51
|
Miller PA, Shajani Z, Meints GA, Caplow D, Goobes G, Varani G, Drobny GP. Contrasting views of the internal dynamics of the HhaI methyltransferase target DNA reported by solution and solid-state NMR spectroscopy. J Am Chem Soc 2007; 128:15970-1. [PMID: 17165714 DOI: 10.1021/ja066329n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Solution and solid-state NMR have been used conjointly to probe the internal motions of a DNA dodecamer containing the recognition site for the HhaI methyltransferase. The results strongly suggest that ns-mus motions contribute to the functionally relevant dynamic properties of nucleic acids during DNA methylation.
Collapse
Affiliation(s)
- Paul A Miller
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Cai P, Huang QY, Zhang XW. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:2971-6. [PMID: 16719099 DOI: 10.1021/es0522985] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Adsorption, desorption, and degradation by nucleases of DNA on four different colloidal fractions from a Brown soil and clay minerals were studied. The adsorption of DNase I and the structures of native DNA, adsorbed and desorbed, were also investigated by Fourier Transform Infrared (FTIR), circular dichroism (CD), and fluorescence spectroscopy, to determine the protection mechanism of DNA molecules by soil colloids and minerals against enzymatic degradation. Kaolinite exhibited the highest adsorption affinity for DNA among the examined soil colloids and clay minerals. In comparison with organomineral complexes (organic clays), DNA was tightly adsorbed by H2O2-treated clays (inorganic clays). FTIR spectra showed that the binding of DNA on kaolinite and inorganic clays changed its conformation from the B-form to the Z-form, whereas montmorillonite and organic clays retained the original B-form of DNA. A structural change from the B- to the C-form in DNA molecules desorbed from kaolinite was observed by CD spectroscopy and confirmed by fluorescence spectroscopy. The presence of soil colloids and minerals provided protection to DNA against degradation by DNase I. The higher level of protection was found with montmorillonite and organic clays compared to kaolinite and inorganic clays. The protection of DNA against nuclease degradation by soil colloids and minerals is apparently not controlled by the adsorption affinity of DNA molecules for the colloids and the conformational change of bound DNA. The higher stability of DNA seemed to be attributed mainly to the presence of organic matter in the system and the adsorption of nucleases on soil colloids and minerals. The information obtained in this study is of fundamental significance for the understanding of the behavior of extracellular DNA in soil environment.
Collapse
Affiliation(s)
- Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agriculture University, Wuhan 430070, China
| | | | | |
Collapse
|
53
|
Madhumalar A, Bansal M. Sequence preference for BI/BII conformations in DNA: MD and crystal structure data analysis. J Biomol Struct Dyn 2005; 23:13-27. [PMID: 15918673 DOI: 10.1080/07391102.2005.10507043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Deciphering sequence information from sugar-phosphate backbone is finely tuned through the conformational substates of DNA. BII conformation, one of the conformational substates of B-DNA, is known to play a key role in DNA-protein recognition. BI and BII are identified by the epsilon-zeta difference, which is negative in BI and positive in BII. Our analysis of MD and crystal structures shows that BII conformation is sequence specific and dinucleotides GC, CG, CA, TG, TA show high preference to take up BII conformation, while TT, TC, CT, CC dinucleotides rarely take up this conformation. Significant changes were observed in the dinucleotide parameters viz. twist, roll, and slide for the steps having BII conformation. Interestingly, the magnitude of variation in the dinucleotide parameters is seen to depend mainly on two factors, the magnitude of epsilon-zeta difference and the presence or absence of BII conformation in the second strand, across the WC base-paired dinucleotide step. Based on these two factors, the conformational substate of a dinucleotide step can be further classified as BI.BI (BI conformation in both strands), BI.BII (BI conformation in one strand and BII conformation in the other), and BII.BII (BII conformation in both strands). The occurrence of BII in both strands was found to be quite rare and thus, it can be concluded that BI.BI and BI.BII hybrid steps are more favorable than a BII.BII step. In conformity with the sequence preference seen for dinucleotides in each strand, BII.BII combination of backbone conformation was observed only for GC, CG, CA, and TG containing dinucleotide steps. We further classified BII.BII step as strong BII and weak BII depending on the magnitude of the average epsilon-zeta difference. The dinucleotide steps which belong to the category of strong BII, have large twist, high positive slide and negative roll values, while those in the weak BII group have roll, twist, and slide values similar to that of hybrid BI.BII steps. This conformational property could be contributing to the groove opening/closing and thus can modulate protein-DNA interaction.
Collapse
Affiliation(s)
- A Madhumalar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
54
|
Rauch C, Pichler A, Trieb M, Wellenzohn B, Liedl KR, Mayer E. Z-DNA's conformer substates revealed by FT-IR difference spectroscopy of nonoriented left-handed double helical poly(dG-dC). J Biomol Struct Dyn 2005; 22:595-614. [PMID: 15702931 DOI: 10.1080/07391102.2005.10507029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nonoriented hydrated films of double helical poly(dG-dC) in the Z-form were studied by Fourier transform infrared (FT-IR) spectroscopy either as equilibrated slow-cooled samples between 290 and 220 K or, after quenching into the glassy state, as nonequilibrated film isothermally at 200, 220, and 240 K. IR spectral changes on isothermal relaxation at 200 and 220 K toward equilibrium, caused by interconversion of two conformer substates (CS) called Z1 and Z2, are revealed by IR difference spectra. Pronounced spectral changes on Z1-to-Z2 interconversion occur between approximately 750-1250 cm(-1) and these are attributed to structural changes of the phosphodiester-sugar backbone caused by changes of torsion angles, and to decreasing hydrogen-bonding of the ionic phosphate group with water molecules. These spectral changes on Z1-to-Z2 transition can be related to structural differences between ZI and ZII CS observed in single crystals. ZI/ZII CS occurs only at (dGpdC) base steps, and similar behavior is assumed for Z1/Z2. The Z1/Z2 population ratio was determined via curve resolution of marker bands for Z1 and Z2 centered at 785 and 779 cm(-1). This ratio is 0.64 at 290 K, corresponding to 39% of the phosphates of the (dGpdC) base steps in Z1 and 61% in Z2, and it increases to 1.24 on cooling to 220 K. For the Z2<=>Z1 equilibrium, an enthalpy change of -4.9 +/- 0.2 kJ mol(dGpdC)(-1) is obtained from the temperature dependence of the equilibrium constant. Z1 interconverts into Z2 at isothermal relaxation at 200 and 220 K, whereas on slow cooling from ambient temperature, Z2 interconverts into Z1. This unexpected reversal of CS interconversion is attributed to slow restructuring of hydration shells of the CS on quenching, in the same manner reported by Pichler et al. for the BI and BII CS of B-DNA (J. Phys. Chem. B 106, 3263-3274 (2002)). IR difference curves demonstrate two time scales on isothermal relaxation of Z1-->Z2 interconversion, a fast one for structural relaxation of the sugar-phosphate backbone, and a slow one for relaxation of the hydration shells. This slowing down of restructuring of CS hydration shells at approximately 220-240 K could be the cause for the suppression of biological functions at low temperatures.
Collapse
Affiliation(s)
- Christine Rauch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
55
|
Zhang N, Lin C, Huang X, Kolbanovskiy A, Hingerty BE, Amin S, Broyde S, Geacintov NE, Patel DJ. Methylation of cytosine at C5 in a CpG sequence context causes a conformational switch of a benzo[a]pyrene diol epoxide-N2-guanine adduct in DNA from a minor groove alignment to intercalation with base displacement. J Mol Biol 2004; 346:951-65. [PMID: 15701509 PMCID: PMC4694590 DOI: 10.1016/j.jmb.2004.12.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/09/2004] [Accepted: 12/14/2004] [Indexed: 12/20/2022]
Abstract
It is well known that CpG dinucleotide steps in DNA, which are highly methylated at the 5-position of cytosine (meC) in human tissues, exhibit a disproportionate number of mutations within certain codons of the p53 gene. There is ample published evidence indicating that the reactivity of guanine with anti-B[a]PDE (a metabolite of the environmental carcinogen benzo[a]pyrene) at CpG mutation hot spots is enhanced by the methylation of the cytosine residue flanking the target guanine residue on the 5'-side. In this work we demonstrate that such a methylation can also dramatically affect the conformational characteristics of an adduct derived from the reaction of one of the two enantiomers of anti-B[a]PDE with the exocyclic amino group of guanine ([BP]G adduct). A detailed NMR study indicates that the 10R (-)-trans-anti-[BP]G adduct undergoes a transition from a minor groove-binding alignment of the aromatic BP ring system in the unmethylated C-[BP]G sequence context, to an intercalative BP alignment with a concomitant displacement of the modified guanine residue into the minor groove in the methylated meC-[BP]G sequence context. By contrast, a minor groove-binding alignment was observed for the stereoisomeric 10S (+)-trans-anti-[BP]G adduct in both the C-[BP]G and meC-[BP]G sequence contexts. This remarkable conformational switch resulting from the presence of a single methyl group at the 5-position of the cytosine residue flanking the lesion on the 5'-side, is attributed to the hydrophobic effect of the methyl group that can stabilize intercalated adduct conformations in an adduct stereochemistry-dependent manner. Such conformational differences in methylated and unmethylated CpG sequences may be significant because of potential alterations in the cellular processing of the [BP]G adducts by DNA transcription, replication, and repair enzymes.
Collapse
Affiliation(s)
- Na Zhang
- Program in Cellular Biochemistry and Biophysics Memorial Sloan-Kettering Cancer Center, New York NY 10021, USA
| | - Chin Lin
- Program in Cellular Biochemistry and Biophysics Memorial Sloan-Kettering Cancer Center, New York NY 10021, USA
- Chemistry Department, New York University, New York NY 10003, USA
| | - Xuanwei Huang
- Chemistry Department, New York University, New York NY 10003, USA
| | | | - Brian E. Hingerty
- Life Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831, USA
| | - Shantu Amin
- Department of Pharmacology Penn State College of Medicine Hershey, PA 17033, USA
| | - Suse Broyde
- Biology Department, New York University, New York, NY 10003, USA
| | | | - Dinshaw J. Patel
- Program in Cellular Biochemistry and Biophysics Memorial Sloan-Kettering Cancer Center, New York NY 10021, USA
- Corresponding author:
| |
Collapse
|
56
|
Banyay M, Sandbrink J, Strömberg R, Gräslund A. Characterization of an RNA bulge structure by Fourier transform infrared spectroscopy. Biochem Biophys Res Commun 2004; 324:634-9. [PMID: 15474474 DOI: 10.1016/j.bbrc.2004.09.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Indexed: 11/28/2022]
Abstract
There may be several advantages associated with an antisense oligonucleotide that induces a bulged structure into its RNA target molecule. Many structures of RNA bulges are elucidated from single-stranded RNA models. However, a two-component system is the minimum requirement for a realistic antisense model. We have used Fourier transform infrared spectroscopy to investigate a single-stranded RNA oligonucleotide with known NMR solution structure, constructed to model a five nucleotide bulge, and its two-component oligonucleotide counterpart. The infrared spectra show A-helical base-paired stems and non-base-paired loops in both systems. The nucleosides are mainly in an anti-conformation. Both N-type and S-type of sugar puckers can be inferred from the infrared region sensitive to sugar conformations. The S-type of sugar pucker is likely to be associated with the nucleotides in the bulge. The FTIR results display an overall structural similarity between the two model systems.
Collapse
Affiliation(s)
- Martina Banyay
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm SE-106 91, Sweden
| | | | | | | |
Collapse
|
57
|
Davey CS, Pennings S, Reilly C, Meehan RR, Allan J. A determining influence for CpG dinucleotides on nucleosome positioning in vitro. Nucleic Acids Res 2004; 32:4322-31. [PMID: 15310836 PMCID: PMC514372 DOI: 10.1093/nar/gkh749] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
DNA sequence information that directs the translational positioning of nucleosomes can be attenuated by cytosine methylation when a short run of CpG dinucleotides is located close to the dyad axis of the nucleosome. Here, we show that point mutations introduced to re-pattern methylation at the (CpG)3 element in the chicken betaA-globin promoter sequence themselves strongly influenced nucleosome formation in reconstituted chromatin. The disruptive effect of cytosine methylation on nucleosome formation was found to be determined by the sequence context of CpG dinucleotides, not just their location in the positioning sequence. Additional mutations indicated that methylation can also promote the occupation of certain nucleosome positions. DNase I analysis demonstrated that these genetic and epigenetic modifications altered the structural characteristics of the (CpG)3 element. Our findings support a proposal that the intrinsic structural properties of the DNA at the -1.5 site, as occupied by (CpG)3 in the nucleosome studied, can be decisive for nucleosome formation and stability, and that changes in anisotropic DNA bending or flexibility at this site explain why nucleosome positioning can be exquisitely sensitive to genetic and epigenetic modification of the DNA sequence.
Collapse
Affiliation(s)
- Colin S Davey
- Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, King's Buildings, West Mains Road, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
58
|
de Meeûs T, Humair PF, Grunau C, Delaye C, Renaud F. Non-Mendelian transmission of alleles at microsatellite loci: an example in Ixodes ricinus, the vector of Lyme disease. Int J Parasitol 2004; 34:943-50. [PMID: 15217733 DOI: 10.1016/j.ijpara.2004.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 04/15/2004] [Accepted: 04/18/2004] [Indexed: 11/17/2022]
Abstract
Microsatellite loci are usually considered to be neutral co-dominant and Mendelian markers. We undertook to study the inheritance of five microsatellite loci in the European Lyme disease vector, the tick Ixodes ricinus. Only two loci appeared fully Mendelian while the three others displayed non-Mendelian patterns that highly frequent null alleles could not fully explain. At one locus, IR27, some phenomenon seems to hinder the PCR amplification of one allele, depending on its origin (maternal imprinting) and/or its size (short allele dominance). DNA methylation, which appeared to be a possible explanation of this amplification bias, was rejected by a specific test comparing the amplification efficiency that did not differ between unmethylated and experimentally methylated DNA. The role of allele size in heterozygous individuals was then revealed from the data available on field collected ticks and consistent with the results of a theoretical approach. These observations highlight the need for prudence while inferring reproductive systems (selfing rates), parentage or even allelic frequencies from microsatellite markers, in particular for parasitic organisms for which molecular approaches often represent the only way for population biology inferences.
Collapse
Affiliation(s)
- Thierry de Meeûs
- Génétique et Evolution des Maladies Infectieuses, Equipe Evolution des Systèmes Symbiotiques, UMR 2724 CNRS-IRD, BP 64501, 911 Av. Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
59
|
Malins DC, Anderson KM, Polissar NL, Ostrander GK, Knobbe ET, Green VM, Gilman NK, Spivak JL. Models of granulocyte DNA structure are highly predictive of myelodysplastic syndrome. Proc Natl Acad Sci U S A 2004; 101:5008-11. [PMID: 15051892 PMCID: PMC387364 DOI: 10.1073/pnas.0400838101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used statistical models based on Fourier transform-infrared spectra to differentiate between the DNA structure of normal granulocytes and those obtained from patients with myelodysplastic syndrome (MDS). The substantial degree of discrimination achieved between the two DNA groups is attributed to differences in the nucleotide base and backbone structures. These structural differences allowed for the development of a discriminant analysis model that predicted, with high sensitivity and specificity, which DNA came from normal granulocytes vs. granulocytes from MDS patients. The findings are a promising basis for developing a blood test to diagnose and predict the occurrence of MDS, for which there is currently a paucity of molecular markers.
Collapse
Affiliation(s)
- Donald C Malins
- Biochemical Oncology Program, Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Djuranovic D, Hartmann B. DNA fine structure and dynamics in crystals and in solution: The impact of BI/BII backbone conformations. Biopolymers 2004; 73:356-68. [PMID: 14755572 DOI: 10.1002/bip.10528] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sugar-phosphate backbone conformations are an important structural element for a complete understanding of specific recognition in nucleic acid-protein interactions. They can be involved both in early stages of target discrimination and in structural adaptation upon binding. In the first part of this study, we have analyzed high-resolution structures of double-stranded B-DNA either isolated or bound to proteins, and explored the impact of both the standard BI and the unusual BII phosphate backbone conformations on neighboring sugar puckers and on selected helical parameters. Correlations are found to be similar for free and bound DNA, and in both categories, the possible facing backbone conformations (BI.BI, BI.BII, and BII.BII) define well-characterized substates in the B-DNA conformational space. Notably, BII.BII steps are characterized by specific, and sequence-independent, structural effects involving reduced standard deviations for almost all conformational parameters. In the second part of this work, we analyze four 10 ns molecular dynamics simulations in explicit solvent on the DNA targets of NF-kappaB and bovine papillomavirus E2 proteins, highlighting the multiplicity of backbone dynamical behavior. These results show sequence effects on the percentages of BI and BII conformers, the preferential state of facing backbones, the occurrence of coupled transitions. The backbone states can consequently be seen as a mechanism for transmitting information from the bases to the phosphate groups and thus for modulating the overall structural properties of the target DNA.
Collapse
Affiliation(s)
- D Djuranovic
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue P. et M. Curie, Paris 75005, France.
| | | |
Collapse
|
61
|
Abstract
This review presents a compilation and discussion of infrared (IR) bands characteristic of nucleic acids in various conformations. The entire spectral range 1800-800 cm(-1) relevant for DNA/RNA in aqueous solution has been subdivided into four sections. Each section contains descriptions of bands appearing from group specific parts of nucleic acid structure, such as nucleobase, base-sugar, sugar-phosphate and sugar moiety. The approach allows comparisons of information obtained from one spectral region with another. The IR band library should facilitate detailed and unambiguous assignment of structural changes, ligand binding, etc. in nucleic acids from IR spectra. is aimed at highlighting specific features that are useful for following major changes in nucleic acid structures. also concerns some recent results, where IR spectroscopy has been used to obtain semi-quantitative information on coexisting modes of sugar pucker in oligonucleotides.
Collapse
Affiliation(s)
- Martina Banyay
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-106 91, Stockholm, Sweden
| | | | | |
Collapse
|
62
|
Pichler A, Rauch C, Flader W, Wellenzohn B, Liedl KR, Hallbrucker A, Mayer E. The conformer substates of nonoriented B-type DNA in double helical poly(dG-dC). J Biomol Struct Dyn 2003; 20:547-59. [PMID: 12529153 DOI: 10.1080/07391102.2003.10506871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A nonoriented hydrated film of poly(dG-dC) with ?20 water molecules per nucleotide (called B* by Loprete and Hartman (Biochem. 32, 4077-4082 (1993)) was studied by Fourier transform infrared (FT-IR) spectroscopy either as equilibrated sample between 290 and 270 K or, after quenching into the glassy state, as nonequilibrated film isothermally at 200 and 220 K. IR spectral changes on isothermal relaxation at 200 and 220 K, caused by interconversion of two conformer substates, are revealed by difference spectra. Comparison with difference curves obtained in the same manner from two classical B-DNA forms, namely the d(CGCGAATTCGCG)(2) dodecamer and polymeric NaDNA from salmon testes, revealed that the spectral changes on B(I)-to-B(II) interconversion in the classical B-DNA forms are very similar to those in the B*-form, and that the spectroscopic differences between the B(I) and B(II) features from classical B-DNA and those from the modified B*-form are minor. Nonexponential kinetics of the B(I)-->B(II) transition in the B*-form of poly(dG-dC) at 200 K showed that the structural relaxation time is about three times of that in the classical B-DNA forms (approximately equal to 30 versus approximately equal to 10 min at 200 K). The unexpected reversal of conformer substates interconversion (that is B(II)-->B(I) transition on cooling from 290 K and B(I)-->B(II) transition on isothermal relaxation at 200 K) observed for classical B-DNA occurs also in the modified B*-form. We therefore conclude that restructuring of hydration shells rules the low-temperature dynamics of the B*-form via its two conformer substates in the same manner reported for classical B-DNA by Pichler et al. (J. Phys. Chem. B 106, 3263-3274 (2002)).
Collapse
Affiliation(s)
- Arthur Pichler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|