the putative heavy metal-binding protein TTHA1718 from Thermus thermophilus HB8 overexpressed in E. coli cells. As no protein purification is necessary, a sample for in-cell NMR measurements can be obtained within 2-3 d. With the nonlinear sampling scheme, the duration of each 3D experiment can be reduced to 2-3 h. Once chemical shift assignments and NOESY peak lists have been prepared, structure calculation with the program CYANA and energy refinement can be completed in less than 1 h on a powerful computer system.
Collapse
Affiliation(s)
- Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Begam Elavarasi S, Kavita Dorai. Characterization of the 19F chemical shielding tensor using cross-correlated spin relaxation measurements and quantum chemical calculations. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.02.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
53
|
Li C, Wang GF, Wang Y, Creager-Allen R, Lutz EA, Scronce H, Slade KM, Ruf RAS, Mehl RA, Pielak GJ. Protein (19)F NMR in Escherichia coli. J Am Chem Soc 2010; 132:321-7. [PMID: 20050707 DOI: 10.1021/ja907966n] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although overexpression and (15)N enrichment facilitate the observation of resonances from disordered proteins in Escherichia coli, (15)N enrichment alone is insufficient for detecting most globular proteins. Here, we explain this dichotomy and overcome the problem while extending the capability of in-cell NMR by using (19)F-labeled proteins. Resonances from small (approximately 10 kDa) globular proteins containing the amino acid analogue 3-fluoro-tyrosine can be observed in cells, but for larger proteins the (19)F resonances are broadened beyond detection. Incorporating the amino acid analogue trifluoromethyl-L-phenylalanine allows larger proteins (up to 100 kDa) to be observed in cells. We also show that site-specific structural and dynamic information about both globular and disordered proteins can be obtained inside cells by using (19)F NMR.
Collapse
Affiliation(s)
- Conggang Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Protein folding stability and dynamics imaged in a living cell. Nat Methods 2010; 7:319-23. [DOI: 10.1038/nmeth.1435] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 12/29/2009] [Indexed: 12/19/2022]
|
55
|
Pielak GJ, Li C, Miklos AC, Schlesinger AP, Slade KM, Wang GF, Zigoneanu IG. Protein nuclear magnetic resonance under physiological conditions. Biochemistry 2009; 48:226-34. [PMID: 19113834 DOI: 10.1021/bi8018948] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Almost everything we know about protein biophysics comes from studies on purified proteins in dilute solution. Most proteins, however, operate inside cells where the concentration of macromolecules can be >300 mg/mL. Although reductionism-based approaches have served protein science well for more than a century, biochemists now have the tools to study proteins under these more physiologically relevant conditions. We review a part of this burgeoning postreductionist landscape by focusing on high-resolution protein nuclear magnetic resonance (NMR) spectroscopy, the only method that provides atomic-level information over an entire protein under the crowded conditions found in cells.
Collapse
Affiliation(s)
- Gary J Pielak
- Department of Chemistry, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
56
|
Aso Y, Yoshioka S, Miyazaki T, Kawanishi T. Feasibility of 19F-NMR for Assessing the Molecular Mobility of Flufenamic Acid in Solid Dispersions. Chem Pharm Bull (Tokyo) 2009; 57:61-4. [DOI: 10.1248/cpb.57.61] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukio Aso
- National Institute of Health Sciences
| | | | | | | |
Collapse
|
57
|
Fujino T, Hirota K, Ohta K, Tahara T. In-cell Viscosity Measurement Using a Fluorescence Up-conversion Microscope. CHEM LETT 2008. [DOI: 10.1246/cl.2008.1240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
58
|
Abstract
Water-biomolecule interactions have been extensively studied in dilute solutions, crystals, and rehydrated powders, but none of these model systems may capture the behavior of water in the highly organized intracellular milieu. Because of the experimental difficulty of selectively probing the structure and dynamics of water in intact cells, radically different views about the properties of cell water have proliferated. To resolve this long-standing controversy, we have measured the (2)H spin relaxation rate in living bacteria cultured in D(2)O. The relaxation data, acquired in a wide magnetic field range (0.2 mT-12 T) and analyzed in a model-independent way, reveal water dynamics on a wide range of time scales. Contradicting the view that a substantial fraction of cell water is strongly perturbed, we find that approximately 85% of cell water in Escherichia coli and in the extreme halophile Haloarcula marismortui has bulk-like dynamics. The remaining approximately 15% of cell water interacts directly with biomolecular surfaces and is motionally retarded by a factor 15 +/- 3 on average, corresponding to a rotational correlation time of 27 ps. This dynamic perturbation is three times larger than for small monomeric proteins in solution, a difference we attribute to secluded surface hydration sites in supramolecular assemblies. The relaxation data also show that a small fraction ( approximately 0.1%) of cell water exchanges from buried hydration sites on the microsecond time scale, consistent with the current understanding of protein hydration in solutions and crystals.
Collapse
|
59
|
Serber Z, Selenko P, Hänsel R, Reckel S, Löhr F, Ferrell JE, Wagner G, Dötsch V. Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 2007; 1:2701-9. [PMID: 17406526 DOI: 10.1038/nprot.2006.181] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The noninvasive character of NMR spectroscopy, combined with the sensitivity of the chemical shift, makes it ideally suited to investigate the conformation, binding events and dynamics of macromolecules inside living cells. These 'in-cell NMR' experiments involve labeling the macromolecule of interest with a nonradioactive but NMR-active isotope (15N or 13C). Cellular samples are prepared either by selectively overexpressing the protein in suitable cells (e.g., bacterial cells grown on isotopically labeled media), or by injecting isotopically labeled proteins directly into either cells or cell extracts. Here we provide detailed protocols for in-cell NMR experiments in the prokaryotic organism Escherichia coli, as well as eukaryotic cells and extracts employing Xenopus laevis oocytes or egg extracts. In-cell NMR samples with proteins overexpressed in E. coli can be produced within 13-14 h. Preparing Xenopus oocyte samples for in-cell NMR experiments takes 6-14 h depending on the oocyte preparation scheme and the injection method used.
Collapse
Affiliation(s)
- Zach Serber
- Department of Chemical and Systems Biology, Stanford University Medical School, 269 Campus Drive, Stanford, 94305 California, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Bryant JE, Lecomte JTJ, Lee AL, Young GB, Pielak GJ. Cytosol has a small effect on protein backbone dynamics. Biochemistry 2006; 45:10085-91. [PMID: 16906766 DOI: 10.1021/bi060547b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cells are crowded with macromolecules, yet most biophysical information about proteins is obtained in dilute solution. To determine the impact of this dichotomy, we used nuclear magnetic resonance spectroscopy to measure the backbone (15)N T(1) and T(2) relaxation times and the {(1)H}-(15)N nuclear Overhauser enhancement (nOe) of uniformly (15)N-enriched apocytochrome b(5) in living Escherichia coli and in dilute solution. These data allowed us to assess the backbone dynamics of this partially folded protein in cells and in dilute solution. The two data sets were analyzed by using the model-free approach. Transfer from dilute solution to the cytosol has a quantitative effect on T(1), T(2), and nOe values. Most of the effects are attributed to an increase in the overall correlation time, caused by the increased viscosity of the cytosol compared to that of the dilute solution. Our main conclusion is that the cytosol does not alter the pattern of backbone dynamics of apocytochrome b(5). Increases in the time scale of both the picosecond and millisecond motions are observed, but the increases are less than approximately 30%.
Collapse
Affiliation(s)
- Julie E Bryant
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
61
|
Charlton LM, Pielak GJ. Peeking into living eukaryotic cells with high-resolution NMR. Proc Natl Acad Sci U S A 2006; 103:11817-8. [PMID: 16880379 PMCID: PMC1567660 DOI: 10.1073/pnas.0605297103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Gary J. Pielak
- Departments of *Chemistry and
- Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, and Lineberger Comprehensive Cancer Research Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
62
|
Botchway S, Barba I, Jordan R, Harmston R, Haggie P, Williams SP, Fulton A, Parker A, Brindle K. A novel method for observing proteins in vivo using a small fluorescent label and multiphoton imaging. Biochem J 2006; 390:787-90. [PMID: 15946123 PMCID: PMC1199672 DOI: 10.1042/bj20050648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel method for the fluorescence detection of proteins in cells is described in the present study. Proteins are labelled by the selective biosynthetic incorporation of 5-hydroxytryptophan and the label is detected via selective two-photon excitation of the hydroxyindole and detection of its fluorescence emission at 340 nm. The method is demonstrated in this paper with images of a labelled protein in yeast cells.
Collapse
Affiliation(s)
- Stanley W. Botchway
- *Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, U.K
| | - Ignasi Barba
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Randolf Jordan
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Rebecca Harmston
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Peter M. Haggie
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Simon-Peter Williams
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alexandra M. Fulton
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Anthony W. Parker
- *Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, U.K
| | - Kevin M. Brindle
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
63
|
Affiliation(s)
- Sina Reckel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Marie Curie Strasse 9, 60439 Frankfurt, Germany
| | | | | |
Collapse
|
64
|
Okamura E, Ninomiya K, Futaki S, Nagai Y, Kimura T, Wakai C, Matubayasi N, Sugiura Y, Nakahara M. Real-time In-cell19F NMR Study on Uptake of Fluorescent and Nonfluorescent19F-Octaarginines into Human Jurkat Cells. CHEM LETT 2005. [DOI: 10.1246/cl.2005.1064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
65
|
Abstract
The role of a protein inside a cell is determined by both its location and its conformational state. Although fluorescence techniques are widely used to determine the cellular localization of proteins in vivo, these approaches cannot provide detailed information about a protein's three-dimensional state. This gap, however, can be filled by NMR spectroscopy, which can be used to investigate both the conformation as well as the dynamics of proteins inside living cells. In this chapter we describe technical aspects of these "in-cell NMR" experiments. In particular, we show that in the case of (15)N-labeling schemes the background caused by labeling all cellular components is negligible, while (13)C-based experiments suffer from high background levels and require selective labeling schemes. A correlation between the signal-to-noise ratio of in-cell NMR experiments with the overexpression level of the protein shows that the current detection limit is 150-200 muM (intracellular concentration). We also discuss experiments that demonstrate that the intracellular viscosity is not a limiting factor since the intracellular rotational correlation time is only approximately two times longer than the correlation time in water. Furthermore, we describe applications of the technique and discuss its limitations.
Collapse
Affiliation(s)
- Zach Serber
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
66
|
Rajagopalan S, Chow C, Raghunathan V, Fry CG, Cavagnero S. NMR spectroscopic filtration of polypeptides and proteins in complex mixtures. JOURNAL OF BIOMOLECULAR NMR 2004; 29:505-516. [PMID: 15243181 DOI: 10.1023/b:jnmr.0000034354.30702.de] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Due to the inherent complexity of the natural biological environment, most studies on polypeptides, proteins and nucleic acids have so far been performed in vitro, away from physiologically relevant conditions. Nuclear magnetic resonance is an ideal technique to extend the in vitro analysis of simple model systems to the more complex biological context. This work shows how diffusion-based spectroscopic selection can be combined with isotopic labeling to tackle and optimize the NMR analysis of specific macromolecules in multicomponent mixtures. Typical media include cell-free systems containing overexpressed proteins, lysates and proteolytic mixtures. We present a few variants of diffusion-edited HSQC pulse sequences for the selective spectroscopic detection of protein and polypeptide resonances within complex mixtures containing undesired species of smaller molecular weight. Due to diffusion-based filtering, peak intensities of fast diffusing small molecules are attenuated more than peaks due to large molecules. The basic sequence, denoted as PFGSTE-HSQC, combines translational diffusion-ordering with two dimensional heteronuclear single quantum correlation spectroscopy. The GCSTE-HSQC and BPPSTE-HSQC sequences include bipolar gradients and are therefore suitable for both diffusion-based filtering and determination of diffusion coefficients of individual mixture components. Practical applications range from protein stability/folding investigations in physiologically relevant contexts to prescreening of tertiary fold and resonance assignments in structural genomics studies. A few applications of diffusion-edited HSQC to an E. coli cell lysate containing the (15)N-labeled B domain of streptococcal protein G (GB1), and to a (15)N-labeled N-acetylglycine/apomyoglobin mixture are presented. In addition, we provide specific guidelines for experimental setup and parameter optimization.
Collapse
Affiliation(s)
- Senapathy Rajagopalan
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, U.S.A
| | | | | | | | | |
Collapse
|
67
|
Sampedro JG, Muñoz-Clares RA, Uribe S. Trehalose-mediated inhibition of the plasma membrane H+-ATPase from Kluyveromyces lactis: dependence on viscosity and temperature. J Bacteriol 2002; 184:4384-91. [PMID: 12142408 PMCID: PMC135241 DOI: 10.1128/jb.184.16.4384-4391.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of increasing trehalose concentrations on the kinetics of the plasma membrane H+-ATPase from Kluyveromyces lactis was studied at different temperatures. At 20 degrees C, increasing concentrations of trehalose (0.2 to 0.8 M) decreased V(max) and increased S(0.5) (substrate concentration when initial velocity equals 0.5 V(max)), mainly at high trehalose concentrations (0.6 to 0.8 M). The quotient V(max)/S(0.5) decreased from 5.76 micromol of ATP mg of protein(-1) x min(-1) x mM(-1) in the absence of trehalose to 1.63 micromol of ATP mg of protein(-1) x min(-1) x mM(-1) in the presence of 0.8 M trehalose. The decrease in V(max) was linearly dependent on solution viscosity (eta), suggesting that inhibition was due to hindering of protein domain diffusional motion during catalysis and in accordance with Kramer's theory for reactions in solution. In this regard, two other viscosity-increasing agents, sucrose and glycerol, behaved similarly, exhibiting the same viscosity-enzyme inhibition correlation predicted. In the absence of trehalose, increasing the temperature up to 40 degrees C resulted in an exponential increase in V(max) and a decrease in enzyme cooperativity (n), while S(0.5) was not modified. As temperature increased, the effect of trehalose on V(max) decreased to become negligible at 40 degrees C, in good correlation with the temperature-mediated decrease in viscosity. The trehalose-mediated increase in S(0.5) was similar at all temperatures tested, and thus, trehalose effects on V(max)/S(0.5) were always observed. Trehalose increased the activation energy for ATP hydrolysis. Trehalose-mediated inhibition of enzymes may explain why yeast rapidly hydrolyzes trehalose when exiting heat shock.
Collapse
Affiliation(s)
- José G Sampedro
- Departamento de Bioquímica, Instituto de Fisiología Celular, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, México.
| | | | | |
Collapse
|
68
|
Abstract
The recent development of "in-cell NMR" techniques by two independent groups has demonstrated that NMR spectroscopy can be used to characterize the conformation and dynamics of biological macromolecules inside living cells. In this article, we describe different methods and discuss current and future applications as well as critical parameters of this new technique. We show experimental results, compare them with traditional in vitro experiments, and demonstrate that differences between the in vitro and the in vivo state of a macromolecule exist and can be detected and characterized.
Collapse
Affiliation(s)
- Z Serber
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
69
|
Duewel HS, Daub E, Robinson V, Honek JF. Elucidation of solvent exposure, side-chain reactivity, and steric demands of the trifluoromethionine residue in a recombinant protein. Biochemistry 2001; 40:13167-76. [PMID: 11683625 DOI: 10.1021/bi011381b] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When incorporated into proteins, fluorinated amino acids have been utilized as 19F NMR probes of protein structure and protein-ligand interactions, and as subtle structural replacements for their parent amino acids which is not possible using the standard 20-amino acid repertoire. Recent investigations have shown the ability of various fluorinated methionines, such as difluoromethionine (DFM) and trifluoromethionine (TFM), to be bioincorporated into recombinant proteins and to be extremely useful as 19F NMR biophysical probes. Interestingly, in the case of the bacteriophage lambda lysozyme (LaL) which contains only three Met residues (at positions 1, 14, and 107), four 19F NMR resonances are observed when TFM is incorporated into LaL. To elucidate the underlying structural reasons for this anomalous observation and to more fully explore the effect of TFM on protein structure, site-directed mutagenesis was used to assign each 19F NMR resonance. Incorporation of TFM into the M14L mutant resulted in the collapse of the two 19F resonances associated with TFM at position 107 into a single resonance, suggesting that when position 14 in wild-type protein contains TFM, a subtle but different environment exists for the methionine at position 107. In addition, 19F and [1H-13C]-HMQC NMR experiments have been utilized with paramagnetic line broadening and K2PtCl4 reactivity experiments to obtain information about the probable spatial position of each Met in the protein. These results are compared with the recently determined crystal structure of LaL and allow for a more detailed structural explanation for the effect of fluorination on protein structure.
Collapse
Affiliation(s)
- H S Duewel
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
70
|
Serber Z, Ledwidge R, Miller SM, Dötsch V. Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J Am Chem Soc 2001; 123:8895-901. [PMID: 11552796 DOI: 10.1021/ja0112846] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our recently developed in-cell NMR procedure now enables one to observe protein conformations inside living cells. Optimization of the technique demonstrates that distinguishing the signals produced by a single protein species depends critically on protein overexpression levels and the correlation time in the cytoplasm. Less relevant is the selective incorporation of (15)N. Poorly expressed proteins, insoluble proteins, and proteins that cannot tumble freely due to associations within the cell cannot yet be observed. We show in-cell NMR spectra of bacterial NmerA and human calmodulin and discuss limitations of the technique as well as prospects for future applications.
Collapse
Affiliation(s)
- Z Serber
- Graduate Group in Biophysics, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
71
|
Serber Z, Keatinge-Clay AT, Ledwidge R, Kelly AE, Miller SM, Dötsch V. High-resolution macromolecular NMR spectroscopy inside living cells. J Am Chem Soc 2001; 123:2446-7. [PMID: 11456903 DOI: 10.1021/ja0057528] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Z Serber
- Graduate Group in Biophysics Department of Pharmaceutical Chemistry and Department of Cellular and Molecular Pharmacology University of California San Francisco San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
72
|
Luby-Phelps K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 192:189-221. [PMID: 10553280 DOI: 10.1016/s0074-7696(08)60527-6] [Citation(s) in RCA: 733] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Classical biochemistry is founded on several assumptions valid in dilute aqueous solutions that are often extended without question to the interior milieu of intact cells. In the first section of this chapter, we present these assumptions and briefly examine the ways in which the cell interior may depart from the conditions of an ideal solution. In the second section, we summarize experimental evidence regarding the physical properties of the cell cytoplasm and their effect on the diffusion and binding of macromolecules and vesicles. While many details remain to be worked out, it is clear that the aqueous phase of the cytoplasm is crowded rather than dilute, and that the diffusion and partitioning of macromolecules and vesicles in cytoplasm is highly restricted by steric hindrance as well as by unexpected binding interactions. Furthermore, the enzymes of several metabolic pathways are now known to be organized into structural and functional units with specific localizations in the solid phase, and as much as half the cellular protein content may also be in the solid phase.
Collapse
Affiliation(s)
- K Luby-Phelps
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9040, USA
| |
Collapse
|
73
|
Abstract
The enzymes of the tricarboxylic acid cycle in the mitochondrial matrix are proposed to form a multienzyme complex, in which there is channeling of substrates between enzyme active sites. However no direct evidence has been obtained in vivo for the involvement of these enzymes in such a complex. We have labeled the tricarboxylic acid cycle enzyme, citrate synthase 1, in the yeast Saccharomyces cerevisiae, by biosynthetic incorporation of 5-fluorotryptophan. Comparison of the 19F NMR resonance intensities from the labeled enzyme in the intact cell and in cell-free lysates indicated that the enzyme is motionally restricted in vivo, consistent with its participation in a multienzyme complex.
Collapse
Affiliation(s)
- P M Haggie
- University of Cambridge, Department of Biochemistry, Old Addenbrooke's Site, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | |
Collapse
|