51
|
Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn 2010; 238:2975-3015. [PMID: 19891001 DOI: 10.1002/dvdy.22113] [Citation(s) in RCA: 512] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The zebrafish is a premier model organism yet lacks a system for assigning postembryonic fish to developmental stages. To provide such a staging series, we describe postembryonic changes in several traits that are visible under brightfield illumination or through vital staining and epiflourescent illumination. These include the swim bladder, median and pelvic fins, pigment pattern, scale formation, larval fin fold, and skeleton. We further identify milestones for placing postembryonic fish into discrete stages. We relate these milestones to changes in size and age and show that size is a better indicator of developmental progress than is age. We also examine how relationships between size and developmental progress vary with temperature and density, and we document the effects of histological processing on size. To facilitate postembryonic staging, we provide images of reference individuals that have attained specific developmental milestones and are of defined sizes. Finally, we provide guidelines for reporting stages that provide information on both discrete and continuous changes in growth and development.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, University of Washington, Seattle, Washington 91895, USA
| | | | | | | | | |
Collapse
|
52
|
Lang MR, Patterson LB, Gordon TN, Johnson SL, Parichy DM. Basonuclin-2 requirements for zebrafish adult pigment pattern development and female fertility. PLoS Genet 2009; 5:e1000744. [PMID: 19956727 PMCID: PMC2776513 DOI: 10.1371/journal.pgen.1000744] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022] Open
Abstract
Relatively little is known about the generation of adult form. One complex adult trait that is particularly amenable to genetic and experimental analysis is the zebrafish pigment pattern, which undergoes extensive remodeling during post-embryonic development to form adult stripes. These stripes result from the arrangement of three classes of neural crest-derived pigment cells, or chromatophores: melanophores, xanthophores, and iridophores. Here, we analyze the zebrafish bonaparte mutant, which has a normal early pigment pattern but exhibits a severe disruption to the adult stripe pattern. We show that the bonaparte mutant phenotype arises from mutations in basonuclin-2 (bnc2), encoding a highly conserved, nuclear-localized zinc finger protein of unknown function. We show that bnc2 acts non-autonomously to the melanophore lineage and is expressed by hypodermal cells adjacent to chromatophores during adult pigment pattern formation. In bonaparte (bnc2) mutants, all three types of chromatophores differentiate but then are lost by extrusion through the skin. We further show that while bnc2 promotes the development of two genetically distinct populations of melanophores in the body stripes, chromatophores of the fins and scales remain unaffected in bonaparte mutants, though a requirement of fin chromatophores for bnc2 is revealed in the absence of kit and colony stimulating factor-1 receptor activity. Finally, we find that bonaparte (bnc2) mutants exhibit dysmorphic ovaries correlating with infertility and bnc2 is expressed in somatic ovarian cells, whereas the related gene, bnc1, is expressed within oocytes; and we find that both bnc2 and bnc1 are expressed abundantly within the central nervous system. These findings identify bnc2 as an important mediator of adult pigment pattern formation and identify bonaparte mutants as an animal model for dissecting bnc2 functions.
Collapse
Affiliation(s)
- Michael R. Lang
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Larissa B. Patterson
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Tiffany N. Gordon
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Stephen L. Johnson
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Parichy
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
53
|
Hultman KA, Budi EH, Teasley DC, Gottlieb AY, Parichy DM, Johnson SL. Defects in ErbB-dependent establishment of adult melanocyte stem cells reveal independent origins for embryonic and regeneration melanocytes. PLoS Genet 2009; 5:e1000544. [PMID: 19578401 PMCID: PMC2699538 DOI: 10.1371/journal.pgen.1000544] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 06/01/2009] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells are responsible for maintaining and repairing tissues during the life of an organism. Tissue repair in humans, however, is limited compared to the regenerative capabilities of other vertebrates, such as the zebrafish (Danio rerio). An understanding of stem cell mechanisms, such as how they are established, their self-renewal properties, and their recruitment to produce new cells is therefore important for the application of regenerative medicine. We use larval melanocyte regeneration following treatment with the melanocytotoxic drug MoTP to investigate these mechanisms in Melanocyte Stem Cell (MSC) regulation. In this paper, we show that the receptor tyrosine kinase, erbb3b, is required for establishing the adult MSC responsible for regenerating the larval melanocyte population. Both the erbb3b mutant and wild-type fish treated with the ErbB inhibitor, AG1478, develop normal embryonic melanocytes but fail to regenerate melanocytes after MoTP-induced melanocyte ablation. By administering AG1478 at different time points, we show that ErbB signaling is only required for regeneration prior to MoTP treatment and before 48 hours of development, consistent with a role in establishing MSCs. We then show that overexpression of kitla, the Kit ligand, in transgenic larvae leads to recruitment of MSCs, resulting in overproliferation of melanocytes. Furthermore, kitla overexpression can rescue AG1478-blocked regeneration, suggesting that ErbB signaling is required to promote the progression and specification of the MSC from a pre–MSC state. This study provides evidence that ErbB signaling is required for the establishment of adult MSCs during embryonic development. That this requirement is not shared with the embryonic melanocytes suggests that embryonic melanocytes develop directly, without proceeding through the ErbB-dependent MSC. Moreover, the shared requirement of larval melanocyte regeneration and metamorphic melanocytes that develops at the larval-to-adult transition suggests that these post-embryonic melanocytes develop from the same adult MSC population. Lastly, that kitla overexpression can recruit the MSC to develop excess melanocytes raises the possibility that Kit signaling may be involved in MSC recruitment during regeneration. The promise of regenerative medicine lies in the ability to find or create stem cells that can be manipulated to replace damaged tissues and organs. Such ability requires an understanding of how adult stem cells are established and then later recruited to regenerate different tissues. Here, we study the zebrafish's ability to regenerate melanocytes, a pigment cell shared with humans, to understand these mechanisms. We show that the erbb3b gene is required to establish melanocyte stem cells in the embryo that are responsible for regenerating melanocytes after melanocytes are ablated in the larval zebrafish. Because this adult stem cell is not required for the development of embryonic melanocytes, we conclude that adult melanocyte stem cells develop in parallel to the embryonic tissues that they regulate. We also show that overexpressing kit ligand a will result in over-recruiting these adult stem cells to produce excess melanocytes. Further exploration into the mechanisms by which the zebrafish melanocyte stem cells are maintained and recruited will inform how adult stem cells might be manipulated for medical applications.
Collapse
Affiliation(s)
- Keith A Hultman
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
54
|
Cooper CD, Linbo TH, Raible DW. Kit and foxd3 genetically interact to regulate melanophore survival in zebrafish. Dev Dyn 2009; 238:875-86. [PMID: 19301400 DOI: 10.1002/dvdy.21910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have investigated the role of foxd3 activity in conjunction with signaling by the kit tyrosine kinase receptor in zebrafish black pigment cell (melanophore) development. As loss-of-function of these molecules individually has distinct effects on melanophore number, we have examined the phenotype of double mutants. Individuals with a null mutation in kit have fewer melanophores than wild-type, with cells lost through death. When kit mutants are injected with foxd3 antisense morpholino oligonucleotides or crossed with a foxd3 zebrafish mutant, they have more melanophores than their uninjected or foxd3+ counterparts. Examination of foxd3 loss-of-function in two additional kit mutants that differentially alter kit-dependent migration and survival indicates a change in melanophore number in survival mutants only. Consistently, TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling) analysis confirms a partial rescue of melanophores from cell death. Ectopic expression of foxd3 indicates that foxd3 promotes early melanophore death only when kit is inactive. Taken together, these data suggest a kit-dependent role for foxd3 in the regulation of melanophore survival.
Collapse
Affiliation(s)
- Cynthia D Cooper
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
55
|
Abstract
The simplest regeneration experiments involve the ablation of a single cell type. While methods exist to ablate the melanocytes of the larval zebrafish,(1,2) no convenient method exists to ablate melanocytes in adult zebrafish. Here, we show that the copper chelator neocuproine (NCP) causes fragmentation and disappearance of melanin in adult zebrafish melanocytes. Adult melanocytes expressing eGFP under the control of a melanocyte-specific promoter also lose eGFP fluorescence in the presence of NCP. We conclude that NCP causes melanocyte death. This death is independent of p53 and melanin, but can be suppressed by the addition of exogenous copper. NCP is ineffective at ablating larval melanocytes. This now provides a tool for addressing questions about stem cells and the maintenance of the adult pigment pattern in zebrafish.
Collapse
Affiliation(s)
- Thomas O'Reilly-Pol
- Department of Genetics, Washington University School of Medicine , St. Louis, Missouri
| | | |
Collapse
|
56
|
Othmer HG, Painter K, Umulis D, Xue C. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2009; 4:3-82. [PMID: 19844610 PMCID: PMC2763616 DOI: 10.1051/mmnp/20094401] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems - Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns - illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago'We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.'
Collapse
Affiliation(s)
- Hans G. Othmer
- School of Mathematics and Digital Technology Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kevin Painter
- Department of Mathematics, Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - David Umulis
- Agricultural & Biological Engineering, Purdue University, West Lafayette, IN USA 47907 USA
| | - Chuan Xue
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
57
|
Takahashi G, Kondo S. Melanophores in the stripes of adult zebrafish do not have the nature to gather, but disperse when they have the space to move. Pigment Cell Melanoma Res 2008; 21:677-86. [DOI: 10.1111/j.1755-148x.2008.00504.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
58
|
Kelsh RN, Harris ML, Colanesi S, Erickson CA. Stripes and belly-spots -- a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 2008; 20:90-104. [PMID: 18977309 DOI: 10.1016/j.semcdb.2008.10.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/29/2008] [Accepted: 10/03/2008] [Indexed: 11/27/2022]
Abstract
Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here - chick, mouse, and zebrafish - each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells.
Collapse
Affiliation(s)
- Robert N Kelsh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
59
|
Budi EH, Patterson LB, Parichy DM. Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation. Development 2008; 135:2603-14. [PMID: 18508863 PMCID: PMC2704560 DOI: 10.1242/dev.019299] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vertebrate pigment cells are derived from neural crest cells and are a useful system for studying neural crest-derived traits during post-embryonic development. In zebrafish, neural crest-derived melanophores differentiate during embryogenesis to produce stripes in the early larva. Dramatic changes to the pigment pattern occur subsequently during the larva-to-adult transformation, or metamorphosis. At this time, embryonic melanophores are replaced by newly differentiating metamorphic melanophores that form the adult stripes. Mutants with normal embryonic/early larval pigment patterns but defective adult patterns identify factors required uniquely to establish, maintain or recruit the latent precursors to metamorphic melanophores. We show that one such mutant, picasso, lacks most metamorphic melanophores and results from mutations in the ErbB gene erbb3b, which encodes an EGFR-like receptor tyrosine kinase. To identify critical periods for ErbB activities, we treated fish with pharmacological ErbB inhibitors and also knocked down erbb3b by morpholino injection. These analyses reveal an embryonic critical period for ErbB signaling in promoting later pigment pattern metamorphosis, despite the normal patterning of embryonic/early larval melanophores. We further demonstrate a peak requirement during neural crest migration that correlates with early defects in neural crest pathfinding and peripheral ganglion formation. Finally, we show that erbb3b activities are both autonomous and non-autonomous to the metamorphic melanophore lineage. These data identify a very early, embryonic, requirement for erbb3b in the development of much later metamorphic melanophores, and suggest complex modes by which ErbB signals promote adult pigment pattern development.
Collapse
Affiliation(s)
- Erine H. Budi
- Department of Biology Institute for Stem Cell and Regenerative Medicine University of Washington Box 351800 Seattle WA 98195−1800
| | - Larissa B. Patterson
- Department of Biology Institute for Stem Cell and Regenerative Medicine University of Washington Box 351800 Seattle WA 98195−1800
| | - David M. Parichy
- Department of Biology Institute for Stem Cell and Regenerative Medicine University of Washington Box 351800 Seattle WA 98195−1800
| |
Collapse
|
60
|
Cooper WJ, Albertson RC. Quantification and variation in experimental studies of morphogenesis. Dev Biol 2008; 321:295-302. [PMID: 18619435 DOI: 10.1016/j.ydbio.2008.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 01/02/2023]
Abstract
The application of quantitative methods has long been the norm in comparative and evolutionary studies of morphology, but within the field of experimental embryology mathematical descriptions of anatomical form are seldom calculated, and morphological variation within treatment groups is rarely taken into account. Here we argue that many of the analytical techniques that are commonly applied in other areas of morphological research are also well suited for experimental studies of anatomical development. The application of these methodologies shows promise for augmenting such endeavors by enhancing researchers' ability to detect morphological patterns, account for developmental variation, and employ statistical methods. We review selected studies of experimental morphogenesis that underscore the potential of quantitative methods to reveal important aspects of anatomical development and growth. These examples demonstrate the benefits of quantifying ontogenetic data and accounting for developmental variation, and we suggest that the adoption of such practices by researchers performing experimental studies of morphogenesis will enhance our understanding of the processes by which genetic changes affect anatomical formation.
Collapse
Affiliation(s)
- W James Cooper
- Department of Biology, Syracuse University, 130 College Place, Biological Research Laboratories, Syracuse, NY 13244, USA.
| | | |
Collapse
|
61
|
Engeszer RE, Patterson LB, Rao AA, Parichy DM. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 2008; 4:21-40. [PMID: 18041940 DOI: 10.1089/zeb.2006.9997] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zebrafish, Danio rerio, has emerged as a major model organism for biomedical research, yet little is known about its natural history. We review the literature pertaining to the geographic range, biotic and abiotic habitats, and life cycle of the zebrafish. We also report our own field study to document several aspects of zebrafish natural history across sites in northeast India. We found zebrafish particularly abundant in silt-bottomed, well-vegetated pools and rice paddies adjacent to slow moving streams at a range of elevations. We further identified co-occurring fishes likely to be zebrafish competitors and predators. Finally, we present observations that indicate substantial habitat degradation and loss, and suggest guidelines for documenting and preserving natural zebrafish populations.
Collapse
Affiliation(s)
- Raymond E Engeszer
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | | | |
Collapse
|
62
|
Parichy DM. Homology and the evolution of novelty during Danio adult pigment pattern development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:578-90. [PMID: 17094081 DOI: 10.1002/jez.b.21141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies using zebrafish and its relatives have provided insights into the development and evolution of adult pigment patterns. In this review, I describe how an iterative approach using a biomedical model organism and its close relatives can be used to elucidate both mechanistic and organismal aspects of pigment pattern formation. Such analyses have revealed critical roles for post-embryonic latent precursors as well as interactions among different pigment cell classes during adult pigment pattern formation and diversification. These studies also have started to reveal homologous and novel features of the underlying developmental processes.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195-1800, USA.
| |
Collapse
|
63
|
Streelman J, Peichel C, Parichy D. Developmental Genetics of Adaptation in Fishes: The Case for Novelty. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J.T. Streelman
- School of Biology, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230;
| | - C.L. Peichel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024;
| | - D.M. Parichy
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195-1800;
| |
Collapse
|
64
|
Engeszer RE, Barbiano LADA, Ryan MJ, Parichy DM. Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim Behav 2007; 74:1269-1275. [PMID: 18978932 DOI: 10.1016/j.anbehav.2007.01.032] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The zebrafish has become a major model system for biomedical research and is an emerging model for the study of behaviour. While adult zebrafish express a visually mediated shoaling preference, the onset of shoaling behaviour and of this preference is unknown. To assess the onset of these behaviours, we first manipulated the early social environment of larval zebrafish subjects, giving them three model shoaling partners of the same pigment phenotype. We then assayed the subjects' preferences using binary preference tests in which we presented subjects with two shoals, one shoal of fish exhibiting the same pigment pattern phenotype as their models and another shoal with a radically different pigment pattern. To determine whether or not the visually mediated preference could be altered once it was established, we further manipulated the social environment of a number of subjects, rearing them with one model shoal and testing them, then changing their social consorts and retesting them. Our results demonstrate that larval zebrafish shoal early in their development, but do not exhibit a shoaling preference until they are juveniles. Moreover, we find that the shoaling preference is stable, as changing the social environment of fish after they had acquired a preference did not change their preference. These data will facilitate investigations into the mechanisms underlying social behaviour in this vertebrate model system.
Collapse
Affiliation(s)
- Raymond E Engeszer
- R. E. Engeszer and D. M. Parichy, Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800
| | | | | | | |
Collapse
|
65
|
Hultman KA, Bahary N, Zon LI, Johnson SL. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a. PLoS Genet 2007; 3:e17. [PMID: 17257055 PMCID: PMC1781495 DOI: 10.1371/journal.pgen.0030017] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/12/2006] [Indexed: 01/15/2023] Open
Abstract
The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla) and kit ligand b (kitlb), and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb). In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor–ligand relationship, coevolved complementary expression patterns, and that functional analysis reveals that most or all of the kita receptor's function in the embryo are promoted by its interaction with kitla. Gene duplication events provide a useful substrate to identify the effects of evolution in reshaping genes and their roles in physiology or development. Thus, dozens of receptor tyrosine kinases, with differing roles in development, have been generated in animal lineages. Less clear are how their associated ligands have duplicated and evolved and whether their evolution is constrained to match that of their cognate receptors. This report demonstrates the duplication of the kit ligand gene in zebrafish and shows that expression and function specific to the development of the melanocyte have been partitioned to one of these ligands, kitla. By this means, kitla coevolved with one of the duplicates of the kit receptor tyrosine kinase to regulate zebrafish melanocyte development. In contrast, the expression pattern of the other ligand, kitlb, which together with that of kitla approximates the expression of the mouse kit ligand gene, has evolved independently of either kit receptor gene.
Collapse
Affiliation(s)
- Keith A Hultman
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Nathan Bahary
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Leonard I Zon
- Department of Pediatrics, Children's Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
66
|
Mills MG, Nuckels RJ, Parichy DM. Deconstructing evolution of adult phenotypes: genetic analyses of kit reveal homology and evolutionary novelty during adult pigment pattern development of Danio fishes. Development 2007; 134:1081-90. [PMID: 17287252 DOI: 10.1242/dev.02799] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cellular bases for evolutionary changes in adult form remain largely unknown. Pigment patterns of Danio fishes are a convenient system for studying these issues because of their diversity and accessibility and because one species, the zebrafish D. rerio, is a model organism for biomedical research. Previous studies have shown that in zebrafish, stripes form by migration and differentiation of distinct populations of melanophores: early metamorphic (EM) melanophores arise widely dispersed and then migrate into stripes, whereas late metamorphic (LM) melanophores arise already within stripes. EM melanophores require the kit receptor tyrosine kinase, as kit mutants lack these cells but retain LM melanophores, which form a residual stripe pattern. To see if similar cell populations and genetic requirements are present in other species, we examined D. albolineatus, which has relatively few, nearly uniform melanophores. We isolated a D. albolineatus kit mutant and asked whether residual, LM melanophores develop in this species, as in D. rerio. We found that kit mutant D. albolineatus lack EM melanophores, yet retain LM melanophores. Histological analyses further show that kit functions during a late step in metamorphic melanophore development in both species. Interestingly, kit mutant D. albolineatus develop a striped melanophore pattern similar to kit mutant D. rerio, revealing latent stripe-forming potential in this species, despite its normally uniform pattern. Comparisons of wild types and kit mutants of the two species further show that species differences in pigment pattern reflect: (1) changes in the behavior of kit-dependent EM melanophores that arise in a dispersed pattern and then migrate into stripes in D. rerio, but fail to migrate in D. albolineatus; and (2) a change in the number of kit-independent LM melanophores that arise already in stripes and are numerous in D. rerio, but few in D. albolineatus. Our results show how genetic analyses of a species closely related to a biomedical model organism can reveal both conservatism and innovation in developmental mechanisms underlying evolutionary changes in adult form.
Collapse
Affiliation(s)
- Margaret G Mills
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Box 351800, Seattle WA 98195-1800, USA
| | | | | |
Collapse
|
67
|
Iwashita M, Watanabe M, Ishii M, Chen T, Johnson SL, Kurachi Y, Okada N, Kondo S. Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement. PLoS Genet 2006; 2:e197. [PMID: 17121467 PMCID: PMC1657052 DOI: 10.1371/journal.pgen.0020197] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 10/04/2006] [Indexed: 01/03/2023] Open
Abstract
Many animals have a variety of pigment patterns, even within a species, and these patterns may be one of the driving forces of speciation. Recent molecular genetic studies on zebrafish have revealed that interaction among pigment cells plays a key role in pattern formation, but the mechanism of pattern formation is unclear. The zebrafish jaguar/obelix mutant has broader stripes than wild-type fish. In this mutant, the development of pigment cells is normal but their distribution is altered, making these fish ideal for studying the process of pigment pattern formation. Here, we utilized a positional cloning method to determine that the inwardly rectifying potassium channel 7.1 (Kir7.1) gene is responsible for pigment cell distribution among jaguar/obelix mutant fish. Furthermore, in jaguar/obelix mutant alleles, we identified amino acid changes in the conserved region of Kir7.1, each of which affected K+ channel activity as demonstrated by patch-clamp experiments. Injection of a bacterial artificial chromosome containing the wild-type Kir7.1 genomic sequence rescued the jaguar/obelix phenotype. From these results, we conclude that mutations in Kir7.1 are responsible for jaguar/obelix. We also determined that the ion channel function defect of melanophores expressing mutant Kir7.1 altered the cellular response to external signals. We discovered that mutant melanophores cannot respond correctly to the melanosome dispersion signal derived from the sympathetic neuron and that melanosome aggregation is constitutively activated. In zebrafish and medaka, it is well known that melanosome aggregation and subsequent melanophore death increase when fish are kept under constant light conditions. These observations indicate that melanophores of jaguar/obelix mutant fish have a defect in the signaling pathway downstream of the α2-adrenoceptor. Taken together, our results suggest that the cellular defect of the Kir7.1 mutation is directly responsible for the pattern change in the jaguar/obelix mutant. Animals display a variety of skin pigment patterns. How these often intricate patterns are formed, however, is the longstanding question. Zebrafish is the only model organism having a pigment pattern, and thus it provides a unique system in which to investigate the mechanism of pattern formation. The striped pigment pattern of zebrafish comprises two types of pigment cells, melanophores (black chromatophores) and xanthophores (yellow chromatophores), and defects in pigment cell differentiation cause abnormal pigment patterns. However, the mechanism(s) underlying the arrangement of pigmented cells during development is unclear. In this paper, the authors cloned and studied the zebrafish mutant gene jaguar/obelix and identified it as inwardly rectifying potassium channel 7.1 (Kir7.1). Although the development of pigment cells is normal in jaguar/obelix fish, they have abnormally wide body stripes; thus, cell positioning is altered, suggesting that the jaguar/obelix functions in the system that determines pigment patterning. The connection between the Kir7.1 channel and the pigment pattern remains unclear, but the mutant melanophores are defective in intracellular aggregation and dispersion of the melanosome (pigment) controlled by the sympathetic neuron, suggesting that the signaling pathway activated by the neuron is also related to pigment pattern formation.
Collapse
Affiliation(s)
- Motoko Iwashita
- RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masakatsu Watanabe
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaru Ishii
- Department of Pharmacology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tim Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yoshihisa Kurachi
- Department of Pharmacology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Norihiro Okada
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shigeru Kondo
- RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
68
|
Míguez DG, Muñuzuri AP. On the orientation of stripes in fish skin patterning. Biophys Chem 2006; 124:161-7. [PMID: 16844282 DOI: 10.1016/j.bpc.2006.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 06/16/2006] [Indexed: 11/28/2022]
Abstract
This paper is focused on the study of the stripes orientation in the fish skin patterns. Based on microscopic observations of the pigment cells behavior at the embryonic stage, the key aspects of the pigmentation process are implemented in an experimental reaction-diffusion system. The experiment consists of a photosensitive Turing pattern of stripes growing directionally in one direction with controlled velocity. Different growth velocities of the system rearrange the stripes in the same three possible orientations observed in the skin of the colored fishes: parallel, oblique, and perpendicular. Our results suggest that the spreading velocity of the pigment cells in the fish dermis selects the orientation in the patterning processes.
Collapse
Affiliation(s)
- David G Míguez
- Chemistry Department and Center for Complex Systems, Brandeis University, 415 South St. Chemistry Office MS 015 University, Waltham, MA 02454-9110, USA.
| | | |
Collapse
|
69
|
Tanaka M, Hale LA, Amores A, Yan YL, Cresko WA, Suzuki T, Postlethwait JH. Developmental genetic basis for the evolution of pelvic fin loss in the pufferfish Takifugu rubripes. Dev Biol 2006; 281:227-39. [PMID: 15893975 DOI: 10.1016/j.ydbio.2005.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 01/26/2005] [Accepted: 02/16/2005] [Indexed: 11/28/2022]
Abstract
Paired appendages were a key developmental innovation among vertebrates and they eventually evolved into limbs. Ancient developmental control systems for paired fins and limbs are broadly conserved among gnathostome vertebrates. Some lineages including whales, some salamanders, snakes, and many ray-fin fish, independently lost the pectoral, pelvic, or both appendages over evolutionary time. When different taxa independently evolve similar developmental morphologies, do they use the same molecular genetic mechanisms? To determine the developmental genetic basis for the evolution of pelvis loss in the pufferfish Takifugu rubripes (fugu), we isolated fugu orthologs of genes thought to be essential for limb development in tetrapods, including limb positioning (Hoxc6, Hoxd9), limb bud initiation (Pitx1, Tbx4, Tbx5), and limb bud outgrowth (Shh, Fgf10), and studied their expression patterns during fugu development. Results showed that bud outgrowth and initiation fail to occur in fugu, and that pelvis loss is associated with altered expression of Hoxd9a, which we show to be a marker for pelvic fin position in three-spine stickleback Gasterosteus aculeatus. These results rule out changes in appendage outgrowth and initiation genes as the earliest developmental defect in pufferfish pelvic fin loss and suggest that altered Hoxd9a expression in the lateral mesoderm may account for pelvis loss in fugu. This mechanism appears to be different from the mechanism for pelvic loss in stickleback, showing that different taxa can evolve similar phenotypes by different mechanisms.
Collapse
Affiliation(s)
- Mikiko Tanaka
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Pigment patterns of danio fishes are emerging as a useful system for studying the evolution of developmental mechanisms underlying adult form. Different closely related species within the genera Danio and Devario exhibit a range of pigment patterns including horizontal stripes, vertical bars, and others. In this review, I summarize recent work identifying the genetic and cellular bases for adult pigment pattern formation in the zebrafish Danio rerio, as well as studies of how these mechanisms have evolved in other danios. Together, these analyses highlight the importance of latent precursors at post-embrynoic stages, as well as interactions within and among pigment cell classes, for both pigment pattern development and evolution.
Collapse
Affiliation(s)
- D M Parichy
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA.
| |
Collapse
|
71
|
Abstract
Vertebrate pigment patterns are both beautiful and fascinating. In mammals and birds, pigment patterns are likely to reflect the spatial regulation of melanocyte physiology, via alteration of the colour-type of the melanin synthesized. In fish, however, pigment patterns predominantly result from positioning of differently coloured chromatophores. Theoretically, pigment cell patterning might result from long-range patterning mechanisms, from local environmental cues, or from interactions between neighbouring chromatophores. Recent studies in two fish genetic model systems have made progress in understanding pigment pattern formation. In embryos, the limited evidence to date implicates local cues and chromatophore interactions in pigment patterning. In adults, de novo generation of chromatophores and cell-cell interactions between chromatophore types play critical roles in generating striped patterns; orientation of the stripes may well depend upon environmental cues mediated by underlying tissues. Further genetic screens, coupled with the routine characterization of critical gene products, promises a quantitative understanding of how striped patterns are generated in the zebrafish system. Initial 'evo-devo' studies indicate how fish pigment patterns may evolve and will become more complete as the developmental genetics is integrated with theoretical modelling.
Collapse
Affiliation(s)
- Robert N Kelsh
- Centre for Regenerative Medicine, Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
72
|
Sugimoto M, Yuki M, Miyakoshi T, Maruko K. The influence of long-term chromatic adaptation on pigment cells and striped pigment patterns in the skin of the zebrafish,Danio rerio. ACTA ACUST UNITED AC 2005; 303:430-40. [PMID: 15880775 DOI: 10.1002/jez.a.177] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.
Collapse
Affiliation(s)
- Masazumi Sugimoto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | | | | | | |
Collapse
|
73
|
Quigley IK, Manuel JL, Roberts RA, Nuckels RJ, Herrington ER, MacDonald EL, Parichy DM. Evolutionary diversification of pigment pattern in Danio fishes: differential fms dependence and stripe loss in D. albolineatus. Development 2004; 132:89-104. [PMID: 15563521 DOI: 10.1242/dev.01547] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The developmental bases for species differences in adult phenotypes remain largely unknown. An emerging system for studying such variation is the adult pigment pattern expressed by Danio fishes. These patterns result from several classes of pigment cells including black melanophores and yellow xanthophores, which differentiate during metamorphosis from latent stem cells of presumptive neural crest origin. In the zebrafish D. rerio, alternating light and dark horizontal stripes develop, in part, owing to interactions between melanophores and cells of the xanthophore lineage that depend on the fms receptor tyrosine kinase; zebrafish fms mutants lack xanthophores and have disrupted melanophore stripes. By contrast, the closely related species D. albolineatus exhibits a uniform pattern of melanophores, and previous interspecific complementation tests identified fms as a potential contributor to this difference between species. Here, we survey additional species and demonstrate marked variation in the fms-dependence of hybrid pigment patterns, suggesting interspecific variation in the fms pathway or fms requirements during pigment pattern formation. We next examine the cellular bases for the evolutionary loss of stripes in D. albolineatus and test the simplest model to explain this transformation, a loss of fms activity in D. albolineatus relative to D. rerio. Within D. albolineatus, we demonstrate increased rates of melanophore death and decreased melanophore migration, different from wild-type D. rerio but similar to fms mutant D. rerio. Yet, we also find persistent fms expression in D. albolineatus and enhanced xanthophore development compared with wild-type D. rerio, and in stark contrast to fms mutant D. rerio. These findings exclude the simplest model in which stripe loss in D. albolineatus results from a loss of fms-dependent xanthophores and their interactions with melanophores. Rather, our results suggest an alternative model in which evolutionary changes in pigment cell interactions themselves have contributed to stripe loss, and we test this model by manipulating melanophore numbers in interspecific hybrids. Together, these data suggest evolutionary changes in the fms pathway or fms requirements, and identify changes in cellular interactions as a likely mechanism of evolutionary change in Danio pigment patterns.
Collapse
Affiliation(s)
- Ian K Quigley
- Section of Integrative Biology, Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Quigley IK, Turner JM, Nuckels RJ, Manuel JL, Budi EH, MacDonald EL, Parichy DM. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes. Development 2004; 131:6053-69. [PMID: 15537688 DOI: 10.1242/dev.01526] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Latent precursors or stem cells of neural crest origin are present in a variety of post-embryonic tissues. Although these cells are of biomedical interest for roles in human health and disease, their potential evolutionary significance has been underappreciated. As a first step towards elucidating the contributions of such cells to the evolution of vertebrate form, we investigated the relative roles of neural crest cells and post-embryonic latent precursors during the evolutionary diversification of adult pigment patterns in Danio fishes. These pigment patterns result from the numbers and arrangements of embryonic melanophores that are derived from embryonic neural crest cells, as well as from post-embryonic metamorphic melanophores that are derived from latent precursors of presumptive neural crest origin. In the zebrafish D. rerio, a pattern of melanophore stripes arises during the larval-to-adult transformation by the recruitment of metamorphic melanophores from latent precursors. Using a comparative approach in the context of new phylogenetic data, we show that adult pigment patterns in five additional species also arise from metamorphic melanophores, identifying this as an ancestral mode of adult pigment pattern development. By contrast, superficially similar adult stripes of D. nigrofasciatus (a sister species to D. rerio) arise by the reorganization of melanophores that differentiated at embryonic stages, with a diminished contribution from metamorphic melanophores. Genetic mosaic and molecular marker analyses reveal evolutionary changes that are extrinsic to D. nigrofasciatus melanophore lineages, including a dramatic reduction of metamorphic melanophore precursors. Finally, interspecific complementation tests identify a candidate genetic pathway for contributing to the evolutionary reduction in metamorphic melanophores and the increased contribution of early larval melanophores to D. nigrofasciatus adult pigment pattern development. These results demonstrate an important role for latent precursors in the diversification of pigment patterns across danios. More generally, differences in the deployment of post-embryonic neural crest-derived stem cells or their specified progeny may contribute substantially to the evolutionary diversification of adult form in vertebrates, particularly in species that undergo a metamorphosis.
Collapse
Affiliation(s)
- Ian K Quigley
- Section of Integrative Biology, Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Affiliation(s)
- David M Parichy
- Section of Integrative Biology, Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, 1 University Station C0930, Austin, TX 78712, USA
| |
Collapse
|
76
|
Maderspacher F, Nüsslein-Volhard C. Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions. Development 2003; 130:3447-57. [PMID: 12810592 DOI: 10.1242/dev.00519] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Colour patterns are a prominent feature of many animals and are of high evolutionary relevance. In zebrafish, the adult pigment pattern comprises alternating stripes of two pigment cell types, melanophores and xanthophores. How the stripes are defined and a straight boundary is formed remains elusive. We find that mutants lacking one pigment cell type lack a striped pattern. Instead, cells of one type form characteristic patterns by homotypic interactions. Using mosaic analysis, we show that juxtaposition of melanophores and xanthophores suffices to restore stripe formation locally. Based on this, we have analysed the pigment pattern of two adult specific mutants: leopard and obelix. We demonstrate that obelix is required in melanophores to promote their aggregation and controls boundary integrity. By contrast, leopard regulates homotypic interaction within both melanophores and xanthophores, and interaction between the two, thus controlling boundary shape. These findings support a view in which cell-cell interactions among pigment cells are the major driving force for adult pigment pattern formation.
Collapse
Affiliation(s)
- Florian Maderspacher
- Max-Planck-Institut für Entwicklungsbiologie, Abt. III/Genetik, Spemannstrasse 35, 72076 Tübingen, Germany.
| | | |
Collapse
|
77
|
Parichy DM, Turner JM, Parker NB. Essential role for puma in development of postembryonic neural crest-derived cell lineages in zebrafish. Dev Biol 2003; 256:221-41. [PMID: 12679099 DOI: 10.1016/s0012-1606(03)00016-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Multipotent neural crest stem cells have been identified in late gestation amniote embryos. Yet, significant questions remain about the mechanisms by which these cells are generated, maintained, and recruited during postembryonic development. The zebrafish, Danio rerio, offers an opportunity to identify genes essential for these processes, by screening for mutants with defects in traits likely to depend on these cells during metamorphosis and adult life. One such trait is the pigment pattern formed by neural crest-derived pigment cells, or chromatophores, which include black melanophores, yellow xanthophores, and iridescent iridophores. Previous analyses have demonstrated that the adult zebrafish pigment pattern depends on the de novo differentiation of latent precursor cells during both early and late phases of pigment pattern metamorphosis. To better understand the development of these cells, in this study, we analyze the zebrafish puma mutant, which ablates most of the adult melanophores that differentiate during metamorphosis, but leaves intact early larval melanophores that differentiate during embryogenesis. We use epistasis analyses to show that puma promotes the development of both early-appearing metamorphic melanophores that depend on the kit receptor tyrosine kinase, as well as late-appearing metamorphic melanophores that depend on both the G-protein-coupled endothelin receptor b1 (ednrb1) and the kit-related fms receptor tyrosine kinase. We further demonstrate that, during pigment pattern metamorphosis, puma mutants have deficiencies in the numbers of cells expressing transcripts for kit, ednrb1, and fms, as well as the HMG domain transcription factor sox10. Because the puma mutant phenotype is temperature-sensitive, we use temperature-shift experiments to identify a critical period for puma activity during pigment pattern metamorphosis. Finally, we use cell transplantations to show that puma acts cell-autonomously to promote the expansion of pigment cell lineages during metamorphosis. These results suggest a model for the lineage diversification of neural crest stem cells during zebrafish postembryonic development.
Collapse
Affiliation(s)
- David M Parichy
- Section of Integrative Biology, Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station, C0930, Austin, TX 78712, USA.
| | | | | |
Collapse
|