51
|
Pepperkok R, Ellenberg J. High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 2006; 7:690-6. [PMID: 16850035 DOI: 10.1038/nrm1979] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this post-genomic era, we need to define gene function on a genome-wide scale for model organisms and humans. The fundamental unit of biological processes is the cell. Among the most powerful tools to assay such processes in the physiological context of intact living cells are fluorescence microscopy and related imaging techniques. To enable these techniques to be applied to functional genomics experiments, fluorescence microscopy is making the transition to a quantitative and high-throughput technology.
Collapse
Affiliation(s)
- Rainer Pepperkok
- Cell Biology/Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | | |
Collapse
|
52
|
Hu YH, Warnatz HJ, Vanhecke D, Wagner F, Fiebitz A, Thamm S, Kahlem P, Lehrach H, Yaspo ML, Janitz M. Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins. BMC Genomics 2006; 7:155. [PMID: 16780588 PMCID: PMC1526728 DOI: 10.1186/1471-2164-7-155] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/16/2006] [Indexed: 11/10/2022] Open
Abstract
Background Trisomy of human chromosome 21 (Chr21) results in Down's syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins. Results We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb) to MCM3AP (46.6 Mb), with part of them expressed aberrantly in the Down's syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized. Conclusion The cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Down's syndrome.
Collapse
Affiliation(s)
- Yu-Hui Hu
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- FU Berlin, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dominique Vanhecke
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Florian Wagner
- RZPD German Resource Center for Genome Research, 14059 Berlin, Germany
| | - Andrea Fiebitz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sabine Thamm
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pascal Kahlem
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Humboldt University, Charite, Berlin, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michal Janitz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
53
|
Palmer EL, Miller AD, Freeman TC. Identification and characterisation of human apoptosis inducing proteins using cell-based transfection microarrays and expression analysis. BMC Genomics 2006; 7:145. [PMID: 16768789 PMCID: PMC1525185 DOI: 10.1186/1471-2164-7-145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 06/12/2006] [Indexed: 11/10/2022] Open
Abstract
Background Cell-based microarrays were first described by Ziauddin and Sabatini in 2001 as a powerful new approach for performing high throughput screens of gene function. An important application of cell-based microarrays is in screening for proteins that modulate gene networks. To this end, cells are grown over the surface of arrays of RNAi or expression reagents. Cells growing in the immediate vicinity of the arrayed reagents are transfected and the arrays can then be scanned for cells showing localised changes in function. Here we describe the construction of a large-scale microarray using expression plasmids containing human genes, its use in screening for genes that induce apoptosis when over-expressed and the characterisation of a number of these genes by following the transcriptional response of cell cultures during their induction of apoptosis. Results High-density cell-based arrays were successfully fabricated using 1,959 un-tagged open reading frames (ORFs) taken from the Mammalian Gene Collection (MGC) in mammalian expression vectors. The arrays were then used to screen for genes inducing apoptosis in Human Embryonic Kidney (HEK293T) cells. Using this approach, 10 genes were clearly identified and confirmed to induce apoptosis. Some of these genes have previously been linked to apoptosis, others not. The mechanism of action of three of the 10 genes were then characterised further by following the transcriptional events associated with apoptosis induction using expression profiling microarrays. This data demonstrates a clear pro-apoptotic transcriptional response in cells undergoing apoptosis and also suggests the use of common apoptotic pathways regardless of the nature of the over-expressed protein triggering cell death. Conclusion This study reports the design and use of the first truly large-scale cell-based microarrays for over-expression studies. Ten genes were confirmed to induce apoptosis, some of which were not previously known to possess this activity. Transcriptome analysis on three of the 10 genes demonstrated their use of similar pathways to invoke apoptosis.
Collapse
Affiliation(s)
- Ella L Palmer
- MRC Rosalind Franklin Centre for Genomics Research (RFCGR), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SB, UK
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew D Miller
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Tom C Freeman
- MRC Rosalind Franklin Centre for Genomics Research (RFCGR), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SB, UK
| |
Collapse
|
54
|
Abstract
Systems biology aims to study complex biological processes, such as intracellular traffic, as a whole. Systematic genome-wide assays have the potential to identify the transport machinery, delineate pathways and uncover the molecular components of physiological processes that influence trafficking. A goal of this approach is to create predictive models of intracellular trafficking pathways that reflect these relationships. In this review, we highlight current genome-wide technologies of particular relevance to vesicle transport and describe recent applications of these technologies in the framework of systems biology. Systems approaches hold great promise for placing trafficking pathways in their cellular contexts.
Collapse
Affiliation(s)
- Nicole R Quenneville
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
55
|
Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R, Ellenberg J. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 2006; 3:385-90. [PMID: 16628209 DOI: 10.1038/nmeth876] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 03/22/2006] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is a powerful tool to study gene function in cultured cells. Transfected cell microarrays in principle allow high-throughput phenotypic analysis after gene knockdown by microscopy. But bottlenecks in imaging and data analysis have limited such high-content screens to endpoint assays in fixed cells and determination of global parameters such as viability. Here we have overcome these limitations and developed an automated platform for high-content RNAi screening by time-lapse fluorescence microscopy of live HeLa cells expressing histone-GFP to report on chromosome segregation and structure. We automated all steps, including printing transfection-ready small interfering RNA (siRNA) microarrays, fluorescence imaging and computational phenotyping of digital images, in a high-throughput workflow. We validated this method in a pilot screen assaying cell division and delivered a sensitive, time-resolved phenoprint for each of the 49 endogenous genes we suppressed. This modular platform is scalable and makes the power of time-lapse microscopy available for genome-wide RNAi screens.
Collapse
Affiliation(s)
- Beate Neumann
- MitoCheck Project Group, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
56
|
Lorenz H, Hailey DW, Lippincott-Schwartz J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 2006; 3:205-10. [PMID: 16489338 DOI: 10.1038/nmeth857] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 01/20/2006] [Indexed: 11/08/2022]
Abstract
Understanding the cell biology of many proteins requires knowledge of their in vivo topological distribution. Here we describe a new fluorescence-based technique, fluorescence protease protection (FPP), for investigating the topology of proteins and for localizing protein subpopulations within the complex environment of the living cell. In the FPP assay, adapted from biochemical protease protection assays, GFP fusion proteins are used as noninvasive tools to obtain details of protein topology and localization within living cells in a rapid and straightforward manner. To demonstrate the broad applicability of FPP, we used the technique to define the topology of proteins localized to a wide range of organelles including the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, peroxisomes and autophagosomes. The success of the FPP assay in characterizing the topology of the tested proteins within their appropriate compartments suggests this technique has wide applicability in studying protein topology and localization within the cell.
Collapse
Affiliation(s)
- Holger Lorenz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T Library Drive, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
57
|
Wolff H, Hadian K, Ziegler M, Weierich C, Kramer-Hammerle S, Kleinschmidt A, Erfle V, Brack-Werner R. Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging. Exp Cell Res 2006; 312:443-56. [PMID: 16368434 DOI: 10.1016/j.yexcr.2005.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 10/10/2005] [Accepted: 11/09/2005] [Indexed: 10/21/2022]
Abstract
The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Astrocytes/metabolism
- Astrocytes/virology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytophotometry/methods
- Cytoplasm/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation, Viral
- Gene Products, gag/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, rev/physiology
- HIV/genetics
- HIV/metabolism
- HeLa Cells
- Humans
- Image Processing, Computer-Assisted/methods
- Karyopherins/antagonists & inhibitors
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Molecular Sequence Data
- Mutation/genetics
- Plasmids/genetics
- Protein Precursors/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Sequence Homology, Amino Acid
- Transcriptional Activation/genetics
- Transfection
- Viral Structural Proteins/metabolism
- rev Gene Products, Human Immunodeficiency Virus
- Red Fluorescent Protein
- Exportin 1 Protein
Collapse
Affiliation(s)
- Horst Wolff
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstaedterlandstr. 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Accomplishment of the human and mouse genome projects resulted in accumulation of extensive gene sequence information. However, the information about the biological functions of the identified genes remains a bottleneck of the post-genomic era. Hence, assays providing simple functional information, such as localization of the protein within the cell, can be very helpful in the elucidation of its function. Transfected cell arrays offer a robust platform for protein localization studies. Open reading frames of unknown genes can be linked to a His6-tag or GFP (green fluorescent protein) reporter in expression vectors and subsequently transfected using the cell array. Cellular localization of the transfected proteins is detected either by specific anti-His-tag antibodies or directly by fluorescence of the GFP fusion protein and by counterstaining with organelle-specific dyes. The high throughput of the method in terms of information provided for every single experiment makes this approach superior to classical immunohistological methods for protein localization.
Collapse
|
59
|
Arlt D, Huber W, Liebel U, Schmidt C, Majety M, Sauermann M, Rosenfelder H, Bechtel S, Mehrle A, Bannasch D, Schupp I, Seiler M, Simpson JC, Hahne F, Moosmayer P, Ruschhaupt M, Guilleaume B, Wellenreuther R, Pepperkok R, Sültmann H, Poustka A, Wiemann S. Functional profiling: from microarrays via cell-based assays to novel tumor relevant modulators of the cell cycle. Cancer Res 2005; 65:7733-42. [PMID: 16140941 DOI: 10.1158/0008-5472.can-05-0642] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer transcription microarray studies commonly deliver long lists of "candidate" genes that are putatively associated with the respective disease. For many of these genes, no functional information, even less their relevance in pathologic conditions, is established as they were identified in large-scale genomics approaches. Strategies and tools are thus needed to distinguish genes and proteins with mere tumor association from those causally related to cancer. Here, we describe a functional profiling approach, where we analyzed 103 previously uncharacterized genes in cancer relevant assays that probed their effects on DNA replication (cell proliferation). The genes had previously been identified as differentially expressed in genome-wide microarray studies of tumors. Using an automated high-throughput assay with single-cell resolution, we discovered seven activators and nine repressors of DNA replication. These were further characterized for effects on extracellular signal-regulated kinase 1/2 (ERK1/2) signaling (G1-S transition) and anchorage-independent growth (tumorigenicity). One activator and one inhibitor protein of ERK1/2 activation and three repressors of anchorage-independent growth were identified. Data from tumor and functional profiling make these proteins novel prime candidates for further in-depth study of their roles in cancer development and progression. We have established a novel functional profiling strategy that links genomics to cell biology and showed its potential for discerning cancer relevant modulators of the cell cycle in the candidate lists from microarray studies.
Collapse
Affiliation(s)
- Dorit Arlt
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
The comprehensive study of proteomes has become an important part of attempts to uncover the systemic properties of biological systems. Proteomics provides data of a quality which increasingly fulfills strict requirements of systems biology for quantitative and qualitative information. Notably, proteomics can generate rich datasets that describe dynamic changes of proteomes. On the other hand, large-scale modeling requires the development of mathematic tools that are adequate for the processing of largely uncertain biological data. In this review, recent developments that pave the way for the integration of proteomics into systems biology are discussed. These developments include the standardization of data acquisition and presentation, the increased comprehensiveness of proteomics studies in description of functional status, localization and dynamics of proteins, and advanced modeling approaches.
Collapse
|
61
|
|
62
|
Abstract
Cell-based microarrays were first described by Ziauddin and Sabatini in 2001 as a novel method for performing high-throughput screens of gene function. In this study, expression vectors containing the open reading frame of human genes were printed onto glass microscope slides to form a microarray. Transfection reagents were added pre- or post-spotting, and cells grown over the surface of the array. They demonstrated that cells growing in the immediate vicinity of the expression vectors underwent ‘reverse transfection’, and that subsequent alterations in cell function could then be detected by secondary assays performed on the array. Subsequent publications have adapted the technique to a variety of applications, and have also shown that the approach works when arrays are fabricated using short interfering RNAs and compounds. The potential of this method for performing analyses of gene function and for identifying novel therapeutic agents has been clearly demonstrated, and current efforts are focused on improving and harnessing this technology for high-throughput screening applications.
Collapse
Affiliation(s)
- Ella Palmer
- MRC Rosalind Franklin Centre for Genomics Research (RFCGR), Wellcome Trust Genome Campus, Hinxton, Cambridge. CB10 1SB, UK
| | | |
Collapse
|
63
|
Abstract
Image mining is the application of computer-based techniques that extract and exploit information from large image sets to support human users in generating knowledge from these sources. This review focuses on biomedical applications, in particular automated imaging at the cellular level. An image database is an interactive software application that combines data management, image analysis and visual data mining. The main characteristic of such a system is a layer that represents objects within an image, and that represents a large spectrum of quantitative and semantic object features. The image analysis needs to be adapted to each particular experiment, so 'end-user programming' will be desirable to make the technology more widely applicable.
Collapse
Affiliation(s)
- Thomas Berlage
- Fraunhofer Institute for Applied Information Technology (FIT), Schloss Birlinghoven, 53754 Sankt Augustin, Germany.
| |
Collapse
|
64
|
Wheeler DB, Carpenter AE, Sabatini DM. Cell microarrays and RNA interference chip away at gene function. Nat Genet 2005; 37 Suppl:S25-30. [PMID: 15920526 DOI: 10.1038/ng1560] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent development of cell microarrays offers the potential to accelerate high-throughput functional genetic studies. The widespread use of RNA interference (RNAi) has prompted several groups to fabricate RNAi cell microarrays that make possible discrete, in-parallel transfection with thousands of RNAi reagents on a microarray slide. Though still a budding technology, RNAi cell microarrays promise to increase the efficiency, economy and ease of genome-wide RNAi screens in metazoan cells.
Collapse
Affiliation(s)
- Douglas B Wheeler
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
65
|
Knauer SK, Moodt S, Berg T, Liebel U, Pepperkok R, Stauber RH. Translocation Biosensors to Study Signal-Specific Nucleo-Cytoplasmic Transport, Protease Activity and Protein-Protein Interactions. Traffic 2005; 6:594-606. [PMID: 15941410 DOI: 10.1111/j.1600-0854.2005.00298.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulated nucleo-cytoplasmic transport is crucial for cellular homeostasis and relies on protein interaction networks. In addition, the spatial division into the nucleus and the cytoplasm marks two intracellular compartments that can easily be distinguished by microscopy. Consequently, combining the rules for regulated nucleo-cytoplasmic transport with autofluorescent proteins, we developed novel cellular biosensors composed of glutathione S-transferase, mutants of green fluorescent protein and rational combinations of nuclear import and export signals. Addition of regulatory sequences resulted in three classes of biosensors applicable for the identification of signal-specific nuclear export and import inhibitors, small molecules that interfere with protease activity and compounds that prevent specific protein-protein interactions in living cells. As a unique feature, our system exploits nuclear accumulation of the cytoplasmic biosensors as the reliable readout for all assays. Efficacy of the biosensors was systematically investigated and also demonstrated by using a fully automated platform for high throughput screening (HTS) microscopy and assay analysis. The introduced modular biosensors not only have the potential to further dissect nucleo-cytoplasmic transport pathways but also to be employed in numerous screening applications for the early stage evaluation of potential drug candidates.
Collapse
Affiliation(s)
- Shirley K Knauer
- Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Isalan M, Santori MI, Gonzalez C, Serrano L. Localized transfection on arrays of magnetic beads coated with PCR products. Nat Methods 2005; 2:113-8. [PMID: 15782208 PMCID: PMC2666273 DOI: 10.1038/nmeth732] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 12/13/2004] [Indexed: 11/09/2022]
Abstract
High-throughput gene analysis would benefit from new approaches for delivering DNA or RNA into cells. Here we describe a simple system that allows any molecular biology laboratory to carry out multiple, parallel cell transfections on microscope coverslip arrays. By using magnetically defined positions and PCR product-coated paramagnetic beads, we achieved transfection in a variety of cell lines. Beads may be added to the cells at any time, allowing both spatial and temporal control of transfection. Because the beads may be coated with more than one gene construct, the method can be used to achieve cotransfection within single cells. Furthermore, PCR-generated mutants may be conveniently screened, bypassing cloning and plasmid purification steps. We illustrated the applicability of the method by screening combinatorial peptide libraries, fused to GFP, to identify previously unknown cellular localization motifs. In this way, we identified several localizing peptides, including structured localization signals based around the scaffold of a single C2H2 zinc finger.
Collapse
Affiliation(s)
- Mark Isalan
- EMBL, Meyerhofstrasse 1, Heidelberg D-69117, Germany.
| | | | | | | |
Collapse
|
67
|
Abstract
In this chapter we describe protocols for reverse transfection to generate mammalian cell arrays for systematic gene knock-downs by RNAi or knock-ins by ectopic cDNA expression. The method is suitable for high content screening microscopy at a high spatial and temporal resolution allowing even time-lapse analysis of hundreds of samples in parallel.
Collapse
Affiliation(s)
- Holger Erfle
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
68
|
Pepperkok R, Simpson JC, Rietdorf J, Cetin C, Liebel U, Terjung S, Zimmermann T. Imaging Platforms for Measurement of Membrane Trafficking. Methods Enzymol 2005; 404:8-18. [PMID: 16413253 DOI: 10.1016/s0076-6879(05)04002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this chapter we describe automated imaging methods used to measure the transport of an established membrane transport marker from the endoplasmic reticulum to the plasma membrane. The method is fast and significantly robust to be applied in systematic studies on a large scale such as genome-wide screening projects. We further describe the use of software macros and plugins in Image J that allow the quantification of the kinetics of membrane transport intermediates in fluorescence microscopy time-lapse sequences.
Collapse
Affiliation(s)
- Rainer Pepperkok
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
69
|
Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H, Poustka A. From ORFeome to biology: a functional genomics pipeline. Genome Res 2004; 14:2136-44. [PMID: 15489336 PMCID: PMC528930 DOI: 10.1101/gr.2576704] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.
Collapse
Affiliation(s)
- Stefan Wiemann
- Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Starkuviene V, Liebel U, Simpson JC, Erfle H, Poustka A, Wiemann S, Pepperkok R. High-content screening microscopy identifies novel proteins with a putative role in secretory membrane traffic. Genome Res 2004; 14:1948-56. [PMID: 15466293 PMCID: PMC524419 DOI: 10.1101/gr.2658304] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we describe the establishment of microscope-based functional screening assays in intact cells that allow us to systematically identify new proteins involved in secretory membrane traffic, and proteins that can influence the integrity of the Golgi complex. We were able to identify 20 new proteins that affected either secretory transport, Golgi morphology, or both, when overexpressed in cells. Control experiments with human orthologs to yeast proteins with a role in membrane traffic, or already well characterized mammalian regulators of the secretory pathway, confirmed the specificity and significance of our results. Proteins localized to the Golgi complex or endoplasmic reticulum (ER) showed preferential interference in our assays. Bioinformatic analysis of the new proteins interfering with membrane traffic and/or Golgi integrity revealed broad functional variety, but demonstrated a bias towards proteins with predicted coiled-coil domains and repeat structures. Extending our approach to a much larger set of novel proteins in the future will be an important step toward a more comprehensive understanding of the molecular basis of the secretory pathway. It will also serve as an example for similar microscope-based screens addressing different biological questions.
Collapse
Affiliation(s)
- Vytaute Starkuviene
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Nuclear architecture - the spatial arrangement of chromosomes and other nuclear components - provides a framework for organizing and regulating the diverse functional processes within the nucleus. There are characteristic differences in the nuclear architectures of cancer cells, compared with normal cells, and some anticancer treatments restore normal nuclear structure and function. Advances in understanding nuclear structure have revealed insights into the process of malignant transformation and provide a basis for the development of new diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Daniele Zink
- University of Munich (LMU), Department of Biology II, Goethestr. 31, 80336 Munich, Germany.
| | | | | |
Collapse
|
72
|
Erfle H, Simpson JC, Bastiaens PIH, Pepperkok R. siRNA cell arrays for high-content screening microscopy. Biotechniques 2004; 37:454-8, 460, 462. [PMID: 15470900 DOI: 10.2144/04373rt01] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a recent advance that provides the possibility to reduce the expression of specific target genes in cultured mammalian cells with potential applications on a genome-wide scale. However, to achieve this, robust methodologies that allow automated and efficient delivery of small interfering RNAs (siRNAs) into living cultured cells and reliable quality control of siRNA function must be in place. Here we describe the production of cell arrays for reverse transfection of tissue culture cells with siRNA and plasmid DNA suitable for subsequent high-content screening microscopy applications. All the necessary transfection components are mixed prior to the robotic spotting on noncoated chambered coverglass tissue culture dishes, which are ideally suited for time-lapse microscopy applications in living cells. The addition of fibronectin to the spotting solution improves cell adherence. After cell seeding, no further cell culture manipulations, such as medium changes or the addition of 7serum, are needed. Adaptation of the cell density improves autofocus performance for high-quality data acquisition and cell recognition. The co-transfection of a nonspecific fluorescently labeled DNA oligomer with the specific siRNA helps to mark each successfully transfected cell and cell cluster. We demonstrate such an siRNA cell array in a microscope-based functional assay in living cells to determine the effect of various siRNA oligonucleotides against endogenous targets on cellular secretion.
Collapse
Affiliation(s)
- Holger Erfle
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
73
|
Conrad C, Erfle H, Warnat P, Daigle N, Lörch T, Ellenberg J, Pepperkok R, Eils R. Automatic identification of subcellular phenotypes on human cell arrays. Genome Res 2004; 14:1130-6. [PMID: 15173118 PMCID: PMC419791 DOI: 10.1101/gr.2383804] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Light microscopic analysis of cell morphology provides a high-content readout of cell function and protein localization. Cell arrays and microwell transfection assays on cultured cells have made cell phenotype analysis accessible to high-throughput experiments. Both the localization of each protein in the proteome and the effect of RNAi knock-down of individual genes on cell morphology can be assayed by manual inspection of microscopic images. However, the use of morphological readouts for functional genomics requires fast and automatic identification of complex cellular phenotypes. Here, we present a fully automated platform for high-throughput cell phenotype screening combining human live cell arrays, screening microscopy, and machine-learning-based classification methods. Efficiency of this platform is demonstrated by classification of eleven subcellular patterns marked by GFP-tagged proteins. Our classification method can be adapted to virtually any microscopic assay based on cell morphology, opening a wide range of applications including large-scale RNAi screening in human cells.
Collapse
Affiliation(s)
- Christian Conrad
- Intelligent Bioinformatics Systems, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.
Collapse
Affiliation(s)
- Paul A Gleeson
- The Russell Grimwade School of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
75
|
Chang FH, Lee CH, Chen MT, Kuo CC, Chiang YL, Hang CY, Roffler S. Surfection: a new platform for transfected cell arrays. Nucleic Acids Res 2004; 32:e33. [PMID: 14973329 PMCID: PMC373424 DOI: 10.1093/nar/gnh029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Efficient high-throughput expression of genes in mammalian cells can facilitate large-scale functional genomic studies. Towards this aim, we developed a simple yet powerful method to deliver genes into cells by cationic polymers on the surface of substrates. Transfection can be achieved by directly contacting nucleic acid-cell mixtures with the cationic substrates, e.g. polyethylenimine/collagen-coated wells. This single-step matrix-surface- mediated transfection method, termed 'surfection', can efficiently deliver multiple plasmids into cells and can successfully assay siRNA-mediated gene silencing. This technology represents the easiest method to transfer combinations of genes in large-scale arrays, and is a versatile tool for live-cell imaging and cell-based drug screening.
Collapse
Affiliation(s)
- Fu-Hsiung Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|