51
|
Abstract
Current models for epigenetic gene silencing envision a static relationship between histone modifications and transcription. However, evidence for nucleosome mobility and replacement favors a dynamic model that may explain phenomena ranging from variegation to the neural restriction of Rett syndrome.
Collapse
Affiliation(s)
- Kami Ahmad
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
52
|
Zhang K, Tang H, Huang L, Blankenship JW, Jones PR, Xiang F, Yau PM, Burlingame AL. Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal Biochem 2002; 306:259-69. [PMID: 12123664 DOI: 10.1006/abio.2002.5719] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new strategy has been employed for the identification of the covalent modification sites (mainly acetylation and methylation) of histone H3 from chicken erythrocytes using low enzyme/substrate ratios and short digestion times (trypsin used as the protease) with analysis by HPLC separation, matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), matrix-assisted laser desorption ionization-postsource decay, and tandem mass spectrometric techniques. High-accuracy MALDI-TOF mass measurements with representative immonium ions (126 for acetylated lysine, 98 for monomethylated lysine, and 84 for di-, tri-, and unmethylated lysine) have been effectively used for differentiating methylated peptides from acetylated peptides. Our results demonstrate that lysines 4, 9, 14, 27, and 36 of the N-terminal of H3 are methylated, while lysines 14, 18, and 23 are acetylated. Surprisingly, a non-N-terminal residue, lysine 79, in the loop region hooking up to the bound DNA, was newly found to be methylated (un-, mono-, and dimethylated isoforms coexist). The reported mass spectrometric method has the advantages of speed, directness, sensitivity, and ease over protein sequencing and Western-blotting methods and holds the promise of an improved method for determining the status of histone modifications in the field of chromosome research.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Chemistry, School of Pharmacology, University of the Pacific, Stockton, California 95211, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
The importance of control of the levels of histone acetylation for the control of gene expression in eukaryotic chromatin is being elucidated, and the yeast Saccharomyces cerevisiae has proven to be an important model system. The level of histone acetylation in yeast is the highest known. However, only acetylation of H4 has been quantified, and reports reveal loss of acetylation in histone preparations. A chaotropic guanidine-based method for histone isolation from intact wild-type cells or from a single-step nuclear preparation with butyrate preserves acetylation of all core histones. Histone H4 has an average of more than 2 acetylated lysines per molecule, distributed over 4 sites. Histones H2A, H3, and H2B have 0. 2, approximately 2, and >2 acetylated lysines per molecule, respectively, distributed across 2, 5, and 6 sites. Thus, yeast nucleosomes carry, on average, 13 acetylated lysines per octamer, i. e. just above the threshold of 10-12 deduced for transcriptionally activated chromatin of animals, plants, and algae. Following M(r) 100,000 ultrafiltration in 2.5% acetic acid, yeast histone H3 was purified to homogeneity by reversed-phase high pressure liquid chromatography. Other core histones were obtained at 80-95% purity.
Collapse
Affiliation(s)
- J H Waterborg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City Missouri 64110-2499, USA.
| |
Collapse
|
54
|
Strahl BD, Ohba R, Cook RG, Allis CD. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci U S A 1999; 96:14967-72. [PMID: 10611321 PMCID: PMC24756 DOI: 10.1073/pnas.96.26.14967] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies into posttranslational modifications of histones, notably acetylation, have yielded important insights into the dynamic nature of chromatin structure and its fundamental role in gene expression. The roles of other covalent histone modifications remain poorly understood. To gain further insight into histone methylation, we investigated its occurrence and pattern of site utilization in Tetrahymena, yeast, and human HeLa cells. In Tetrahymena, transcriptionally active macronuclei, but not transcriptionally inert micronuclei, contain a robust histone methyltransferase activity that is highly selective for H3. Microsequence analyses of H3 from Tetrahymena, yeast, and HeLa cells indicate that lysine 4 is a highly conserved site of methylation, which to date, is the major site detected in Tetrahymena and yeast. These data document a nonrandom pattern of H3 methylation that does not overlap with known acetylation sites in this histone. In as much as H3 methylation at lysine 4 appears to be specific to macronuclei in Tetrahymena, we suggest that this modification pattern plays a facilitatory role in the transcription process in a manner that remains to be determined. Consistent with this possibility, H3 methylation in yeast occurs preferentially in a subpopulation of H3 that is preferentially acetylated.
Collapse
Affiliation(s)
- B D Strahl
- Department of Biochemistry, University of Virginia Health Science Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
55
|
Abstract
The dynamic character of core histone post-translational acetylation in the unicellular green alga Chlamydomonas reinhardtii was studied by tritiated acetate incorporation. Histone H3 is the major target of acetylation, steady state, and in pulse and pulse-chase analyses. Acetylation turnover rates were measured by tracer labeling under steady-state conditions. Half-lives of 1.5-3 min were found for penta- to mono-acetylation of H3, dynamically acetylated to the 30% level. Twenty percent of H3 was multi-acetylated, on average with 3. 2 acetyl-lysines, all with rapid turnover. Deacetylase inhibitor trichostatin A (TSA) caused doubling of average acetylation levels, primarily as penta-acetylated H3, but half of H3 was not acetylated at all. The level of histone H4 acetylation was only half that of H3 and a major fraction of mono- and di-acetylated forms appeared static. The dynamic fraction had an average half-life of 3.5 min with higher turnover rates for more highly acetylated H4 forms. TSA, inhibiting less effectively deacetylases active on H4, strongly increased multi-acetylated H4 levels and doubled average acetylation. As for H3, half of histone H4 remained unacetylated. Acetylation of histone H2B was low and of H2A was barely measurable. Despite turnover with half-lives of approximately 2 min, no increase beyond di-acetylation was seen upon TSA treatment.
Collapse
Affiliation(s)
- J H Waterborg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA.
| |
Collapse
|
56
|
Waterborg JH, Robertson AJ. Common features of analogous replacement histone H3 genes in animals and plants. J Mol Evol 1996; 43:194-206. [PMID: 8703085 DOI: 10.1007/bf02338827] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phylogenetic analysis of histone H3 protein sequences demonstrates the independent origin of the replacement histone H3 genes in animals and in plants. Multiple introns in the replacement histone H3 genes of animals in a pattern distinct from that in plant replacement H3 genes supports this conclusion. It is suggested that replacement H3 genes arose at the same time that, independently, multicellular forms of animals and of plants evolved. Judged by the degree of invariant and functionally constrained amino acid positions, histones H3 and H4, which form together the tetramer kernel of the nucleosome, have co-evolved with equal rates of sequence divergence. Residues 31 and 87 in histone H3 are the only residues that consistently changed across each gene duplication event that created functional replacement histone H3 variant forms. Once changed, these residues have remained invariant across divergent speciation. This suggests that they are required to allow replacement histone H3 to participate in the assembly of nucleosomes in non-S-phase cells. The abundant occurrence of polypyrimidine sequences in the introns of all replacement H3 genes, and the replacement of an intron by a polypyrimidine motif upstream of the alfalfa replacement H3 gene, suggests a function. It is speculated that they may contribute to the characteristic cell-cycle-independent pattern of replacement histone H3 genes by binding nucleosome-excluding proteins.
Collapse
Affiliation(s)
- J H Waterborg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | |
Collapse
|
57
|
Robertson AJ, Kapros T, Dudits D, Waterborg JH. Identification of three highly expressed replacement histone H3 genes of alfalfa. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1996; 6:137-46. [PMID: 8722568 DOI: 10.3109/10425179609010201] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
One genomic and six cDNA clones for the replacement histone H3.2 protein of alfalfa (Medicago sativa) were isolated and sequenced. By gene organization they represent 3 distinct genes. PCR methods were used to confirm that only three intron-bearing histone H3.2 genes of this type exist per haploid genome. They co-exist with approximately 56 copies of the previously characterized replication-dependent, intronless histone H3.1 variant gene. Comparison of the relative expression of few constitutive H3.2 genes with the high S phase expression of the abundant cell cycle-dependent H3.1 genes by mRNA levels and protein synthesis measurements revealed that the replacement histone H3.2 genes are very highly expressed. Structural analysis of the genomic replacement H3.2 gene revealed a unique feature. A repeated polypyrimidine sequence motif in the 5' untranslated region of this gene replaces the ubiquitous intron present in all known replacement H3 genes. A hypothesis is presented that this motif and other, non-randomly distributed polypyrimidine sequences in the introns of replacement histone H3 genes of alfalfa and Arabidopsis, may affect nucleosome assembly. Chromatin repression of these replacement genes would be avoided, consistent with the high, constitutive expression of replacement H3 histone genes in plants.
Collapse
Affiliation(s)
- A J Robertson
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City 64110-2499, USA
| | | | | | | |
Collapse
|
58
|
Kapros T, Robertson AJ, Waterborg JH. Histone H3 transcript stability in alfalfa. PLANT MOLECULAR BIOLOGY 1995; 28:901-914. [PMID: 7640361 DOI: 10.1007/bf00042074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The stability of histone H3 transcripts in alfalfa for replication-dependent and -independent gene variants was measured by northern analysis under conditions of inhibition of transcription and/or translation. Replication-dependent histone H3.1 transcripts were about three-fold less stable than the equally polyadenylated mRNA for replacement variant H3.2 histone. In actively growing suspension cultures treated with dactinomycin half-lives of 2 and 7 h were observed for H3.1 and H3.2 mRNAs, respectively. mRNA stabilities were also measured indirectly by histone protein synthesis. The translation inhibitor cycloheximide strongly increased mRNA levels for both histone H3 variants. The dependence of histone mRNA turnover on translation in animals also appears to exist in plants. The combination of inhibition of transcription and translation by dactinomycin and cycloheximide was used in an indirect assessment of H3 mRNA stability throughout the cell cycle in partially synchronized and cycle-arrested cultures. Destabilization of replication-dependent histone H3.1 mRNA was detected in non-S phase cells.
Collapse
Affiliation(s)
- T Kapros
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City 64110-2499, USA
| | | | | |
Collapse
|
59
|
Affiliation(s)
- H J Longhurst
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|
60
|
|
61
|
Waterborg J. Histone synthesis and turnover in alfalfa. Fast loss of highly acetylated replacement histone variant H3.2. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53482-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
62
|
Chaubet N, Clement B, Gigot C. Genes encoding a histone H3.3-like variant in Arabidopsis contain intervening sequences. J Mol Biol 1992; 225:569-74. [PMID: 1593639 DOI: 10.1016/0022-2836(92)90943-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two genes encoding a particular H3 histone variant were isolated from Arabidopsis thaliana. These genes differ from the H3 genes previously cloned from Arabidopsis and other plants by several interesting properties: (1) the two genes are located close to each other; (2) their coding regions are interrupted by two or three small introns, the two closest to the initiation codon being located at the same place in the two genes; (3) another, long intron is located in the 5'-untranslated region just before the initiation codon of gene I as deduced from the sequence of several corresponding cDNAs, and very likely also of gene II; (4) these genes do not show preferential expression in organs containing meristematic tissues contrary to the classical intronless replication-dependent histone genes, thus suggesting that their expression is not replication-dependent; (5) the protein encoded by both genes is the same and corresponds to a minor H3 variant highly conserved among all the plant species studied up to now. All these characteristics are common with the animal replication-independent H3.3 histone genes and it is assumed that the genes described here are the first example of the equivalent H3.3 gene family in plants. Interestingly, the promoter regions of the two genes have the same general structure as the Arabidopsis intronless genes. Possible implications on the regulation of H3 genes expression are discussed.
Collapse
Affiliation(s)
- N Chaubet
- Institut de Biologie Moléculaire des Plantes, CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
63
|
Hendzel M, Delcuve G, Davie J. Histone deacetylase is a component of the internal nuclear matrix. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54727-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|