51
|
Roher AE, Maarouf CL, Daugs ID, Kokjohn TA, Hunter JM, Sabbagh MN, Beach TG. Neuropathology and amyloid-β spectrum in a bapineuzumab immunotherapy recipient. J Alzheimers Dis 2011; 24:315-25. [PMID: 21263194 PMCID: PMC3172868 DOI: 10.3233/jad-2011-101809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The field of Alzheimer's disease (AD) research eagerly awaits the results of a large number of Phase III clinical trials that are underway to investigate the effectiveness of anti-amyloid-β (Aβ) immunotherapy for AD. In this case report, we review the pertinent clinical history, examine the neuropathology, and characterize the Aβ profile of an AD patient who received bapineuzumab immunotherapy. The patient received four bapineuzumab infusions over a 39 week period. During the course of this treatment, there was no remarkable change in cognitive impairment as determined by MMSE scores. Forty-eight days after the fourth bapineuzumab infusion was given, MRI revealed that the patient had developed lacunar infarcts and possible vasogenic edema, probably related to immunotherapy, but a subsequent MRI scan 38 days later demonstrated resolution of vasogenic edema. The patient expired due to acute congestive heart failure complicated by progressive AD and cerebrovascular accident 378 days after the first bapineuzumab infusion and 107 days after the end of therapy. Neuropathological and biochemical analysis did not produce evidence of lasting plaque regression or clearance of Aβ due to immunotherapy. The Aβ species profile of this case was compared with non-immunized AD cases and non-demented controls and found to be similar to non-immunized AD cases. SELDI-TOF mass spectrometric analysis revealed the presence of full-length Aβ₁₋₄₂ and truncated Aβ peptides demonstrating species with and without bapineuzumab specific epitopes. These results suggest that, in this particular case, bapineuzumab immunotherapy neither resulted in detectable clearance of amyloid plaques nor prevented further cognitive impairment.
Collapse
Affiliation(s)
- Alex E Roher
- Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | |
Collapse
|
52
|
Schaeffer EL, Figueiro M, Gattaz WF. Insights into Alzheimer disease pathogenesis from studies in transgenic animal models. Clinics (Sao Paulo) 2011; 66 Suppl 1:45-54. [PMID: 21779722 PMCID: PMC3118437 DOI: 10.1590/s1807-59322011001300006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/16/2023] Open
Abstract
Alzheimer disease is the most common cause of dementia among the elderly, accounting for ~60-70% of all cases of dementia. The neuropathological hallmarks of Alzheimer disease are senile plaques (mainly containing p-amyloid peptide derived from amyloid precursor protein) and neurofibrillary tangles (containing hyperphosphorylated Tau protein), along with neuronal loss. At present there is no effective treatment for Alzheimer disease. Given the prevalence and poor prognosis of the disease, the development of animal models has been a research priority to understand pathogenic mechanisms and to test therapeutic strategies. Most cases of Alzheimer disease occur sporadically in people over 65 years old, and are not genetically inherited. Roughly 5% of patients with Alzheimer disease have familial Alzheimer disease--that is, related to a genetic predisposition, including mutations in the amyloid precursor protein, presenilin 1, and presenilin 2 genes. The discovery of genes for familial Alzheimer disease has allowed transgenic models to be generated through the overexpression of the amyloid precursor protein and/or presenilins harboring one or several mutations found in familial Alzheimer disease. Although none of these models fully replicates the human disease, they have provided valuable insights into disease mechanisms as well as opportunities to test therapeutic approaches. This review describes the main transgenic mouse models of Alzheimer disease which have been adopted in Alzheimer disease research, and discusses the insights into Alzheimer disease pathogenesis from studies in such models. In summary, the Alzheimer disease mouse models have been the key to understanding the roles of soluble b-amyloid oligomers in disease pathogenesis, as well as of the relationship between p-amyloid and Tau pathologies.
Collapse
Affiliation(s)
- Evelin L Schaeffer
- Laboratory of Neuroscience, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil.
| | | | | |
Collapse
|
53
|
Rostagno A, Holton JL, Lashley T, Revesz T, Ghiso J. Cerebral amyloidosis: amyloid subunits, mutants and phenotypes. Cell Mol Life Sci 2010; 67:581-600. [PMID: 19898742 PMCID: PMC3410709 DOI: 10.1007/s00018-009-0182-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
Cerebral amyloid diseases are part of a complex group of chronic and progressive entities bracketed together under the common denomination of protein folding disorders and characterized by the intra- and extracellular accumulation of fibrillar aggregates. Of the more than 25 unrelated proteins known to produce amyloidosis in humans only about a third of them are associated with cerebral deposits translating in cognitive deficits, dementia, stroke, cerebellar and extrapyramidal signs, or a combination thereof. The familial forms reviewed herein, although infrequent, provide unique paradigms to examine the role of amyloid in the mechanism of disease pathogenesis and to dissect the link between vascular and parenchymal amyloid deposition and their differential contribution to neurodegeneration.
Collapse
Affiliation(s)
- A Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
54
|
Wirths O, Bethge T, Marcello A, Harmeier A, Jawhar S, Lucassen PJ, Multhaup G, Brody DL, Esparza T, Ingelsson M, Kalimo H, Lannfelt L, Bayer TA. Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer's disease cases. J Neural Transm (Vienna) 2010; 117:85-96. [PMID: 19823761 PMCID: PMC2789212 DOI: 10.1007/s00702-009-0314-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/04/2009] [Indexed: 01/22/2023]
Abstract
The presence of Abeta(pE3) (N-terminal truncated Abeta starting with pyroglutamate) in Alzheimer's disease (AD) has received considerable attention since the discovery that this peptide represents a dominant fraction of Abeta peptides in senile plaques of AD brains. This was later confirmed by other reports investigating AD and Down's syndrome postmortem brain tissue. Importantly, Abeta(pE3) has a higher aggregation propensity, and stability, and shows an increased toxicity compared to full-length Abeta. We have recently shown that intraneuronal accumulation of Abeta(pE3) peptides induces a severe neuron loss and an associated neurological phenotype in the TBA2 mouse model for AD. Given the increasing interest in Abeta(pE3), we have generated two novel monoclonal antibodies which were characterized as highly specific for Abeta(pE3) peptides and herein used to analyze plaque deposition in APP/PS1KI mice, an AD model with severe neuron loss and learning deficits. This was compared with the plaque pattern present in brain tissue from sporadic and familial AD cases. Abundant plaques positive for Abeta(pE3) were present in patients with sporadic AD and familial AD including those carrying mutations in APP (arctic and Swedish) and PS1. Interestingly, in APP/PS1KI mice we observed a continuous increase in Abeta(pE3) plaque load with increasing age, while the density for Abeta(1-x ) plaques declined with aging. We therefore assume that, in particular, the peptides starting with position 1 of Abeta are N-truncated as disease progresses, and that, Abeta(pE3) positive plaques are resistant to age-dependent degradation likely due to their high stability and propensity to aggregate.
Collapse
Affiliation(s)
- Oliver Wirths
- Division of Molecular Psychiatry, Department of Psychiatry, University of Goettingen, Göttingen, Germany
- NEURAD International Alzheimer Graduate School, Göttingen, Germany
| | - Tobias Bethge
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
- NEURAD International Alzheimer Graduate School, Göttingen, Germany
| | - Andrea Marcello
- Division of Molecular Psychiatry, Department of Psychiatry, University of Goettingen, Göttingen, Germany
- NEURAD International Alzheimer Graduate School, Göttingen, Germany
| | - Anja Harmeier
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Sadim Jawhar
- Division of Molecular Psychiatry, Department of Psychiatry, University of Goettingen, Göttingen, Germany
- NEURAD International Alzheimer Graduate School, Göttingen, Germany
| | - Paul J. Lucassen
- Center for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- NEURAD International Alzheimer Graduate School, Göttingen, Germany
| | - Gerd Multhaup
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
- NEURAD International Alzheimer Graduate School, Göttingen, Germany
| | - David L. Brody
- Department of Neurology, Washington University, St. Louis, USA
| | - Thomas Esparza
- Department of Neurology, Washington University, St. Louis, USA
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden
| | - Hannu Kalimo
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden
| | - Thomas A. Bayer
- Division of Molecular Psychiatry, Department of Psychiatry, University of Goettingen, Göttingen, Germany
- NEURAD International Alzheimer Graduate School, Göttingen, Germany
- Division of Molecular Psychiatry, Department of Psychiatry, University of Goettingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| |
Collapse
|
55
|
D'Arrigo C, Tabaton M, Perico A. N-terminal truncated pyroglutamyl beta amyloid peptide Abetapy3-42 shows a faster aggregation kinetics than the full-length Abeta1-42. Biopolymers 2009; 91:861-73. [PMID: 19562755 DOI: 10.1002/bip.21271] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We tested directly the differences in the aggregation kinetics of three important beta amyloid peptides, the full-length Abeta1-42, and the two N-terminal truncated and pyroglutamil modified Abetapy3-42 and Abetapy11-42 found in different relative concentrations in the brains in normal aging and in Alzheimer disease. By following the circular dichroism signal and the ThT fluorescence of the solution in phosphate buffer, we found substantially faster aggregation kinetics for Abetapy3-42. This behavior is due to the particular sequence of this peptide, which is also responsible for the specific oligomeric aggregation states, found by TEM, during the fibrillization process, which are very different from those of Abeta1-42, more prone to fibril formation. In addition, Abetapy3-42 is found here to have an inhibitory effect on Abeta1-42 fibrillogenesis, coherently with its known greater infective power. This is an indication of the important role of this peptide in the aggregation process of beta-peptides in Alzheimer disease.
Collapse
Affiliation(s)
- Cristina D'Arrigo
- Institute for Macromolecular Studies, National Research Council, 16149 Genoa, Italy
| | | | | |
Collapse
|
56
|
Wirths O, Breyhan H, Cynis H, Schilling S, Demuth HU, Bayer TA. Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 2009; 118:487-96. [PMID: 19547991 PMCID: PMC2737116 DOI: 10.1007/s00401-009-0557-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 11/11/2022]
Abstract
It is well established that only a fraction of Aβ peptides in the brain of Alzheimer’s disease (AD) patients start with N-terminal aspartate (Aβ1D) which is generated by proteolytic processing of amyloid precursor protein (APP) by BACE. N-terminally truncated and pyroglutamate modified Aβ starting at position 3 and ending with amino acid 42 [Aβ3(pE)–42] have been previously shown to represent a major species in the brain of AD patients. When compared with Aβ1–42, this peptide has stronger aggregation propensity and increased toxicity in vitro. Although it is unknown which peptidases remove the first two N-terminal amino acids, the cyclization of Aβ at N-terminal glutamate can be catalyzed in vitro. Here, we show that Aβ3(pE)–42 induces neurodegeneration and concomitant neurological deficits in a novel mouse model (TBA2 transgenic mice). Although TBA2 transgenic mice exhibit a strong neuronal expression of Aβ3–42 predominantly in hippocampus and cerebellum, few plaques were found in the cortex, cerebellum, brain stem and thalamus. The levels of converted Aβ3(pE)-42 in TBA2 mice were comparable to the APP/PS1KI mouse model with robust neuron loss and associated behavioral deficits. Eight weeks after birth TBA2 mice developed massive neurological impairments together with abundant loss of Purkinje cells. Although the TBA2 model lacks important AD-typical neuropathological features like tangles and hippocampal degeneration, it clearly demonstrates that intraneuronal Aβ3(pE)–42 is neurotoxic in vivo.
Collapse
|
57
|
Marcello A, Wirths O, Schneider-Axmann T, Degerman-Gunnarsson M, Lannfelt L, Bayer TA. Reduced levels of IgM autoantibodies against N-truncated pyroglutamate Aβ in plasma of patients with Alzheimer's disease. Neurobiol Aging 2009; 32:1379-87. [PMID: 19781815 DOI: 10.1016/j.neurobiolaging.2009.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/10/2009] [Accepted: 08/25/2009] [Indexed: 12/23/2022]
Abstract
In the present work, we investigated the level of IgM autoantibodies directed against different Aβ epitopes as potential diagnostic biomarker for Alzheimer's disease (AD). Anti-Aβ autoantibody levels were measured in 75 plasma samples from patients with AD, individuals with mild cognitive impairment (MCI), and healthy age- and sex-matched controls (HC). To validate the presence of anti-Aβ IgMs, pooled plasma samples were subjected to gel-filtration analysis. The mean level of pGluAβ-IgM (N-terminal truncated starting at position three with pyroglutamate) was significantly decreased in AD patients as compared to HC. In the group of MCI patients there was a significant positive correlation between pGluAβ-IgM and cognitive decline analyzed by MMSE (rho = 0.58, d.f. = 13, p = 0.022). These observations indicate that the level of IgM autoantibodies against pGluAβ is a promising plasma biomarker for AD and correlates with the cognitive status of individuals at risk to develop AD.
Collapse
Affiliation(s)
- Andrea Marcello
- University Medicine of Goettingen, Department of Psychiatry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Tabaton M, Zhu X, Perry G, Smith MA, Giliberto L. Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Exp Neurol 2009; 221:18-25. [PMID: 19747481 DOI: 10.1016/j.expneurol.2009.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 12/28/2022]
Abstract
The effects of amyloid-beta are extremely complex. Current work in the field of Alzheimer disease is focusing on discerning the impact between the physiological signaling effects of soluble low molecular weight amyloid-beta species and the more global cellular damage that could derive from highly concentrated and/or aggregated amyloid. Being able to dissect the specific signaling events, to understand how soluble amyloid-beta induces its own production by up-regulating BACE1 expression, could lead to new tools to interrupt the distinctive feedback cycle with potential therapeutic consequences. Here we describe a positive loop that exists between the secretases that are responsible for the generation of the amyloid-beta component of Alzheimer disease. According to our hypothesis, in familial Alzheimer disease, the primary overproduction of amyloid-beta can induce BACE1 transcription and drive a further increase of amyloid-beta precursor protein processing and resultant amyloid-beta production. In sporadic Alzheimer disease, many factors, among them oxidative stress and inflammation, with consequent induction of presenilins and BACE1, would activate a loop and proceed with the generation of amyloid-beta and its signaling role onto BACE1 transcription. This concept of a signaling effect by and feedback on the amyloid-beta precursor protein will likely shed light on how amyloid-beta generation, oxidative stress, and secretase functions are intimately related in sporadic Alzheimer disease.
Collapse
Affiliation(s)
- Massimo Tabaton
- Departments of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova, Italy.
| | | | | | | | | |
Collapse
|
59
|
Sanders HM, Lust R, Teller JK. Amyloid-beta peptide Abetap3-42 affects early aggregation of full-length Abeta1-42. Peptides 2009; 30:849-54. [PMID: 19428760 PMCID: PMC2752682 DOI: 10.1016/j.peptides.2009.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
The major amyloid-beta (Abeta) peptides found in the brain of familial and late onset Alzheimer's disease include the full-length Abeta1-42 and N-terminally truncated, pyroglutamylated peptides Abetap3-42 and Abetap11-42. The biophysical properties of Abeta1-42 have been extensively studied, yet little is known about the other modified peptides. We investigated the aggregation kinetics of brain-specific Abeta peptides to better understand their potential roles in plaque formation. Synthetic peptides were analyzed individually and in mixtures representing various ratios found in the brain. Spectrofluorometric analyses using Thioflavin-T showed that the aggregation of Abeta1-42 was faster compared to Abetap3-42; however, Abetap11-42 displayed similar kinetics. Surprisingly, mixtures of full-length Abeta1-42 and Abetap3-42 showed an initial delay in beta-sheet formation from both equimolar and non-equimolar samples. Electron microscopy of peptides individually and in mixtures further supported fluorescence data. These results indicate that Abeta-Abeta peptide interactions involving different forms may play a critical role in senile plaque formation and maintenance of the soluble Abeta pool in the brain.
Collapse
Affiliation(s)
- Hiromi M Sanders
- Department of Physiology, East Carolina University Brody School of Medicine, Greenville, NC 27834, United States.
| | | | | |
Collapse
|
60
|
Sevalle J, Amoyel A, Robert P, Fournié-Zaluski MC, Roques B, Checler F. Aminopeptidase A contributes to the N-terminal truncation of amyloid beta-peptide. J Neurochem 2009; 109:248-56. [PMID: 19187443 DOI: 10.1111/j.1471-4159.2009.05950.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several lines of data previously indicated that N-terminally truncated forms of amyloid-beta (Abeta) peptides are likely the earliest and more abundant species immunohistochemically detectable in Alzheimer's disease-affected brains. It is noteworthy that the free N-terminal residue of full-length Abeta (fl-Abeta) is an aspartyl residue, suggesting that Abeta could be susceptible to exopeptidasic attack by aminopeptidase A (APA)-like proteases. In this context, we have examined whether APA could target Abeta peptides in both cell-free and cellular models. We first show that the general aminopeptidase inhibitor amastatin as well as two distinct aminopeptidase A inhibitors EC33 and pl302 both significantly increase the recovery of genuine fl-Abeta peptides generated by cells over-expressing Swedish-mutated beta amyloid precursor protein (APP) while the aminopeptidase N blocker pl250 did not modify fl-Abeta recovery. In agreement with this observation, we establish that over-expressed APA drastically reduces, in a calcium dependent manner, fl-Abeta but not APP IntraCellular Domain in a cell-free model of Abeta production. In agreement with the above data, we show that recombinant APA degrades fl-Abeta in a pl302-sensitive manner. Interestingly, we also show that EC33 and pl302 lower staurosporine-stimulated activation of caspase-3 in wild-type fibroblasts but not in betaAPP/beta-amyloid precursor protein-like protein 2 (APLP2) double knockout fibroblasts, suggesting that protecting endogenous fl-Abeta physiological production triggers neuroprotective phenotype. By contrast, EC33 does not modify staurosporine-induced caspase-3 activation in wild-type and Swedish-mutated betaAPP-HEK293 expressing cells that display exacerbated production of Abeta. Overall, our data establish that APA contributes to the N-terminal truncation of Abeta and suggest that this cleavage is likely abrogating a protective function associated with physiological but not supraphysiological levels of genuine fl-Abeta peptides.
Collapse
Affiliation(s)
- Jean Sevalle
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire, UMR6097 CNRS/UNSA, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | | | | | | | | | | |
Collapse
|
61
|
Schilling S, Wasternack C, Demuth HU. Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol Chem 2008. [DOI: 10.1515/bc.2008.111_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
62
|
Schilling S, Wasternack C, Demuth HU. Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol Chem 2008; 389:983-91. [DOI: 10.1515/bc.2008.111] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSeveral mammalian peptide hormones and proteins from plant and animal origin contain an N-terminal pyroglutamic acid (pGlu) residue. Frequently, the moiety is important in exerting biological function in either mediating interaction with receptors or stabilizing against N-terminal degradation. Glutaminyl cyclases (QCs) were isolated from different plants and animals catalyzing pGlu formation. The recent resolution of the 3D structures ofCarica papayaand human QCs clearly supports different evolutionary origins of the proteins, which is also reflected by different enzymatic mechanisms. The broad substrate specificity is revealed by the heterogeneity of physiological substrates of plant and animal QCs, including cytokines, matrix proteins and pathogenesis-related proteins. Moreover, recent evidence also suggests human QC as a catalyst of pGlu formation at the N-terminus of amyloid peptides, which contribute to Alzheimer's disease. Obviously, owing to its biophysical properties, the function of pGlu in plant and animal proteins is very similar in terms of stabilizing or mediating protein and peptide structure. It is possible that the requirement for catalysis of pGlu formation under physiological conditions may have triggered separate evolution of QCs in plants and animals.
Collapse
|
63
|
Cynis H, Scheel E, Saido TC, Schilling S, Demuth HU. Amyloidogenic processing of amyloid precursor protein: evidence of a pivotal role of glutaminyl cyclase in generation of pyroglutamate-modified amyloid-beta. Biochemistry 2008; 47:7405-13. [PMID: 18570439 DOI: 10.1021/bi800250p] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compelling evidence suggests that N-terminally truncated and pyroglutamyl-modified amyloid-beta (Abeta) peptides play a major role in the development of Alzheimer's disease. Posttranslational formation of pyroglutamic acid (pGlu) at position 3 or 11 of Abeta implies cyclization of an N-terminal glutamate residue rendering the modified peptide degradation resistant, more hydrophobic, and prone to aggregation. Previous studies using artificial peptide substrates suggested the potential involvement of the enzyme glutaminyl cyclase in generation of pGlu-Abeta. Here we show that glutaminyl cyclase (QC) catalyzes the formation of Abeta 3(pE)-40/42 after amyloidogenic processing of APP in two different cell lines, applying specific ELISAs and Western blotting based on urea-PAGE. Inhibition of QC by the imidazole derivative PBD150 led to a blockage of Abeta 3(pE)-42 formation. Apparently, the QC-catalyzed formation of N-terminal pGlu is favored in the acidic environment of secretory compartments, which is also supported by double-immunofluorescence labeling of QC and APP revealing partial colocalization. Finally, initial investigations focusing on the molecular pathway leading to the generation of truncated Abeta peptides imply an important role of the amino acid sequence near the beta-secretase cleavage site. Introduction of a single-point mutation, resulting in an amino acid substitution, APP(E599Q), i.e., at position 3 of Abeta, resulted in significant formation of Abeta 3(pE)-40/42. Introduction of the APP KM595/596NL "Swedish" mutation causing overproduction of Abeta, however, surprisingly diminished the concentration of Abeta 3(pE)-40/42. The study provides new cell-based assays for the profiling of small molecule inhibitors of QC and points to conspicuous differences in processing of APP depending on sequence at the beta-secretase cleavage site.
Collapse
Affiliation(s)
- Holger Cynis
- Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
64
|
Thal DR, Griffin WST, de Vos RAI, Ghebremedhin E. Cerebral amyloid angiopathy and its relationship to Alzheimer's disease. Acta Neuropathol 2008; 115:599-609. [PMID: 18369648 DOI: 10.1007/s00401-008-0366-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 12/29/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of the amyloid beta-protein (A beta) within cerebral vessels. The involvement of different brain areas in CAA follows a hierarchical sequence similar to that of Alzheimer-related senile plaques. Alzheimer's disease patients frequently exhibit CAA. The expansion of CAA in AD often shows the pattern of full-blown CAA. The deposition of A beta within capillaries distinguishes two types of CAA. One with capillary A beta-deposition is characterized by a strong association with the apolipoprotein E (APOE) epsilon 4 allele and by its frequent occurrence in Alzheimer's disease cases whereas the other one lacking capillary A beta-deposits is not associated with APOE epsilon 4. Capillary CAA can be seen in every stage of CAA or AD-related A beta-deposition. AD cases with capillary CAA show more widespread capillary A beta-deposition than non-demented cases as well as capillary occlusion. In a mouse model of CAA, capillary CAA was associated with capillary occlusion and cerebral blood flow disturbances. Thus, blood flow alterations with subsequent hypoperfusion induced by CAA-related capillary occlusion presumably point to a second mechanism in which A beta adversely affects the brain in AD in addition to its direct neurotoxic effects.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory of Neuropathology, Institute of Pathology, University of Ulm, Albert-Einstein-Allee 7, 89081 Ulm, Germany.
| | | | | | | |
Collapse
|
65
|
Bayer TA, Wirths O. Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment. GENES BRAIN AND BEHAVIOR 2008; 7 Suppl 1:6-11. [PMID: 18184366 DOI: 10.1111/j.1601-183x.2007.00372.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulating evidence points to an important role of intraneuronal Abeta as a trigger of the pathological cascade of events leading to neurodegeneration and eventually to Alzheimer's disease (AD) with its typical clinical symptoms, like memory impairment and change in personality. As a new concept, intraneuronal accumulation of Abeta instead of extracellular Abeta deposition has been introduced to be the disease-triggering event in AD. The present review compiles current knowledge on the amyloid precursor protein (APP)/PS1KI mouse model with early and massive intraneuronal Abeta42 accumulation: (1) The APP/PS1KI mouse model exhibits early robust brain and spinal cord axonal degeneration and hippocampal CA1 neuron loss. (2) At the same time-point, a dramatic, age-dependent reduced ability to perform working memory and motor tasks is observed. (3) The APP/PS1KI mice are smaller and show development of a thoracolumbar kyphosis, together with an incremental loss of body weight. (4) Onset of the observed behavioral alterations correlates well with robust axonal degeneration in brain and spinal cord and with abundant hippocampal CA1 neuron loss.
Collapse
Affiliation(s)
- T A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry, University of Goettingen, Goettingen, Germany.
| | | |
Collapse
|
66
|
Gontsarova A, Kaufmann E, Tumani H, Dressel A, Mandel F, Wiesmüller KH, Kunert-Keil C, Brinkmeier H. Glutaminyl cyclase activity is a characteristic feature of human cerebrospinal fluid. Clin Chim Acta 2008; 389:152-9. [DOI: 10.1016/j.cca.2007.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
67
|
Nizzari M, Venezia V, Repetto E, Caorsi V, Magrassi R, Gagliani MC, Carlo P, Florio T, Schettini G, Tacchetti C, Russo T, Diaspro A, Russo C. Amyloid Precursor Protein and Presenilin1 Interact with the Adaptor GRB2 and Modulate ERK 1,2 Signaling. J Biol Chem 2007; 282:13833-44. [PMID: 17314098 DOI: 10.1074/jbc.m610146200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The amyloid precursor protein (APP) and the presenilins 1 and 2 are genetically linked to the development of familial Alzheimer disease. APP is a single-pass transmembrane protein and precursor of fibrillar and toxic amyloid-beta peptides, which are considered responsible for Alzheimer disease neurodegeneration. Presenilins are multipass membrane proteins, involved in the enzymatic cleavage of APP and other signaling receptors and transducers. The role of APP and presenilins in Alzheimer disease development seems to be related to the formation of amyloid-beta peptides; however, their physiological function, reciprocal interaction, and molecular mechanisms leading to neurodegeneration are unclear. APP and presenilins are also involved in multiple interactions with intracellular proteins, the significance of which is under investigation. Among the different APP-interacting proteins, we focused our interest on the GRB2 adaptor protein, which connects cell surface receptors to intracellular signaling pathways. In this study we provide evidence by co-immunoprecipitation experiments, confocal and electron microscopy, and by fluorescence resonance energy transfer experiments that both APP and presenilin1 interact with GRB2 in vesicular structures at the centrosome of the cell. The final target for these interactions is ERK1,2, which is activated in mitotic centrosomes in a PS1- and APP-dependent manner. These data suggest that both APP and presenilin1 can be part of a common signaling pathway that regulates ERK1,2 and the cell cycle.
Collapse
Affiliation(s)
- Mario Nizzari
- Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Youssef I, Florent-Béchard S, Malaplate-Armand C, Koziel V, Bihain B, Olivier JL, Leininger-Muller B, Kriem B, Oster T, Pillot T. N-truncated amyloid-beta oligomers induce learning impairment and neuronal apoptosis. Neurobiol Aging 2007; 29:1319-33. [PMID: 17459527 DOI: 10.1016/j.neurobiolaging.2007.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 02/23/2007] [Accepted: 03/04/2007] [Indexed: 01/09/2023]
Abstract
N-terminal-truncated forms of amyloid-beta (A beta) peptide have been recently suggested to play a pivotal role early in Alzheimer's disease (AD). Among them, A beta 3(pE)-42 peptide, starting with pyroglutamyl at residue Glu-3, is considered as the predominant A beta species in AD plaques and pre-amyloid lesions. Its abundance is reported to be directly proportional to the severity of the clinical phenotype. The present study investigates the effects of soluble oligomeric A beta 3(pE)-42 after intracerebroventricular injection on mice learning ability and the molecular mechanisms of its in vitro neurotoxicity. Mice injected with soluble A beta 3(pE)-42 or A beta(l-42) displayed impaired spatial working memory and delayed memory acquisition in Y-maze and Morris water maze tests, while those injected with soluble A beta(42-1) showed no effect. These cognitive alterations were associated with free radical overproduction in the hippocampus and olfactory bulbs, but not in the cerebral cortex or cerebellum. In vitro, A beta 3(pE)-42 oligomers induced a redox-sensitive neuronal apoptosis involving caspase activation and an arachidonic acid-dependent pro-inflammatory pathway. These data suggest that A beta 3(pE)-42 could mediate the neurodegenerative process and subsequent cognitive alteration occurring in preclinical AD stages.
Collapse
Affiliation(s)
- Ihsen Youssef
- Lipidomix, JE 2482, INPL, Laboratoire de Médecine et Thérapeutique Moléculaire, 15 rue du Bois de la Champelle, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Wirths O, Weis J, Kayed R, Saido TC, Bayer TA. Age-dependent axonal degeneration in an Alzheimer mouse model. Neurobiol Aging 2006; 28:1689-99. [PMID: 16963164 DOI: 10.1016/j.neurobiolaging.2006.07.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
Some neurodegenerative diseases including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) exhibit prominent defects in axonal transport. These defects can manifest as axonal swellings or spheroids, which correspond to axonal enlargements and aberrant accumulation of axonal cargoes, cytoskeletal proteins and lipids. Recently, a controversial scientific debate focussed on the issue whether Abeta serves as a trigger for aberrant axonal transport in the pathophysiology of AD. Prominent axonopathy has been shown to be induced by overexpression of proteins involved in several neurodegenerative diseases. Neurofilament, apolipoprotein E, Niemann-Pick protein and Tau transgenic mice with axonal trafficking deficits have been reported. Furthermore, motor deficits are frequently observed in patients with AD, which has been attributed to the typical tauopathy in post-mortem brain tissue. In the present report, we analyzed axonal neuropathology in the brain and spinal cord of a transgenic mouse model with abundant intraneuronal Abeta42 production and provide compelling evidence for axonal degeneration. The APP/PS1ki mice showed characteristic axonal swellings, spheroids, axonal demyelination and ovoids, which are myelin remnants of degenerated nerve fibers in an age-dependent manner. Abundant accumulation of intraneuronal N-modified Abeta, Thioflavin S-positive material and ubiquitin was found within the somatodendritic compartment of neurons. We conclude that the intraneuronal accumulation of Abeta-amyloid peptides is followed by axonal degeneration, and thus might be a causative factor for the axonal changes seen in AD.
Collapse
Affiliation(s)
- Oliver Wirths
- Department of Psychiatry, Division of Neurobiology, Saarland University, Building 90, D-66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
70
|
Nolan RL, Teller JK. Diethylamine extraction of proteins and peptides isolated with a mono-phasic solution of phenol and guanidine isothiocyanate. ACTA ACUST UNITED AC 2006; 68:127-31. [PMID: 16750859 DOI: 10.1016/j.jbbm.2006.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 03/28/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
Representative extraction of both RNA and protein from a single biological sample is required for reliable assessment of coordinated changes in gene and protein expression. Such a simultaneous extraction can be performed by using Trizol Reagent. Here, we demonstrate that, as an alternative to SDS, 2% diethylamine is an effective solvent, which can be conveniently used in extraction of Trizol-isolated proteins from various tissues. Diethylamine provides efficient extraction of proteins and compatibility with a variety of common downstream analytical applications.
Collapse
Affiliation(s)
- Rebecca L Nolan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
71
|
Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H. The development of amyloid beta protein deposits in the aged brain. ACTA ACUST UNITED AC 2006; 2006:re1. [PMID: 16525193 DOI: 10.1126/sageke.2006.6.re1] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The deposition of amyloid beta protein (Abeta) in the human brain and the generation of neurofibrillary tangles are the histopathological hallmarks of Alzheimer's disease. Accumulation of Abeta takes place in senile plaques and in cerebrovascular deposits as a result of an imbalance between Abeta production and clearance. This Review describes the different types of Abeta deposits, which can be distinguished by their morphology and by the hierarchical involvement of distinct areas of the brain in Abeta deposition. The role of intracellular Abeta in Abeta deposition and the mechanism of Abeta toxicity are also discussed.
Collapse
Affiliation(s)
- Dietmar R Thal
- Department of Neuropathology, University of Bonn, D-53105 Bonn, Germany.
| | | | | | | |
Collapse
|
72
|
Vanderstichele H, De Meyer G, Andreasen N, Kostanjevecki V, Wallin A, Olsson A, Blennow K, Vanmechelen E. Amino-Truncated β-Amyloid42 Peptides in Cerebrospinal Fluid and Prediction of Progression of Mild Cognitive Impairment. Clin Chem 2005; 51:1650-60. [PMID: 16020497 DOI: 10.1373/clinchem.2005.051201] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Early identification of patients with mild cognitive impairment (MCI) progressing to Alzheimer disease (MCI-AD) by use of biomarkers in cerebrospinal fluid (CSF) is an essential step toward improving clinical diagnosis and drug development. We evaluated whether different β-amyloid42 (Aβ42) peptides can add further information to the combined use of tau and Aβ1–42 for predicting risk of progression of MCI to AD.
Methods: We used xMAP® technology to simultaneously quantify different Aβ42 peptides modified at the amino terminus, tau, and phosphorylated tau (P-tau181P) in CSF. Aβ42 peptide concentrations were measured by use of immunoreactivity toward Aβ monoclonal antibodies [3D6 (Aβ42-3D6), WO2 (Aβ42-WO2), 6E10 (Aβ42-6E10), and 4G8 (Aβ42-4G8)]. The discriminant ability of the markers was evaluated by ROC curve analysis.
Results: The areas under the curves for the separation of MCI-AD from nonprogressing MCI (MCI-N) were significantly higher when we used Aβ42-3D6/Aβ42-WO2, Aβ42-3D6/Aβ42-6E10, or Aβ42-3D6/Aβ42-4G8 compared with Aβ42-3D6. In addition, differentiation of MCI-N from MCI-AD was improved by quantification of full-length Aβ1–42 (Aβ42-3D6) compared with Aβ42-WO2, Aβ42-6E10, or Aβ42-4G8. Several Aβ42 peptides truncated at the amino terminus (Aβ11–42 and Aβ8–42) were identified in CSF by surface-enhanced laser desorption/ionization time-of-flight technology.
Conclusion: The CSF markers tau, Aβ42 forms, and P-tau181P, when used as adjuncts to clinical diagnosis, have the potential to help identify AD pathology and could be a valuable asset for early AD diagnosis.
Collapse
|
73
|
Piccini A, Russo C, Gliozzi A, Relini A, Vitali A, Borghi R, Giliberto L, Armirotti A, D'Arrigo C, Bachi A, Cattaneo A, Canale C, Torrassa S, Saido TC, Markesbery W, Gambetti P, Tabaton M. beta-amyloid is different in normal aging and in Alzheimer disease. J Biol Chem 2005; 280:34186-92. [PMID: 16103127 DOI: 10.1074/jbc.m501694200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanism of neurodegeneration caused by beta-amyloid in Alzheimer disease is controversial. Neuronal toxicity is exerted mostly by various species of soluble beta-amyloid oligomers that differ in their N- and C-terminal domains. However, abundant accumulation of beta-amyloid also occurs in the brains of cognitively normal elderly people, in the absence of obvious neuronal dysfunction. We postulated that neuronal toxicity depends on the molecular composition, rather than the amount, of the soluble beta-amyloid oligomers. Here we show that soluble beta-amyloid aggregates that accumulate in Alzheimer disease are different from those of normal aging in regard to the composition as well as the aggregation and toxicity properties.
Collapse
Affiliation(s)
- Alessandra Piccini
- Department of Neurosciences, Ophthalmology, and Genetics, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1289-300. [PMID: 15466394 PMCID: PMC1618627 DOI: 10.1016/s0002-9440(10)63388-3] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is characterized by a substantial degeneration of pyramidal neurons and the appearance of neuritic plaques and neurofibrillary tangles. Here we present a novel transgenic mouse model, APP(SL)PS1KI that closely mimics the development of AD-related neuropathological features including a significant hippocampal neuronal loss. This transgenic mouse model carries M233T/L235P knocked-in mutations in presenilin-1 and overexpresses mutated human beta-amyloid (Abeta) precursor protein. Abeta(x-42) is the major form of Abeta species present in this model with progressive development of a complex pattern of N-truncated variants and dimers, similar to those observed in AD brain. At 10 months of age, an extensive neuronal loss (>50%) is present in the CA1/2 hippocampal pyramidal cell layer that correlates with strong accumulation of intraneuronal Abeta and thioflavine-S-positive intracellular material but not with extracellular Abeta deposits. A strong reactive astrogliosis develops together with the neuronal loss. This loss is already detectable at 6 months of age and is PS1KI gene dosage-dependent. Thus, APP(SL)PS1KI mice further confirm the critical role of intraneuronal Abeta(42) in neuronal loss and provide an excellent tool to investigate therapeutic strategies designed to prevent AD neurodegeneration.
Collapse
Affiliation(s)
- Caty Casas
- Department of Central Nervous System/Alzheimer Disease, Aventis-Pharma Paris Research Center, Vitry sur Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Takeda K, Araki W, Akiyama H, Tabira T. Amino-truncated amyloid beta-peptide (Abeta5-40/42) produced from caspase-cleaved amyloid precursor protein is deposited in Alzheimer's disease brain. FASEB J 2004; 18:1755-7. [PMID: 15364896 DOI: 10.1096/fj.03-1070fje] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Caspase activation and apoptosis are implicated in Alzheimer's disease (AD). In view of the finding that the amyloid precursor protein (APP) undergoes caspase-mediated cleavage in the cytoplasmic region, we analyzed amyloid beta-peptide (Abeta) production in human neuronal and nonneuronal cells expressing wild-type APP and the caspase-cleaved form of APP (APPDeltaC). Biochemical analyses, including immunoprecipitation/mass spectrometry, revealed that APPDeltaC-expressing cells secrete increased levels of amino-terminally truncated Abeta5-40/42 and reduced levels of Abeta1-40/42, compared with wild-type APP-expressing cells. We propose that Abeta5-40/42 is derived from alternative beta-cleavage of APP by alpha-secretase-like protease(s), based on data from treatment of cells with inhibitors of BACE and alpha-secretase. Apoptosis induction resulted in this alternative cleavage of APP in wild-type APP-expressing cells. Moreover, immunohistochemical staining of the AD brain with an end-specific antibody to Abeta5-40/42 revealed peptide deposits in vascular lesions with amyloid angiopathy. The data collectively suggest that caspase cleavage of APP leads to increased production and deposition of Abeta5-40/42 in the AD brain, and highlight the significance of amino-truncated Abeta in the pathogenesis of AD.
Collapse
Affiliation(s)
- Kazuya Takeda
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, NCGG, Obu, Japan
| | | | | | | |
Collapse
|
76
|
Schilling S, Hoffmann T, Manhart S, Hoffmann M, Demuth HU. Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Lett 2004; 563:191-6. [PMID: 15063747 DOI: 10.1016/s0014-5793(04)00300-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2003] [Revised: 03/05/2004] [Accepted: 03/08/2004] [Indexed: 02/04/2023]
Abstract
N-terminal pyroglutamate (pGlu) formation from glutaminyl precursors is a posttranslational event in the processing of bioactive neuropeptides such as thyrotropin-releasing hormone and neurotensin during their maturation in the secretory pathway. The reaction is facilitated by glutaminyl cyclase (QC), an enzyme highly abundant in mammalian brain. Here, we describe for the first time that human and papaya QC also catalyze N-terminal glutamate cyclization. Surprisingly, the enzymatic Glu(1) conversion is favored at pH 6.0 while Gln(1) conversion occurs with an optimum at pH 8.0. This unexpected finding might be of importance for deciphering the events leading to deposition of highly toxic pyroglutamyl peptides in amyloidotic diseases.
Collapse
Affiliation(s)
- Stephan Schilling
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
77
|
Bitan G, Vollers SS, Teplow DB. Elucidation of primary structure elements controlling early amyloid beta-protein oligomerization. J Biol Chem 2003; 278:34882-9. [PMID: 12840029 DOI: 10.1074/jbc.m300825200] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of monomeric amyloid beta-protein (A beta) into oligomeric structures is an important pathogenetic feature of Alzheimer's disease. The oligomer size distributions of aggregate-free, low molecular weight A beta 40 and A beta 42 can be assessed quantitatively using the technique of photo-induced cross-linking of unmodified proteins. This approach revealed that low molecular weight A beta 40 is a mixture of monomer, dimer, trimer, and tetramer, in rapid equilibrium, whereas low molecular weight A beta 42 preferentially exists as pentamer/hexamer units (paranuclei), which self-associate to form larger oligomers. Here, photo-induced cross-linking of unmodified proteins was used to evaluate systematically the oligomerization of 34 physiologically relevant A beta alloforms, including those containing familial Alzheimer's disease-linked amino acid substitutions, naturally occurring N-terminal truncations, and modifications altering the charge, the hydrophobicity, or the conformation of the peptide. The most important structural feature controlling early oligomerization was the length of the C terminus. Specifically, the side-chain of residue 41 in A beta 42 was important both for effective formation of paranuclei and for self-association of paranuclei into larger oligomers. The side-chain of residue 42, and the C-terminal carboxyl group, affected paranucleus self-association. A beta 40 oligomerization was particularly sensitive to substitutions of Glu22 or Asp23 and to truncation of the N terminus, but not to substitutions of Phe19 or Ala21. A beta 42 oligomerization, in contrast, was largely unaffected by substitutions at positions 22 or 23 or by N-terminal truncations, but was affected significantly by substitutions of Phe19 or Ala21. These results reveal how specific regions and residues control A beta oligomerization and show that these controlling elements differ between A beta 40 and A beta 42.
Collapse
Affiliation(s)
- Gal Bitan
- Center for Neurologic Diseases, Brigham and Women's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
78
|
Russo C, Violani E, Salis S, Venezia V, Dolcini V, Damonte G, Benatti U, D'Arrigo C, Patrone E, Carlo P, Schettini G. Pyroglutamate-modified amyloid beta-peptides--AbetaN3(pE)--strongly affect cultured neuron and astrocyte survival. J Neurochem 2002; 82:1480-9. [PMID: 12354296 DOI: 10.1046/j.1471-4159.2002.01107.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N-terminally truncated amyloid-beta (Abeta) peptides are present in early and diffuse plaques of individuals with Alzheimer's disease (AD), are overproduced in early onset familial AD and their amount seems to be directly correlated to the severity and the progression of the disease in AD and Down's syndrome (DS). The pyroglutamate-containing isoforms at position 3 [AbetaN3(pE)-40/42] represent the prominent form among the N-truncated species, and may account for more than 50% of Abeta accumulated in plaques. In this study, we compared the toxic properties, fibrillogenic capabilities, and in vitro degradation profile of Abeta1-40, Abeta1-42, AbetaN3(pE)-40 and AbetaN3(pE)-42. Our data show that fibre morphology of Abeta peptides is greatly influenced by the C-terminus while toxicity, interaction with cell membranes and degradation are influenced by the N-terminus. AbetaN3(pE)-40 induced significantly more cell loss than the other species both in neuronal and glial cell cultures. Aggregated AbetaN3(pE) peptides were heavily distributed on plasma membrane and within the cytoplasm of treated cells. AbetaN3(pE)-40/42 peptides showed a significant resistance to degradation by cultured astrocytes, while full-length peptides resulted partially degraded. These findings suggest that formation of N-terminally modified peptides may enhance beta-amyloid aggregation and toxicity, likely worsening the onset and progression of the disease.
Collapse
Affiliation(s)
- Claudio Russo
- Pharmacology and Neuroscience National Cancer Research Institute - IST c/o Advanced Biotechnology Center- and Section of Pharmacology, Department of Oncology Biology and Genetics, University of Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Bisaglia M, Venezia V, Piccioli P, Stanzione S, Porcile C, Russo C, Mancini F, Milanese C, Schettini G. Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid beta-peptides induced oxidative stress and reduces NF-kappaB activation. Neurochem Int 2002; 41:43-54. [PMID: 11918971 DOI: 10.1016/s0197-0186(01)00136-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present findings show that an atypical non-steroidal anti-inflammatory drug, such as acetaminophen, retains the ability to recover amyloid beta-peptides driven neuronal apoptosis through the impairment of oxidative stress. Moreover, this compound reduces the increased NF-kappaB binding activity, which occurs in these degenerative conditions. Therapeutic interventions aimed at reducing the inflammatory response in Alzheimer's disease (AD) recently suggested the application of non-steroidal anti-inflammatory drugs. Although the anti-inflammatory properties of acetaminophen are controversial, it emerged that in an amyloid-driven astrocytoma cell degeneration model acetaminophen proved to be effective. On these bases, we analyzed the role of acetaminophen against the toxicity exerted by different Abeta-peptides on rat primary hippocampal neurons and on a rat pheochromocytoma cell line. We found a consistent protection from amyloid beta-fragments 1-40 and 1-42-induced impairment of mitochondrial redox activity on both cell cultures, associated with a marked reduction of apoptotic nuclear fragmentation. An antioxidant component of the protective activity emerged from the analysis of the reduction of phospholipid peroxidation, and also from a significant reduction of cytoplasmic accumulation of peroxides in the pheochromocytoma cell line. Moreover, activation of NF-kappaB by amyloid-derived peptides was greatly impaired by acetaminophen pre-treatment in hippocampal cells. This evidence points out antioxidant and anti-transcriptional properties of acetaminophen besides the known capability to interfere with inflammation within the central nervous system, and suggests that it can be exploited as a possible therapeutic approach against AD.
Collapse
Affiliation(s)
- M Bisaglia
- Pharmacology and Neuroscience, National Cancer Research Institute c/o Advanced Biotechnology Centre, L.go R. Benzi 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Heal JR, Roberts GW, Christie G, Miller AD. Inhibition ofβ-Amyloid Aggregation and Neurotoxicity by Complementary (Antisense) Peptides. Chembiochem 2002; 3:86-92. [PMID: 17590958 DOI: 10.1002/1439-7633(20020104)3:1<86::aid-cbic86>3.0.co;2-l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complementary peptides are coded for by the nucleotide sequence (read 5'-->3') of the complementary strand of DNA. By reading the sequence of complementary DNA in the 3'-->5' direction, alternative complementary peptides may be derived. We describe the derivation, testing and analysis of six complementary peptides designed against beta-amyloid peptide 1-40 (Abeta, 40). Data is presented to show that one peptide, designated 3' -->5' betaCP1-15, binds specifically to Abeta 1-40, and inhibits both fibrilisation and neurotoxicity in vitro. This suggests that complementary peptides could be useful leads for drug discovery, especially where diseases of protein misfolding are concerned.
Collapse
Affiliation(s)
- Jonathan R Heal
- Imperial College Genetic Therapies Centre Department of Chemistry, Flowers Building, Armstrong Road Imperial College of Science, Technology and Medicine South Kensington, London, SW72AZ, UK
| | | | | | | |
Collapse
|
81
|
The enterins: a novel family of neuropeptides isolated from the enteric nervous system and CNS of Aplysia. J Neurosci 2001. [PMID: 11588196 DOI: 10.1523/jneurosci.21-20-08247.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To identify neuropeptides that have a broad spectrum of actions on the feeding system of Aplysia, we searched for bioactive peptides that are present in both the gut and the CNS. We identified a family of structurally related nonapeptides and decapeptides (enterins) that are present in the gut and CNS of Aplysia, and most of which share the HSFVamide sequence at the C terminus. The structure of the enterin precursor deduced from cDNA cloning predicts 35 copies of 20 different enterins. Northern analysis, in situ hybridization, and immunocytochemistry show that the enterins are abundantly present in the CNS and the gut of Aplysia. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry we characterized the enterin-precursor processing, demonstrated that all of the precursor-predicted enterins are present, and determined post-translational modifications of various enterins. Enterin-positive neuronal somata and processes were found in the gut, and enterins inhibited contractions of the gut. In the CNS, the cerebral and buccal ganglia, which control feeding, contained the enterins. Enterin was also present in the nerve that connects these two ganglia. Enterins reduced the firing of interneurons B4/5 during feeding motor programs. Such enterin-induced reduction of firing also occurred when excitability of B4/5 was tested directly. Because reduction of B4/5 activity corresponds to a switch from egestive to ingestive behaviors, enterin may contribute to such program switching. Furthermore, because enterins are present throughout the nervous system, they may also play a regulatory role in nonfeeding behaviors of Aplysia.
Collapse
|
82
|
Kirkitadze MD, Condron MM, Teplow DB. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 2001; 312:1103-19. [PMID: 11580253 DOI: 10.1006/jmbi.2001.4970] [Citation(s) in RCA: 567] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid beta-protein (Abeta) assembly into toxic oligomeric and fibrillar structures is a seminal event in Alzheimer's disease, therefore blocking this process could have significant therapeutic benefit. A rigorous mechanistic understanding of Abeta assembly would facilitate the targeting and design of fibrillogenesis inhibitors. Prior studies have shown that Abeta fibrillogenesis involves conformational changes leading to the formation of extended beta-sheets and that an alpha-helix-containing intermediate may be involved. However, the significance of this intermediate has been a matter of debate. We report here that the formation of an oligomeric, alpha-helix-containing assembly is a key step in Abeta fibrillogenesis. The generality of this phenomenon was supported by conformational studies of 18 different Abeta peptides, including wild-type Abeta(1-40) and Abeta(1-42), biologically relevant truncated and chemically modified Abeta peptides, and Abeta peptides causing familial forms of cerebral amyloid angiopathy. Without exception, fibrillogenesis of these peptides involved an oligomeric alpha-helix-containing intermediate and the kinetics of formation of the intermediate and of fibrils was temporally correlated. The kinetics varied depending on amino acid sequence and the extent of peptide N- and C-terminal truncation. The pH dependence of helix formation suggested that Asp and His exerted significant control over this process and over fibrillogenesis in general. Consistent with this idea, Abeta peptides containing Asp-->Asn or His-->Gln substitutions showed altered fibrillogenesis kinetics. These data emphasize the importance of the dynamic interplay between Abeta monomer conformation and oligomerization state in controlling fibrillogenesis kinetics.
Collapse
Affiliation(s)
- M D Kirkitadze
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
83
|
Russo C, Salis S, Dolcini V, Venezia V, Song XH, Teller JK, Schettini G. Amino-terminal modification and tyrosine phosphorylation of [corrected] carboxy-terminal fragments of the amyloid precursor protein in Alzheimer's disease and Down's syndrome brain. Neurobiol Dis 2001; 8:173-80. [PMID: 11162251 DOI: 10.1006/nbdi.2000.0357] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The carboxy-terminal fragments (CTFs) of the amyloid precursor protein (APP) are considered beta-amyloid (Abeta) precursors as well as molecular species possibly amyloidogenic and neurotoxic by [corrected] in vitro or in animal models. The CTF's role in the pathogenesis of Alzheimer's disease (AD) is however relatively unexplored in human brain. In this study, we analyzed brain extracted CTFs in subjects with AD, non-AD control, and Down's syndrome (DS) cases. Our data indicate that: (i) In fetal DS subjects CTFs levels are increased in comparison to age-matched control, suggesting that the enhanced CTFs formation is important for the early occurrence of plaques deposition in DS. No significant difference in CTFs level [corrected] between AD and age-matched control cases. (ii) CTFs modified at their N-terminus are the direct precursors of similarly N-terminally modified Abeta peptides, which constitute the most abundant species in AD and DS plaques. This observation suggests that N-truncated Abeta peptides are formed directly at beta-secretase level and not through a progressive proteolysis of full-length Abeta1-40/42. (iii) Among the differently cleaved CTFs, only the 22- and 12.5-kDa CTF polypeptides are tyrosine phosphorylated in both AD and control brain while the full-length APP and the CTFs migrating below the 12.5-kDa marker are not phosphorylated, suggesting that APP and CTFs may be involved in different pathways depending on their length and sequences. This study provides evidence that CTFs constitute in human brain a molecular species directly involved in AD pathogenesis and in the development of the AD-like pathology in DS subjects.
Collapse
Affiliation(s)
- C Russo
- Section of Pharmacology and Neuroscience, National Cancer Institute, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
84
|
Morishima-Kawashima M, Oshima N, Ogata H, Yamaguchi H, Yoshimura M, Sugihara S, Ihara Y. Effect of apolipoprotein E allele epsilon4 on the initial phase of amyloid beta-protein accumulation in the human brain. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:2093-9. [PMID: 11106581 PMCID: PMC1885772 DOI: 10.1016/s0002-9440(10)64847-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deposition of amyloid ss-protein (Ass), a hallmark of Alzheimer's disease, occurs to some extent in the brains of most elderly individuals. We sought to learn when Ass deposition begins and how deposition is affected by apolipoprotein E allele epsilon4, a strong risk factor for late-onset Alzheimer's disease. Using an improved extraction protocol and specific enzyme-linked immunosorbent assay, we quantified the levels of Ass40 and Ass42 in the insoluble fractions of brains from 105 autopsy cases, aged 22 to 81 years at death, who showed no signs of dementia. Ass40 and Ass42 were detected in the insoluble fractions from all of the brains examined; low levels were even found in the brains of patients as young as 20 to 30 years of age. The incidence of significant Ass accumulation increased age-dependently, with Ass42 levels beginning to rise steeply in some patients in their late 40's, accompanied by much smaller increases in Ass40 levels. The presence of the apolipoprotein E epsilon4 allele was found to significantly enhance the accumulation of Ass42 and, to a lesser extent, that of Ass40. These findings strongly suggest that the presence of epsilon4 allele results in an earlier onset of Ass42 accumulation in the brain.
Collapse
|
85
|
Shimizu T, Watanabe A, Ogawara M, Mori H, Shirasawa T. Isoaspartate formation and neurodegeneration in Alzheimer's disease. Arch Biochem Biophys 2000; 381:225-34. [PMID: 11032409 DOI: 10.1006/abbi.2000.1955] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We reviewed here that protein isomerization is enhanced in amyloid-beta peptides (Abeta) and paired helical filaments (PHFs) purified from Alzheimer's disease (AD) brains. Biochemical analyses revealed that Abeta purified from senile plaques and vascular amyloid are isomerized at Asp-1 and Asp-7. A specific antibody recognizing isoAsp-23 of Abeta further suggested the isomerization of Abeta at Asp-23 in vascular amyloid as well as in the core of senile plaques. Biochemical analyses of purified PHFs also revealed that heterogeneous molecular weight tau contains L-isoaspartate at Asp-193, Asn-381, and Asp-387, indicating a modification, other than phosphorylation, that differentiates between normal tau and PHF tau. Since protein isomerization as L-isoaspartate causes structural changes and functional inactivation, or enhances the aggregation process, this modification is proposed as one of the progression factors in AD. Protein L-isoaspartyl methyltransferase (PIMT) is suggested to play a role in the repair of isomerized proteins containing L-isoaspartate. We show here that PIMT is upregulated in neurodegenerative neurons and colocalizes in neurofibrillary tangles (NFTs) in AD. Taken together with the enhanced protein isomerization in AD brains, it is implicated that the upregulated PIMT may associate with increased protein isomerization in AD. We also reviewed studies on PIMT-deficient mice that confirmed that PIMT plays a physiological role in the repair of isomerized proteins containing L-isoaspartate. The knockout study also suggested that the brain of PIMT-deficient mice manifested neurodegenerative changes concomitant with accumulation of L-isoaspartate. We discuss the pathological implications of protein isomerization in the neurodegeneration found in model mice and AD.
Collapse
Affiliation(s)
- T Shimizu
- Department of Molecular Genetics, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | | |
Collapse
|
86
|
Mok SS, Clippingdale AB, Beyreuther K, Masters CL, Barrow CJ, Small DH. A beta peptides and calcium influence secretion of the amyloid protein precursor from chick sympathetic neurons in culture. J Neurosci Res 2000; 61:449-57. [PMID: 10931532 DOI: 10.1002/1097-4547(20000815)61:4<449::aid-jnr12>3.0.co;2-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The major constituent of amyloid plaques in the Alzheimer disease (AD) brain is the amyloid protein (A beta). A beta has been shown to be neurotoxic to cells, but the exact mechanism of its effects are still not known. Most studies have focussed on A beta neurotoxicity, but little is known about the effect of A beta peptides on cellular protein metabolism and secretion. To examine the effect of A beta peptides on APP secretion, chick sympathetic neurons were metabolically labeled with [(35)S]methionine and the amounts of radiolabeled APP and A beta quantitated. Several A beta peptides (A beta(25-35), [pyroglu(3)]A beta(3-40), and [pyroglu(11)]A beta(11-40)) inhibited secretion of [(35)S]APP and increased cell-associated [(35)S]APP. There was also a 2-2.5-fold increase in secretion of several other proteins when cells were incubated with A beta(25-35). However, the amount of A beta secreted into the medium was decreased. Treatment of cells with the calcium ionophore A23187 caused a 1.5-fold increase in secreted [(35)S]APP and a decrease in cell-associated [(35)S]APP. Although L-type voltage-dependent calcium channels (VDCC) have been implicated in A beta toxicity, the effect of L-type VDCC on APP secretion has not previously been examined. The L-type VDCC antagonists nifedipine and diltiazem both increased [(35)S]APP secretion into the medium but did not influence the effect of A beta on [(35)S]APP secretion. These studies suggest that A beta interferes with the secretory pathway of APP. Insofar as secreted APP has been proposed to have a neuroprotective function, the accumulation of A beta in the AD brain could decrease secreted APP and thereby indirectly increase A beta toxicity.
Collapse
Affiliation(s)
- S S Mok
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
87
|
Golde TE, Eckman CB, Younkin SG. Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:172-87. [PMID: 10899442 DOI: 10.1016/s0925-4439(00)00043-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prior to the identification of the various abnormal proteins deposited as fibrillar aggregates in the Alzheimer's disease (AD) brain, there was tremendous controversy over the importance of the various lesions with respect to primacy in the pathology of AD. Nevertheless, based on analogy to systemic amyloidosis, many investigators believed that the amyloid deposits in AD played a causal role and that characterization of these deposits would hold the key to understanding this complex disease. Indeed, in retrospect, it was the initial biochemical purifications of the approximately 4 kDa amyloid beta-peptide (Abeta) from amyloid deposits in the mid 1980s that launched a new era of AD research (Glenner and Wong, Biochem. Biophys. Res. Commun. 122 (1984) 1121-1135; Wong et al., Proc. Natl. Acad Sci. USA 82 (1985) 8729 8732; and Masters et al., Proc. Natl. Acad Sci. USA 82 (1985) 4245-4249). Subsequent studies of the biology of Abeta together with genetic studies of AD have all supported the hypothesis that altered Abeta metabolism leading to aggregation plays a causal role in AD. Although there remains controversy as to whether Abeta deposited as classic amyloid or a smaller, aggregated, form causes AD, the relevance of studying the amyloid deposits has certainly been proven. Despite the significant advances in our understanding of the role of Abeta in AD pathogenesis, many important aspects of Abeta biology remain a mystery. This review will highlight those aspects of Abeta biology that have led to our increased understanding of the pathogenesis of AD as well as areas which warrant additional study.
Collapse
Affiliation(s)
- T E Golde
- Department of Pharmacology, Mayo Clinic Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
88
|
Russo C, Schettini G, Saido TC, Hulette C, Lippa C, Lannfelt L, Ghetti B, Gambetti P, Tabaton M, Teller JK. Presenilin-1 mutations in Alzheimer's disease. Nature 2000; 405:531-2. [PMID: 10850703 DOI: 10.1038/35014735] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- C Russo
- Division of Neuropathology, Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Acquati F, Accarino M, Nucci C, Fumagalli P, Jovine L, Ottolenghi S, Taramelli R. The gene encoding DRAP (BACE2), a glycosylated transmembrane protein of the aspartic protease family, maps to the down critical region. FEBS Lett 2000; 468:59-64. [PMID: 10683441 DOI: 10.1016/s0014-5793(00)01192-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We applied cDNA selection methods to a genomic clone (YAC 761B5) from chromosome 21 located in the so-called 'Down critical region' in 21q22.3. Starting from human fetal heart and brain mRNAs we obtained and sequenced several cDNA clones. One of these clones (Down region aspartic protease (DRAP), named also BACE2 according to the gene nomenclature) revealed a striking nucleotide and amino acid sequence identity with several motifs present in members of the aspartic protease family. In particular the amino acid sequences comprising the two catalytic sites found in all mammalian aspartic proteases are perfectly conserved. Interestingly, the predicted protein shows a typical membrane spanning region; this is at variance with most other known aspartic proteases, which are soluble molecules. We present preliminary evidence, on the basis of in vitro translation studies and cell transfection, that this gene encodes a glycosylated protein which localizes mainly intracellularly but to some extent also to the plasma membrane. Furthermore DRAP/BACE2 shares a high homology with a newly described beta-secretase enzyme (BACE-1) which is a transmembrane aspartic protease. The implications of this finding for Down syndrome are discussed.
Collapse
Affiliation(s)
- F Acquati
- Dipartimento Biologia Strutturale e Funzionale, Universita' Insubria, via Dunant 3, Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
90
|
Cavani S, Tamaoka A, Moretti A, Marinelli L, Angelini G, Di Stefano S, Piombo G, Cazzulo V, Matsuno S, Shoji S, Furiya Y, Zaccheo D, Dagna-Bricarelli F, Tabaton M, Mori H. Plasma levels of amyloid ? 40 and 42 are independent from ApoE genotype and mental retardation in down syndrome. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1096-8628(20001127)95:3<224::aid-ajmg7>3.0.co;2-b] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
91
|
Abstract
The first Aplysia californica insulin gene is characterized and its proteolytic processing from prohormone to final peptides elucidated using a combination of biochemical and mass spectrometric methods. Aplysia insulin (AI) is one of the largest insulins found, with a molecular weight of 9146 Da, and an extended A chain compared with other invertebrate and vertebrate insulins. The AI prohormone produces a series of C peptides and also a unique N-terminally acetylated D peptide. AI-producing cells are restricted to the central region of the cerebral ganglia mostly within the F and C clusters, and AI is transported to neurohemal release sites located on the upper labial and anterior tentacular nerves. The expression of AI mRNA decreases when the animal is deprived of food, and injections of AI reduce hemolymph glucose levels, suggesting that the function of insulin-regulating metabolism has been conserved.
Collapse
|
92
|
Tekirian TL, Yang AY, Glabe C, Geddes JW. Toxicity of pyroglutaminated amyloid beta-peptides 3(pE)-40 and -42 is similar to that of A beta1-40 and -42. J Neurochem 1999; 73:1584-9. [PMID: 10501204 DOI: 10.1046/j.1471-4159.1999.0731584.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An N-terminal truncated isoform of the amyloid beta-peptide (A beta) that begins with a pyroglutamate (pE) residue at position 3 [A beta3(pE)-42] is the predominant isoform found in senile plaques. Based upon previous in vitro studies regarding A beta N-terminal truncated isoforms, it has been hypothesized that A beta3(pE)-x isoforms may aggregate more rapidly and become more toxic than corresponding Abeta1-x peptides. However, the toxicity and aggregation properties of A beta3(pE)-42 and A beta3(pE)-40 have not previously been examined. After initial solubilization and 1-week preaggregation of each peptide at 37 degrees C and pH 7.4, the toxicity of 5-50 microM A beta3(pE)-42 was similar to that of A beta1-42. Moreover, the toxicity of A beta3(pE)-40 paralleled that induced by A beta1-40 in both 1 day in vitro (DIV) cortical and 7 DIV hippocampal cells. Circular dichroism spectra did not reveal major differences in secondary structure between aged A beta1-42, A beta3(pE)-42, A beta3(pE)-40, and A beta1-40 or freshly solubilized forms of these peptides. Overall, the data indicate that the loss of the two N-terminal amino acids and the cyclization of glutamate at position 3 do not alter the extracellular toxicity of A beta.
Collapse
Affiliation(s)
- T L Tekirian
- Sanders-Brown Alzheimer's Disease Research Center and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | |
Collapse
|
93
|
Garden RW, Moroz TP, Gleeson JM, Floyd PD, Li L, Rubakhin SS, Sweedler JV. Formation of N-pyroglutamyl peptides from N-Glu and N-Gln precursors in Aplysia neurons. J Neurochem 1999; 72:676-81. [PMID: 9930740 DOI: 10.1046/j.1471-4159.1999.0720676.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry is used to examine the formation of N-pyroglutamate (pGlu) in single, identified neurons from Aplysia. Six pGlu peptides are identified in the R3-14 and the R15 neurons that result from in vivo processing of peptides containing either Glu or Gln at their respective N-termini. Moreover, we show that Glu-derived pGlu is not a sample collection or measurement artifact. The pGlu peptides are detected in isolated cell bodies, regenerated neurites in culture, interganglionic connective nerves, cell homogenates, and collected releasates. We also demonstrate that R3-14 cells readily convert a synthetic N-Glu peptide to its pGlu analogue, indicating the presence of novel enzymatic activity.
Collapse
Affiliation(s)
- R W Garden
- Department of Chemistry and Beckman Institute, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Russo C, Angelini G, Dapino D, Piccini A, Piombo G, Schettini G, Chen S, Teller JK, Zaccheo D, Gambetti P, Tabaton M. Opposite roles of apolipoprotein E in normal brains and in Alzheimer's disease. Proc Natl Acad Sci U S A 1998; 95:15598-602. [PMID: 9861015 PMCID: PMC28089 DOI: 10.1073/pnas.95.26.15598] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have characterized the interaction between apolipoprotein E (apoE) and amyloid beta peptide (Abeta) in the soluble fraction of the cerebral cortex of Alzheimer's disease (AD) and control subjects. Western blot analysis with specific antibodies identified in both groups a complex composed of the full-length apoE and Abeta peptides ending at residues 40 and 42. The apoE-Abeta soluble aggregate is less stable in AD brains than in controls, when treated with the anionic detergent SDS. The complex is present in significantly higher quantity in control than in AD brains, whereas in the insoluble fraction an inverse correlation has previously been reported. Moreover, in the AD subjects the Abeta bound to apoE is more sensitive to protease digestion than is the unbound Abeta. Taken together, our results indicate that in normal brains apoE efficiently binds and sequesters Abeta, preventing its aggregation. In AD, the impaired apoE-Abeta binding leads to the critical accumulation of Abeta, facilitating plaque formation.
Collapse
Affiliation(s)
- C Russo
- Division Of Neuropathology, Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, 44106 Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Alzheimer's disease (AD) is an archetype of a class of diseases characterized by abnormal protein deposition. In each case, deposition manifests itself in the form of amyloid deposits composed of fibrils of otherwise normal, soluble proteins or peptides. An ever-increasing body of genetic, physiologic, and biochemical data supports the hypothesis that fibrillogenesis of the amyloid beta-protein is a seminal event in Alzheimer's disease. Inhibiting A beta fibrillogenesis is thus an important strategy for AD therapy. However, before this strategy can be implemented, a mechanistic understanding of the fibrillogenesis process must be achieved and appropriate steps selected as therapeutic targets. Following a brief introduction to AD, I review here the current state of knowledge of A beta fibrillogenesis. Special emphasis is placed on the morphologic, structural, and kinetic aspects of this complex process.
Collapse
Affiliation(s)
- D B Teplow
- Department of Neurology (Neuroscience), Harvard Medical School Boston, MA, USA.
| |
Collapse
|
96
|
Galli C, Piccini A, Ciotti MT, Castellani L, Calissano P, Zaccheo D, Tabaton M. Increased amyloidogenic secretion in cerebellar granule cells undergoing apoptosis. Proc Natl Acad Sci U S A 1998; 95:1247-52. [PMID: 9448317 PMCID: PMC18734 DOI: 10.1073/pnas.95.3.1247] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/1997] [Indexed: 02/05/2023] Open
Abstract
Some clues suggest that neuronal damage induces a secondary change of amyloid beta protein (Abeta) metabolism. We investigated this possibility by analyzing the secretion of Abeta and processing of its precursor protein (amyloid precursor protein, APP) in an in vitro model of neuronal apoptosis. Primary cultures of rat cerebellar granule neurons were metabolically labeled with [35S]methionine. Apoptosis was induced by shifting extracellular KCl concentration from 25 mM to 5 mM for 6 h. Control and apoptotic neurons were then subjected to depolarization-stimulated secretion. Constitutive and stimulated secretion media and cell lysates were immunoprecipitated with antibodies recognizing regions of Abeta, full-length APP, alpha- and beta-APP secreted forms. Immunoprecipitated proteins were separated by SDS/PAGE and quantitated with a PhosphorImager densitometer. Although intracellular full-length APP was not significantly changed after apoptosis, the monomeric and oligomeric forms of 4-kDa Abeta were 3-fold higher in depolarization-stimulated secretion compared with control neurons. Such increments were paralleled by a corresponding increase of the beta-APPs/alpha-APPs ratio in apoptotic secretion. Immunofluorescence studies performed with an antibody recognizing an epitope located in the Abeta sequence showed that the Abeta signal observed in the cytoplasm and in the Golgi apparatus of control neurons is uniformly redistributed in the condensed cytoplasm of apoptotic cells. These studies indicate that neuronal apoptosis is associated with a significant increase of metabolic products derived from beta-secretase cleavage and suggest that an overproduction of Abeta may be the consequence of neuronal damage from various causes.
Collapse
Affiliation(s)
- C Galli
- Istituto di Neurobiologia, Consiglio Nazionale delle Ricerche, Via K. Marx 43, 00137 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Recent studies on the familial Alzheimer's disease (FAD)-linked mutations in three independent genes have established the pathogenic role of beta-amyloid (Abeta) deposition as a common pathway leading to neurodegeneration. Most of these mutations seem to contribute to Abeta deposition by directly causing the overproduction of Abeta1-42, a form of Abeta with high insolubility attributed to its carboxyl-terminal structure, through secretory proteolysis. In contrast, the mechanism of Abeta deposition in sporadic Alzheimer's disease (SAD), which accounts for more than 90% of disease cases, is unclear. Because Abeta overproduction is rarely observed in SAD, a possible candidate mechanism is a decreased degradation, or dyscatabolism, of Abeta. It is notable that a reduction in catabolism of only 30-50% is estimated to exert an equivalent effect on Abeta metabolism as the overproduction seen in FAD. Identification of the in vivo catabolic processes responsible for Abeta disposition would provide a new basis for the development of preventive and therapeutic measures against the disease. I hypothesized recently that aminopeptidase-catalyzed proteolysis of Abeta may limit the rate of Abeta catabolism and that the reduction of a certain aminopeptidase activity would lead to Abeta dyscatabolism and thus to deposition (Aminopeptidase Hypothesis), based on the structural properties of Abeta deposited in human brain. Experimental and clinical observations supporting this hypothesis are accumulating although further work is necessary to fully evaluate its relevance. If the assumption proves to be true, both the familial and sporadic forms of AD may be referred to as "proteolytic disorders" in anabolic and catabolic terms, respectively.
Collapse
Affiliation(s)
- T C Saido
- Department of Molecular Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| |
Collapse
|