Slawson C, Zachara NE, Vosseller K, Cheung WD, Lane MD, Hart GW. Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis.
J Biol Chem 2005;
280:32944-56. [PMID:
16027160 DOI:
10.1074/jbc.m503396200]
[Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynamic modification of nuclear and cytoplasmic proteins with O-linked beta-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification that is rapidly responsive to morphogens, hormones, nutrients, and cellular stress. Here we show that O-GlcNAc is an important regulator of the cell cycle. Increased O-GlcNAc (pharmacologically or genetically) results in growth defects linked to delays in G2/M progression, altered mitotic phosphorylation, and cyclin expression. Overexpression of O-GlcNAcase, the enzyme that removes O-GlcNAc, induces a mitotic exit phenotype accompanied by a delay in mitotic phosphorylation, altered cyclin expression, and pronounced disruption in nuclear organization. Overexpression of the O-GlcNAc transferase, the enzyme that adds O-GlcNAc, results in a polyploid phenotype with faulty cytokinesis. Notably, O-GlcNAc transferase is concentrated at the mitotic spindle and midbody at M phase. These data suggest that dynamic O-GlcNAc processing is a pivotal regulatory component of the cell cycle, controlling cell cycle progression by regulating mitotic phosphorylation, cyclin expression, and cell division.
Collapse