51
|
Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage. PLoS One 2017; 12:e0177780. [PMID: 28542301 PMCID: PMC5436899 DOI: 10.1371/journal.pone.0177780] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/03/2017] [Indexed: 01/30/2023] Open
Abstract
Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public.
Collapse
|
52
|
Thapa B, Munk BH, Burrows CJ, Schlegel HB. Computational Study of Oxidation of Guanine by Singlet Oxygen ( 1 Δ g ) and Formation of Guanine:Lysine Cross-Links. Chemistry 2017; 23:5804-5813. [PMID: 28249102 DOI: 10.1002/chem.201700231] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Oxidation of guanine in the presence of lysine can lead to guanine-lysine cross-links. The ratio of the C4, C5 and C8 crosslinks depends on the manner of oxidation. Type II photosensitizers such as Rose Bengal and methylene blue can generate singlet oxygen, which leads to a different ratio of products than oxidation by type I photosensitizers or by one electron oxidants. Modeling reactions of singlet oxygen can be quite challenging. Reactions have been explored using CASSCF, NEVPT2, DFT, CCSD(T), and BD(T) calculations with SMD implicit solvation. The spin contamination in open-shell calculations were corrected by Yamaguchi's approximate spin projection method. The addition of singlet oxygen to guanine to form guanine endo- peroxide proceeds step-wise via a zwitterionic peroxyl intermediate. The subsequent barrier for ring closure is smaller than the initial barrier for singlet oxygen addition. Ring opening of the endoperoxide by protonation at C4-O is followed by loss of a proton from C8 and dehydration to produce 8-oxoGox . The addition of lysine (modelled by methylamine) or water across the C5=N7 double bond of 8-oxoGox is followed by acyl migration to form the final spiro products. The barrier for methylamine addition is significantly lower than for water addition and should be the dominant reaction channel. These results are in good agreement with the experimental results for the formation of guanine-lysine cross-links by oxidation by type II photosensitizers.
Collapse
Affiliation(s)
- Bishnu Thapa
- Chemistry Department, Wayne State University, Detroit, Michigan, 48202, USA
| | - Barbara H Munk
- Chemistry Department, Wayne State University, Detroit, Michigan, 48202, USA
| | - Cynthia J Burrows
- Chemistry Department, University of Utah, Salt Lake City, Utah, 84112, USA
| | | |
Collapse
|
53
|
Wirth MD, Murphy EA, Hurley TG, Hébert JR. Effect of Cruciferous Vegetable Intake on Oxidative Stress Biomarkers: Differences by Breast Cancer Status. Cancer Invest 2017; 35:277-287. [PMID: 28272911 DOI: 10.1080/07357907.2017.1289218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This post hoc analysis examined cruciferous vegetable intake on urinary oxidative metabolites in postmenopausal women. Intervention participants (n = 69) received cruciferous vegetables (≥14 cups/week) during a 3-week period. First morning urine measured 8-isoprostane and 8-hydroxy-2'-deoxyguanosine. Dietary intake was estimated using 24-h recalls. When stratified by history of breast cancer, those with breast cancer had significantly lower post-intervention urinary 8-hydroxy-2'-deoxyguanosine values in the intervention arm versus. the control arm (1.1 ng/mL vs. 3.2 ng/mL, p = .01) after adjustment for baseline 8-hydroxy-2'-deoxyguanosine. This was not observed in those without breast cancer. Further work is needed to understand the role of breast cancer in these relationships.
Collapse
Affiliation(s)
- Michael D Wirth
- a Department of Epidemiology and Biostatistics , Arnold School of Public Health, University of South Carolina , Columbia , South Carolina , USA.,b Cancer Prevention and Control Program , University of South Carolina , Columbia , South Carolina , USA.,c Connecting Health Innovation, LLC , Columbia , South Carolina , USA
| | - E Angela Murphy
- d Department of Pathology , Microbiology, and Immunology, School of Medicine, University of South Carolina , Columbia , South Carolina , USA
| | - Thomas G Hurley
- c Connecting Health Innovation, LLC , Columbia , South Carolina , USA
| | - James R Hébert
- a Department of Epidemiology and Biostatistics , Arnold School of Public Health, University of South Carolina , Columbia , South Carolina , USA.,b Cancer Prevention and Control Program , University of South Carolina , Columbia , South Carolina , USA.,c Connecting Health Innovation, LLC , Columbia , South Carolina , USA
| |
Collapse
|
54
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
55
|
Kim MY. Intracellular and extracellular factors influencing the genotoxicity of nitric oxide and reactive oxygen species. Oncol Lett 2017; 13:1417-1424. [PMID: 28454271 DOI: 10.3892/ol.2017.5584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/28/2016] [Indexed: 11/06/2022] Open
Abstract
A number of factors affect cellular responses to nitric oxide (NO•) and reactive oxygen species (ROS), including their source, concentration, cumulative dose, target gene and biological milieu. This limits the extrapolation of data to in vivo pathological states in which NO• and ROS may be important. The present study investigated lethality and mutagenesis in the HPRT and TK1 genes of human lymphoblastoid TK6 cells exposed to NO• and ROS derived from two delivery methods: A reactor system and a Transwell™ co-culture. The delivery of NO• into the medium at controlled steady-state concentrations (given in µM/min) and the production of NO• and ROS by activated macrophages, resulted in a time-dependent decrease in total cell numbers, and an increase in mutation frequency (MF), compared with untreated controls. This increase in MF was effectively suppressed by N-methyl-L-arginine monoacetate. Single base substitutions were the most common type of spontaneous and NO• induced mutations in HPRT, followed by exon exclusions and small deletions in both delivery systems. Among the single base pair substitutions, an equal frequency of four types of single base substitutions were identified in TK6 cells exposed to NO• delivered by the reactor system, whereas G:C to T:A transversions and A:T to G:C transitions were more frequent in the co-culture system. Taken together, these results demonstrate that both the delivery method of NO• and ROS, and the target genes are determinants of observed cytotoxic and mutagenic responses, indicating that these parameters need to be considered in assessing the potential effects of NO• and ROS in vivo.
Collapse
Affiliation(s)
- Min Young Kim
- Toxicology Laboratory, College of Applied Life Sciences, SARI, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
56
|
DeBalsi KL, Hoff KE, Copeland WC. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev 2017; 33:89-104. [PMID: 27143693 DOI: 10.1016/j.arr.2016.04.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022]
Abstract
As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined.
Collapse
Affiliation(s)
- Karen L DeBalsi
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Kirsten E Hoff
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
57
|
Ng HZ, Ng M, Eng CM, Gao Z. Deoxyribonucleic acid glycosylase assays: Progress and prospects. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
58
|
Valente WJ, Ericson NG, Long AS, White PA, Marchetti F, Bielas JH. Mitochondrial DNA exhibits resistance to induced point and deletion mutations. Nucleic Acids Res 2016; 44:8513-8524. [PMID: 27550180 PMCID: PMC5062989 DOI: 10.1093/nar/gkw716] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaTMMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure.
Collapse
Affiliation(s)
- William J Valente
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Nolan G Ericson
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexandra S Long
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Jason H Bielas
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
59
|
Lee KJ, Kim DS, Kim JB, Jo SH, Kang SY, Choi HI, Ha BK. Identification of candidate genes for an early-maturing soybean mutant by genome resequencing analysis. Mol Genet Genomics 2016; 291:1561-71. [PMID: 27033554 DOI: 10.1007/s00438-016-1183-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In this study, we performed whole genome resequencing by Illumina HiSeq to identify changes in flowering genes using an early-flowering phenotype of soybean mutant line Josaengserori (JS) derived from Korean landrace, Seoritae (SR), and we obtained mapped reads of 131,769,690 and 167,669,640 bp in JS and SR, respectively. From the whole genome sequencing results between JS and SR, we identified 332,821 polymorphic SNPs and 65,178 indels, respectively. Among these, 30 flowering genes were in SNPs and 25 were in indels. Among 30 flowering genes detected in SNPs, Glyma02g33040, Glyma06g22650, Glyma10g36600, Glyma13g01290, Glyma14g10530, Glyma16g01980, Glyma17g11040, Glyma18g53690, and Glyma20g29300 were non-synonymous substitutions between JS and SR. Changes in Glyma10g36600 (GI), Glya02g33040 (AGL18), Glyma17g11040 (TOC1), and Glyma14g10530 (ELF3) in JS affected the expression of GmFT2a and resulted in early flowering. These results provide insight into the regulatory pathways of flowering in soybean mutants and help to improve our knowledge of soybean mutation breeding.
Collapse
Affiliation(s)
- Kyung Jun Lee
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
- National Agrobiodiversity Center, NAAS, RDA, Jeonju, 560-500, Republic of Korea
| | - Dong Sub Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Jin-Baek Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea.
| | - Sung-Hwan Jo
- Seeders Inc., Daejeon, 305-509, Republic of Korea
| | - Si-Yong Kang
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Hong-Il Choi
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Bo-Keun Ha
- Division of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
60
|
Ji D, Beharry AA, Ford JM, Kool ET. A Chimeric ATP-Linked Nucleotide Enables Luminescence Signaling of Damage Surveillance by MTH1, a Cancer Target. J Am Chem Soc 2016; 138:9005-8. [PMID: 27413803 DOI: 10.1021/jacs.6b02895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzyme MTH1 cleanses the cellular nucleotide pool of oxidatively damaged 8-oxo-dGTP, preventing mutagenesis by this nucleotide. The enzyme is considered a promising therapeutic target; however, methods to measure its activity are indirect and laborious and have low sensitivity. Here we describe a novel ATP-linked chimeric nucleotide (ARGO) that enables luminescence signaling of the enzymatic reaction, greatly simplifying the measurement of MTH1 activity. We show that the reporting system can be used to identify inhibitors of MTH1, and we use it to quantify enzyme activity in eight cell lines and in colorectal tumor tissue. The ARGO reporter is likely to have considerable utility in the study of the biology of MTH1 and potentially in analyzing patient samples during clinical testing.
Collapse
Affiliation(s)
- Debin Ji
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Andrew A Beharry
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - James M Ford
- Departments of Medicine (Oncology) and Genetics, Stanford School of Medicine , Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
61
|
Sun L, Zhang Y, Zhang Z, Zheng Y, Du L, Zhu B. Preferential Protection of Genetic Fidelity within Open Chromatin by the Mismatch Repair Machinery. J Biol Chem 2016; 291:17692-705. [PMID: 27382058 DOI: 10.1074/jbc.m116.719971] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
Epigenetic systems are well known for the roles they play in regulating the differential expression of the same genome in different cell types. However, epigenetic systems can also directly impact genomic integrity by protecting genetic sequences. Using an experimental evolutionary approach, we studied rates of mutation in the fission yeast Schizosaccharomyces pombe strains that lacked genes encoding several epigenetic regulators or mismatch repair components. We report that loss of a functional mismatch repair pathway in S. pombe resulted in the preferential enrichment of mutations in euchromatin, indicating that the mismatch repair machinery preferentially protected genetic fidelity in euchromatin. This preference is probably determined by differences in the accessibility of chromatin at distinct chromatin regions, which is supported by our observations that chromatin accessibility positively correlated with mutation rates in S. pombe or human cancer samples with deficiencies in mismatch repair. Importantly, such positive correlation was not observed in S. pombe strains or human cancer samples with functional mismatch repair machinery.
Collapse
Affiliation(s)
- Lue Sun
- From the Tsinghua University-Peking University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, the National Institute of Biological Sciences, Beijing 102206, and
| | - Yan Zhang
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Zhuqiang Zhang
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Yong Zheng
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Lilin Du
- the National Institute of Biological Sciences, Beijing 102206, and
| | - Bing Zhu
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
62
|
Minetti CASA, Remeta DP, Iden CR, Johnson F, Grollman AP, Breslauer KJ. Impact of thymine glycol damage on DNA duplex energetics: Correlations with lesion-induced biochemical and structural consequences. Biopolymers 2016; 103:491-508. [PMID: 25991500 DOI: 10.1002/bip.22680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/08/2022]
Abstract
The magnitude and nature of lesion-induced energetic perturbations empirically correlate with mutagenicity/cytotoxicity profiles and can be predictive of lesion outcomes during polymerase-mediated replication in vitro. In this study, we assess the sequence and counterbase-dependent energetic impact of the Thymine glycol (Tg) lesion on a family of deoxyoligonucleotide duplexes. Tg damage arises from thymine and methyl-cytosine exposure to oxidizing agents or radiation-generated free-radicals. The Tg lesion blocks polymerase-mediated DNA replication in vitro and the unrepaired site elicits cytotoxic lethal consequences in vivo. Our combined calorimetric and spectroscopic characterization correlates Tg -induced energetic perturbations with biological and structural properties. Specifically, we incorporate a 5R-Tg isomer centered within the tridecanucleotide sequence 5'-GCGTACXCATGCG-3' (X = Tg or T) which is hybridized with the corresponding complementary sequence 5'-CGCATGNGTACGC-3' (N = A, G, T, C) to generate families of Tg -damaged (Tg ·N) and lesion-free (T·N) duplexes. We demonstrate that the magnitude and nature of the Tg destabilizing impact is dependent on counterbase identity (i.e., A ∼ G < T < C). The observation that a Tg lesion is less destabilizing when positioned opposite purines suggests that favorable counterbase stacking interactions may partially compensate lesion-induced perturbations. Moreover, the destabilizing energies of Tg ·N duplexes parallel their respective lesion-free T·N mismatch counterparts (i.e., G < T < C). Elucidation of Tg-induced destabilization relative to the corresponding undamaged mismatch energetics allows resolution of lesion-specific and sequence-dependent impacts. The Tg-induced energetic perturbations are consistent with its replication blocking properties and may serve as differential recognition elements for discrimination by the cellular repair machinery.
Collapse
Affiliation(s)
- Conceição A S A Minetti
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, NJ, 08854
| | - David P Remeta
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, NJ, 08854
| | - Charles R Iden
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| | - Francis Johnson
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| | - Arthur P Grollman
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, NJ, 08854.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| |
Collapse
|
63
|
Abstract
The human gut microbiota plays a major role in the development and maintenance of good health. Many recent studies have attempted to define links between microbiota residents, their function and the development of colorectal cancer (CRC). Gut microbiota drive the development of inflammation within the colon and such inflammation is implicated in colonic neoplastic development. Although the precise mechanisms through which the microbiota is involved in cancer development remain elusive, the message is clear: the microbiota contributes to cancer risk by influencing a number of key host processes. It is also recognized that we have the ability to influence the role of the gut microbiota by considering our nutritional intake. We have always known that 'we are what we eat' but it is also true that 'they (our gut microbiota) are what we eat'. We therefore have a huge opportunity to positively influence our health through microbial manipulation. There is now a clear need to move past defining the constituents of the gastrointestinal microbiota and to focus more on understanding the functional capabilities of the resident microbial community and how this impacts on host health. One such emerging concept is the development of microbial biofilms which can form in the gut in conjunction with CRC tissue. By better understanding of the interaction between the host and its resident microbiota, in the context of health and cancer development, we will open new therapeutic and diagnostic opportunities for reducing the CRC global health burden.
Collapse
Affiliation(s)
- Georgina L Hold
- School of Medicine and Dentistry, Aberdeen University, Aberdeen, UK
| |
Collapse
|
64
|
Yang X, Lv Y, Huang K, Luo Y, Xu W. Zinc inhibits aflatoxin B1-induced cytotoxicity and genotoxicity in human hepatocytes (HepG2 cells). Food Chem Toxicol 2016; 92:17-25. [PMID: 27017951 DOI: 10.1016/j.fct.2016.03.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 03/12/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Aflatoxin B1 (AFB1) has strong carcinogenicity. Consumption of AFB1-contaminated agricultural products and the occurrence of hepatocellular carcinoma have received widespread attention. The aim of this paper was to investigate whether zinc supplementation could inhibit AFB1-induced cytotoxicity and genotoxicity in HepG2 cells and the mechanism of this inhibition. Our data suggest that zinc sources can relieve a certain degree of AFB1-induced cytotoxicity and genotoxicity by protecting against apoptotic body formation and DNA strand breaks, affecting S phase cell cycle arrest, reducing 8-OHdG formation, inhibiting global DNA hypomethylation and regulating gene expression in antioxidation, zinc-association and apoptosis processes. Consequently, zinc stabilizes the integrity of DNA and improves cell survival. These data provides new insights into the protective role of zinc in alleviating AFB1-induced cytotoxicity and mediating epigenetic changes in hepatocytes, demonstrating that zinc sources have detoxification properties in mycotoxin-induced toxicity.
Collapse
Affiliation(s)
- Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yangjun Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing 100083, China.
| |
Collapse
|
65
|
Yasukawa T, Nakahara Y, Hirai J, Inoue YH. Drosophila Ogg1 is required to suppress 8-oxo-guanine accumulation following oxidative stress. Genes Genet Syst 2016; 90:11-20. [PMID: 26119662 DOI: 10.1266/ggs.90.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reactive oxygen species (ROS) generated during energy production processes are a major cause of oxidative DNA damage. A DNA glycosylase encoded by the Ogg1 gene removes oxidized guanine bases and is widely conserved. However, the biological role of the gene in individual organisms has not yet been characterized in Drosophila, which is a suitable model to study the influence of oxidative damage on senescence. Here, we performed a genetic analysis to confirm that Ogg1 plays an essential role in the removal of 8-oxo-guanines from nuclei. We first confirmed by quantitative real-time PCR that Ogg1 mRNA expression was reduced by 30-55% in Ogg1 mutants and in flies expressing inducible Ogg1 dsRNA compared to control flies. We then showed that additional accumulation of 8-oxo-guanines occurred in the nuclei of epithelial midgut cells after paraquat feeding in flies with downregulated Ogg1 expression. We confirmed that a transposon possessing the UAS sequence was integrated in the 5'-UTR of the Ogg1 alleles and that it is oriented in the same transcriptional direction as the gene. Using the Gal4/UAS system, which enables us to induce ectopic expression in Drosophila, we induced overexpression of Ogg1 by 40-fold. We observed a lower amount of 8-oxo-guanine in the midgut epithelial cells of adults overexpressing Ogg1. These genetic data strongly suggest that the Drosophila Ogg1 ortholog CG1795 plays an essential role in the suppression of 8-oxo-guanines, consistent with its role in other organisms. Although adult flies with reduced Ogg1 expression failed to show elevated sensitivity to paraquat, those with Ogg1 overexpression showed resistance to oxidative stress by paraquat feeding and had a significantly longer lifespan in normal feeding conditions. These observations are consistent with the hypothesis that oxidative DNA damage by ROS accumulation is a major contributor to senescence.
Collapse
Affiliation(s)
- Takashi Yasukawa
- Insect Biomedical Research Center, Kyoto Institute of Technology
| | | | | | | |
Collapse
|
66
|
Suthaparan A, Solhaug KA, Stensvand A, Gislerød HR. Determination of UV action spectra affecting the infection process of Oidium neolycopersici, the cause of tomato powdery mildew. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 156:41-9. [DOI: 10.1016/j.jphotobiol.2016.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022]
|
67
|
Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer MA, Pezet D, Bonnet M. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016; 22:501-518. [PMID: 26811603 PMCID: PMC4716055 DOI: 10.3748/wjg.v22.i2.501] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/06/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome caused by environmental changes (e.g., infection, diet and/or lifestyle) can disturb this symbiotic relationship and promote disease, such as inflammatory bowel diseases and cancer. Colorectal cancer is a complex association of tumoral cells, non-neoplastic cells and a large amount of micro-organisms, and the involvement of the microbiota in colorectal carcinogenesis is becoming increasingly clear. Indeed, many changes in the bacterial composition of the gut microbiota have been reported in colorectal cancer, suggesting a major role of dysbiosis in colorectal carcinogenesis. Some bacterial species have been identified and suspected to play a role in colorectal carcinogenesis, such as Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis, Enterococcus faecalis, Clostridium septicum, Fusobacterium spp. and Escherichia coli. The potential pro-carcinogenic effects of these bacteria are now better understood. In this review, we discuss the possible links between the bacterial microbiota and colorectal carcinogenesis, focusing on dysbiosis and the potential pro-carcinogenic properties of bacteria, such as genotoxicity and other virulence factors, inflammation, host defenses modulation, bacterial-derived metabolism, oxidative stress and anti-oxidative defenses modulation. We lastly describe how bacterial microbiota modifications could represent novel prognosis markers and/or targets for innovative therapeutic strategies.
Collapse
|
68
|
Jena NR, Mishra PC. Normal and reverse base pairing of Iz and Oz lesions in DNA: structural implications for mutagenesis. RSC Adv 2016. [DOI: 10.1039/c6ra14031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During replication, incorporation of G opposite Oz lesion is mainly responsible for G to C mutations in DNA.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - P. C. Mishra
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
69
|
Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9875298. [PMID: 26823956 PMCID: PMC4707327 DOI: 10.1155/2016/9875298] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS), such as superoxide anion free radical (O2 (∙-)), hydrogen peroxide (H2O2), and hydroxyl radical (HO(∙)), are produced at high levels and accumulated to cause oxidative stress (OS). In oxidative status, accumulated ROS can cause protein dysfunction and DNA damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling pathways, such as NF-κB and p38 MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of UC and CAC.
Collapse
|
70
|
Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex. Biochimie 2015; 118:15-25. [DOI: 10.1016/j.biochi.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/13/2015] [Indexed: 12/28/2022]
|
71
|
Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci U S A 2015; 112:E5990-9. [PMID: 26460006 DOI: 10.1073/pnas.1512136112] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1-2 × 10(-3) mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3' base can affect the mutability of a purine by oxidative damage by as much as eightfold.
Collapse
|
72
|
Yashiro M. Molecular Alterations of Colorectal Cancer with Inflammatory Bowel Disease. Dig Dis Sci 2015; 60:2251-63. [PMID: 25840920 DOI: 10.1007/s10620-015-3646-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) is an important etiologic factor in the development of colorectal cancer (CRC). The risk of CRC begins to increase 8 or 10 years after the diagnosis of IBD. This type of cancer is called colitis-associated CRC (CA-CRC). The molecular pathogenesis of inflammatory epithelium might play a critical role in the development of CA-CRC. Genetic alterations detected in CA-CRC such as genetic mutations, microsatellite instability, and DNA hypermethylation are also recognized in sporadic CRC; however, there are differences in the timing and frequency of molecular events between CA-CRC and sporadic CRC. Interaction between gene-environmental factors, including inflammation, lifestyle, psychological stress, and prior appendectomy, might be associated with the etiopathology of IBD. The mucosal inflammatory mediators, such as oxidant stress, free radicals, and chemokines, may cause the genetic alterations. Understanding the molecular mechanisms of CA-CRC might be important to develop clinical efficacies for patients with IBD. This review discusses the molecular characteristics of CA-CRC, especially ulcerative colitis-associated CRC, including clinical features, signaling pathways, and interactions between genetic alterations and environment involved in inflammatory carcinogenesis.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Department of Surgical Oncology, Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan,
| |
Collapse
|
73
|
Abstract
In the past century, considerable efforts were made to understand the role of mitochondrial DNA (mtDNA) mutations and of oxidative stress in aging. The classic mitochondrial free radical theory of aging, in which mtDNA mutations cause genotoxic oxidative stress, which in turn creates more mutations, has been a central hypothesis in the field for decades. In the past few years, however, new elements have discredited this original theory. The major sources of mitochondrial DNA mutations seem to be replication errors and failure of the repair mechanisms, and the accumulation of these mutations as observed in aged organisms seems to occur by clonal expansion and not to be caused by a reactive oxygen species-dependent vicious cycle. New hypotheses of how age-associated mitochondrial dysfunction may lead to aging are based on the role of reactive oxygen species as signaling molecules and on their role in mediating stress responses to age-dependent damage. Here, we review the changes that mtDNA undergoes during aging and the past and most recent hypotheses linking these changes to the tissue failure observed in aging.
Collapse
Affiliation(s)
- Milena Pinto
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
74
|
Mahalingaiah PKS, Ponnusamy L, Singh KP. Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells. J Cell Physiol 2015; 230:1916-28. [PMID: 25546616 DOI: 10.1002/jcp.24922] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/24/2014] [Accepted: 12/18/2014] [Indexed: 12/30/2022]
Abstract
Oxidative injury to cellular macromolecules has been suggested as a common pathway shared by multiple etiological factors for kidney cancer. Whether the chronic oxidative stress alone is sufficient to induce malignant transformation in human kidney cells is not clear. Therefore, the objective of this study was to evaluate the effect of H2O2-induced chronic oxidative stress on growth, and malignant transformation of HK-2 normal kidney epithelial cells. This study revealed that chronic oxidative stress causes increased growth and neoplastic transformation in normal kidney epithelial cells at non-cytotoxic dose and increased adaptation to cytotoxic level. This was confirmed by gene expression changes, cell cycle analysis, anchorage independent growth assay and in vivo tumorigenicity in nude mice. Stem cells characteristics as revealed by up-regulation of stem cell marker genes, and morphological changes indicative of EMT with up regulation of mesenchymal markers were also observed in cells exposed to chronic oxidative stress. Antioxidant NAC did not reverse the chronic oxidative stress-induced growth, and adaptation suggesting that perturbed biological function in these cells are permanent. Partial reversal of oxidative stress-induced growth, and adaptation by silencing of Oct 4 and Snail1, respectively, suggest that these changes are mediated by acquisition of stem cell and EMT characteristics. In summary, this study for the first time suggests that chronic exposure to elevated levels of oxidative stress is sufficient to induce malignant transformation in kidney epithelial cells through acquisition of stem cell characteristics. Additionally, the EMT plays an important role in increased adaptive response of renal cells to oxidative stress.
Collapse
Affiliation(s)
- Prathap Kumar S Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas
| | | | | |
Collapse
|
75
|
Reinardy HC, Bodnar AG. Profiling DNA damage and repair capacity in sea urchin larvae and coelomocytes exposed to genotoxicants. Mutagenesis 2015; 30:829-39. [PMID: 26175033 DOI: 10.1093/mutage/gev052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to protect the genome from harmful DNA damage is critical for maintaining genome stability and protecting against disease, including cancer. Many echinoderms, including sea urchins, are noted for the lack of neoplastic disease, but there are few studies investigating susceptibility to DNA damage and capacity for DNA repair in these animals. In this study, DNA damage was induced in adult sea urchin coelomocytes and larvae by exposure to a variety of genotoxicants [UV-C (0-3000 J/m(2)), hydrogen peroxide (0-10mM), bleomycin (0-300 µM) and methylmethanesulfonate (MMS, 0-30 mM)] and the capacity for repair was measured over a 24-h period of recovery. Larvae were more sensitive than coelomocytes, with higher levels of initial DNA damage (fast micromethod) for all genotoxicants except MMS and increased levels of mortality 24h following treatment for all genotoxicants. The larvae that survived were able to efficiently repair damage within 24-h recovery. The ability to repair DNA damage differed depending on treatments, but both larvae and coelomocytes were able to most efficiently repair H2O2-induced damage. Time profiles of expression of a panel of DNA repair genes (ddb1, ercc1, xpc, xrcc1, pcna, ogg1, parp1, parp2, ape, brca1, rad51, xrcc2, xrcc3, xrcc4, xrcc5, xrcc6 and gadd45), throughout the period of recovery, showed greater gene induction in coelomocytes compared with larvae, with particularly high expression of xrcc1, ercc1, parp2 and pcna. The heterogeneous response of larvae to DNA damage may reflect a strategy whereby a subset of the population is equipped to withstand acute genotoxic stress, while the ability of coelomocytes to resist and repair DNA damage confirm their significant role in protection against disease. Consideration of DNA repair capacity is critical for understanding effects of genotoxicants on organisms, in addition to shedding light on life strategies and disease susceptibility.
Collapse
Affiliation(s)
- Helena C Reinardy
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE 01 Bermuda
| | - Andrea G Bodnar
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE 01 Bermuda
| |
Collapse
|
76
|
Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M. Parkinson's disease as a result of aging. Aging Cell 2015; 14:293-308. [PMID: 25677794 PMCID: PMC4406659 DOI: 10.1111/acel.12312] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 12/15/2022] Open
Abstract
It is generally considered that Parkinson's disease is induced by specific agents that degenerate a clearly defined population of dopaminergic neurons. Data commented in this review suggest that this assumption is not as clear as is often thought and that aging may be critical for Parkinson's disease. Neurons degenerating in Parkinson's disease also degenerate in normal aging, and the different agents involved in the etiology of this illness are also involved in aging. Senescence is a wider phenomenon affecting cells all over the body, whereas Parkinson's disease seems to be restricted to certain brain centers and cell populations. However, reviewed data suggest that Parkinson's disease may be a local expression of aging on cell populations which, by their characteristics (high number of synaptic terminals and mitochondria, unmyelinated axons, etc.), are highly vulnerable to the agents promoting aging. The development of new knowledge about Parkinson's disease could be accelerated if the research on aging and Parkinson's disease were planned together, and the perspective provided by gerontology gains relevance in this field.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Clara Rodriguez-Sabate
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
| | - Magdalena Sabate
- Rehabilitation Service, Department of Pharmacology and Physical Medicine, Faculty of Medicine, University of La LagunaLa Laguna, Spain
| |
Collapse
|
77
|
Krüger M, Pabst AM, Al-Nawas B, Horke S, Moergel M. Paraoxonase-2 (PON2) protects oral squamous cell cancer cells against irradiation-induced apoptosis. J Cancer Res Clin Oncol 2015; 141:1757-66. [DOI: 10.1007/s00432-015-1941-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/16/2015] [Indexed: 12/14/2022]
|
78
|
Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 2015; 11:e1004901. [PMID: 25647331 PMCID: PMC4372043 DOI: 10.1371/journal.pgen.1004901] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022] Open
Abstract
Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. People with chronic inflammatory conditions have a markedly increased risk for cancer. In addition, many cancers have an inflammatory microenvironment that promotes tumor growth. Here, we show that inflammatory infiltration synergizes with tissue regeneration to induce DNA sequence rearrangements in vivo. Chronically inflamed issues that are continuously regenerating are thus at an increased risk for mutagenesis and malignant transformation. Further, rapidly dividing tumor cells in an inflammatory microenvironment can also acquire mutations, which have been shown to contribute to drug resistance and disease recurrence. Finally, inflammation-induced tissue regeneration sensitizes tissues to DNA damaging environmental exposures and chemotherapeutics. The work described here thus increases our understanding of how inflammation leads to genetic changes that drive cancer formation and recurrence.
Collapse
Affiliation(s)
- Orsolya Kiraly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Werner Olipitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
- * E-mail:
| |
Collapse
|
79
|
Mulder JE, Bondy GS, Mehta R, Massey TE. The impact of chronic Aflatoxin B1 exposure and p53 genotype on base excision repair in mouse lung and liver. Mutat Res 2015; 773:63-8. [PMID: 25847422 DOI: 10.1016/j.mrfmmm.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/05/2014] [Accepted: 01/18/2015] [Indexed: 12/15/2022]
Abstract
Aflatoxin B1 (AFB1) is produced by species of Aspergillus, and is a known human carcinogen. AFB1-induced oxidative DNA damage, specifically 8-hydroxy-2-deoxyguanosine (8-OHdG) lesions, has been demonstrated in both animal models and in humans, and is repaired by base excision repair (BER). The tumour suppressor gene p53 is implicated in the regulation of DNA repair, and heterozygous p53 knockouts have an attenuated nucleotide excision repair response to AFB1. Male heterozygous p53 knockout mice and their wild-type controls were exposed to 0, 0.2 or 1.0ppm AFB1 for 26 weeks in their diet. BER activity of lung and liver was assessed with an in vitro assay, using 8-OHdG-damaged plasmid DNA as a substrate. BER activity did not differ between livers or lungs from untreated wild-type versus heterozygous p53 knockout mice. In wild-type mice, repair was 65% lower in liver extracts from mice exposed to 1.0ppm AFB1 than in liver extracts from mice exposed to 0.2ppm AFB1 (p<0.05), but not significantly lower than that in liver extracts from control mice. AFB1 did not affect BER in lung extracts from wild-type mice, or in lung and liver extracts from heterozygous p53 knockout mice. In liver and lung, AFB1 exposure did not alter levels of 8-oxoguanine glycosylase protein, a key enzyme in the repair of 8-OHdG, and did not cause hepatotoxicity, as indicated by plasma alanine aminotransferase levels. In conclusion, chronic exposure to AFB1 did not affect BER in lungs or livers of heterozygous p53 knockout mice. BER activity was lower in livers from p53 wild type mice exposed to 1.0ppm AFB1 versus those exposed to 0.2ppm AFB1, an effect that was not attributable to liver cell death or altered levels of 8-oxoguanine glycosylase.
Collapse
Affiliation(s)
- Jeanne E Mulder
- Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario, Canada K7L 3N6
| | - Genevieve S Bondy
- Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9 Canada
| | - Rekha Mehta
- Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9 Canada
| | - Thomas E Massey
- Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
80
|
Mulder JE, Turner PV, Massey TE. Effect of 8-oxoguanine glycosylase deficiency on aflatoxin B1 tumourigenicity in mice. Mutagenesis 2015; 30:401-9. [PMID: 25583175 DOI: 10.1093/mutage/geu087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mycotoxin aflatoxin B1 (AFB1) may initiate cancer by causing oxidatively damaged DNA, specifically by causing 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) lesions. Base excision repair removes these lesions, with 8-oxoguanine glycosylase (OGG1) being the rate-limiting enzyme. The aim of this study was to determine the effect of ogg1 deficiency on AFB1-induced oxidatively damaged DNA and tumourigenesis. Female wild-type, heterozygous and homozygous ogg1 null mice were given a single dose of 50mg/kg AFB1 or 40 µl dimethyl sulfoxide (DMSO) ip. Neither ogg1 genotype nor AFB1 treatment affected levels of oxidised guanine in lung or liver 2h post-treatment. AFB1-treated ogg1 null mice showed exacerbated weight loss and mortality relative to DMSO-treated ogg1 null mice, but AFB1 treatment did not significantly increase lung or liver tumour incidence compared with controls, regardless of ogg1 genotype. Suspect lung masses from three of the AFB1-treated mice were adenomas, and masses from two of the mice were osteosarcomas. No osteosarcomas were observed in DMSO-treated mice. All liver masses from AFB1-treated mice were adenomas, and one also contained a hepatocellular carcinoma. In DNA from the lung tumours, the K-ras mutation pattern was inconsistent with initiation by AFB1. In conclusion, ogg1 status did not have a significant effect on AFB1-induced oxidatively damaged DNA or tumourigenesis, but deletion of one or both alleles of ogg1 did increase susceptibility to other aspects of AFB1 toxicity.
Collapse
Affiliation(s)
- Jeanne E Mulder
- Department of Biomedical and Molecular Sciences, Pharmacology and Toxicology Graduate Program, Queen's University, Rm 556, Botterell Hall, Kingston, Ontario K7L 3N6, Canada, Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Thomas E Massey
- Department of Biomedical and Molecular Sciences, Pharmacology and Toxicology Graduate Program, Queen's University, Rm 556, Botterell Hall, Kingston, Ontario K7L 3N6, Canada, Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
81
|
Sengupta C, Basu S. A spectroscopic study to decipher the mode of interaction of some common acridine derivatives with CT DNA within nanosecond and femtosecond time domains. RSC Adv 2015. [DOI: 10.1039/c5ra13035b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our spectroscopic investigation with acridine derivatives presents the electronic control of their substituents on intercalation, solvation and PET with DNA.
Collapse
Affiliation(s)
- Chaitrali Sengupta
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| | - Samita Basu
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| |
Collapse
|
82
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
83
|
Accumulation of abasic sites induces genomic instability in normal human gastric epithelial cells during Helicobacter pylori infection. Oncogenesis 2014; 3:e128. [PMID: 25417725 PMCID: PMC4259965 DOI: 10.1038/oncsis.2014.42] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori infection of the human stomach is associated with inflammation that leads to the release of reactive oxygen and nitrogen species (RONs), eliciting DNA damage in host cells. Unrepaired DNA damage leads to genomic instability that is associated with cancer. Base excision repair (BER) is critical to maintain genomic stability during RONs-induced DNA damage, but little is known about its role in processing DNA damage associated with H. pylori infection of normal gastric epithelial cells. Here, we show that upon H. pylori infection, abasic (AP) sites accumulate and lead to increased levels of double-stranded DNA breaks (DSBs). In contrast, downregulation of the OGG1 DNA glycosylase decreases the levels of both AP sites and DSBs during H. pylori infection. Processing of AP sites during different phases of the cell cycle leads to an elevation in the levels of DSBs. Therefore, the induction of oxidative DNA damage by H. pylori and subsequent processing by BER in normal gastric epithelial cells has the potential to lead to genomic instability that may have a role in the development of gastric cancer. Our results are consistent with the interpretation that precise coordination of BER processing of DNA damage is critical for the maintenance of genomic stability.
Collapse
|
84
|
The mitochondrial genome in aging and senescence. Ageing Res Rev 2014; 18:1-15. [PMID: 25042573 DOI: 10.1016/j.arr.2014.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022]
Abstract
Aging is characterized by a progressive decline in organism functions due to the impairment of all organs. The deterioration of both proliferative tissues in liver, skin and the vascular system, as well as of largely post-mitotic organs, such as the heart and brain could be attributed at least in part to cell senescence. In this review we examine the role of mitochondrial dysfunction and mtDNA mutations in cell aging and senescence. Specifically, we address how p53 and telomerase reverse transcriptase (TERT) activity switch their roles from cytoprotective to detrimental and also examine the role of microRNAs in cell aging. The proposed role of Reactive Oxygen Species (ROS), both as mutating agents and as signalling molecules, underlying these processes is also described.
Collapse
|
85
|
Jeong MH, Yang K, Lee CG, Jeong DH, Park YS, Choi YJ, Kim JS, Oh SJ, Jeong SK, Jo WS. In Vitro Genotoxicity Assessment of a Novel Resveratrol Analogue, HS-1793. Toxicol Res 2014; 30:211-20. [PMID: 25343016 PMCID: PMC4206749 DOI: 10.5487/tr.2014.30.3.211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 01/04/2023] Open
Abstract
Resveratrol has received considerable attention as a polyphenol with various biological effects such as anti-inflammatory, anti-oxidant, anti-mutagenic, anti-carcinogenic, and cardioprotective properties. As part of the overall safety assessment of HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, we assessed genotoxicity in three in vitro assays: a bacterial mutation assay, a comet assay, and a chromosomal aberration assay. In the bacterial reverse mutation assay, HS-1793 did not increase revertant colony numbers in S. typhimurium strains (TA98, TA100, TA1535 and TA1537) or an E. coli strain (WP2 uvrA) regardless of metabolic activation. HS-1793 showed no evidence of genotoxic activity such as DNA damage on L5178Y Tk+/− mouse lymphoma cells with or without the S9 mix in the in vitro comet assay. No statistically significant differences in the incidence of chromosomal aberrations following HS-1793 treatment was observed on Chinese hamster lung cells exposed with or without the S9 mix. These results provide additional evidence that HS-1793 is non-genotoxic at the dose tested in three standard tests and further supports the generally recognized as safe determination of HS-1793 during early drug development.
Collapse
Affiliation(s)
- Min Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Busan, Korea
| | - Kwangmo Yang
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Chang Geun Lee
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Dong Hyeok Jeong
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| | - You Soo Park
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Yoo Jin Choi
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Joong Sun Kim
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Su Jung Oh
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Soo Kyung Jeong
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Wol Soon Jo
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Busan, Korea
| |
Collapse
|
86
|
Singha U, Pandey N, Boro F, Giri S, Giri A, Biswas S. Sodium arsenite induced changes in survival, growth, metamorphosis and genotoxicity in the Indian cricket frog (Rana limnocharis). CHEMOSPHERE 2014; 112:333-339. [PMID: 25048924 DOI: 10.1016/j.chemosphere.2014.04.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/23/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Arsenic contamination of the environment is a matter of great concern. Understanding the effects of arsenic on aquatic life will act as biological early warning system to assess how arsenic could shape the biodiversity in the affected areas. Rapid decline in amphibian population in recent decades is a cause of major concern. Over the years, amphibians have been recognized as excellent bio-indicators of environmental related stress. In the present study, we examined the toxic and genotoxic effects of sodium arsenite in the tadpoles of the Indian cricket frog (Rana limnocharis). Sodium arsenite at different concentrations (0, 50, 100, 200 and 400 μg L(-1)) neither induced lethality nor significantly altered body weight at metamorphosis. However, it accelerated the rate of metamorphosis at higher concentrations, reduced body size (snout-vent length) and induced developmental deformities such as loss of limbs. Besides, at concentration ranges between 100 and 400 μg L(-1), sodium arsenite induced statistically significant genotoxicity at 24, 48, 72 and 96 h of the exposure in a concentration-dependent manner. However, it did not show time effects as the highest frequency was found between 48 and 72 h which remained steady subsequently. The genotoxicity was confirmed by comet assay in the whole blood cells. These findings suggest that arsenic at environmentally relevant concentrations has significant sub-lethal effects on R.limnocharis, which may have long-term fitness consequence to the species and may have similar implications in other aquatic life too.
Collapse
Affiliation(s)
- Utsab Singha
- Environmental Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788 011, India
| | - Neelam Pandey
- Molecular Cytogenetics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788 011, India
| | - Freeman Boro
- Environmental Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788 011, India
| | - Sarbani Giri
- Molecular Cytogenetics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788 011, India
| | - Anirudha Giri
- Environmental Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788 011, India.
| | - Somava Biswas
- Molecular Cytogenetics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788 011, India
| |
Collapse
|
87
|
Pyrosequencing for the quantitative assessment of 8-oxodG bypass DNA synthesis. DNA Repair (Amst) 2014; 22:147-52. [PMID: 25200840 DOI: 10.1016/j.dnarep.2014.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/20/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
Translesion synthesis (TLS) with specialized DNA polymerases allows dealing with a base lesion on the template strand during DNA replication; a base is inserted opposite the lesion, correctly or incorrectly, depending on the lesion, the involved DNA polymerase(s) and the sequence context. The major oxidized DNA base 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) is highly mutagenic due to its ability to pair with either cytosine or adenine during DNA synthesis, depending on its conformation and involved DNA polymerases. To measure the correct or mutagenic outcome of lesion bypass, an original quantitative pyrosequencing method was developed and analytically validated. The method was applied to the study of DNA synthesis fidelity through an 8-oxodG or an undamaged guanine. After an in vitro primer-extension through 8-oxodG in the presence of the four deoxynucleotides triphosphates and a total nuclear protein extract, obtained from normal human intestinal epithelial cells (FHs 74 Int cell line), the reaction products were amplified by polymerase chain reaction and analyzed by pyrosequencing to measure nucleotides inserted opposite the lesion. The 8-oxodG bypass fidelity of FHs 74 Int cells nuclear extract is about 85.3%. We calculated within-day and total precisions for both 8-oxodG (2.8% and 2.8%, respectively) and undamaged templates (1.0% and 1.1%, respectively). We also demonstrated that only cytosine is incorporated opposite a normal guanine and that both cytosine and adenine can be incorporated opposite an 8-oxodG lesion. The proposed method is straightforward, fast, reproducible and easily adaptable to other sequences and lesions. It thus has a wide range of applications in the biological field, notably to elucidate TLS mechanisms and modulators.
Collapse
|
88
|
Sorrentino G, Comel A, Mantovani F, Del Sal G. Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion 2014; 19 Pt A:88-96. [PMID: 25132079 DOI: 10.1016/j.mito.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Mitochondria are sensitive and efficient organelles that regulate essential biological processes including: energy metabolism, decoding and transduction of intracellular signals, and balance between cell death and survival. Of note, dysfunctions in mitochondrial physiology are a general hallmark of cancer cells, leading to transformation-related features such as altered cellular metabolism, survival under stress conditions and reduced apoptotic response to chemotherapy. Mitochondrial apoptosis is a finely regulated process that derives from activation of multiple signaling networks. A crucial biochemical requirement for transducing pro-apoptotic stimuli is represented by kinase-dependent phosphorylation cascades. In this context a pivotal role is played by the prolyl-isomerase Pin1, which translates Ser/Thr-Pro phosphorylation into conformational changes able to modify the activities of its substrates. In this review we will discuss the impact of Pin1 in regulating various aspects of apoptosis in different biological contexts with particular emphasis on cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Anna Comel
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy.
| |
Collapse
|
89
|
Guindon-Kezis KA, Mulder JE, Massey TE. In vivo treatment with aflatoxin B1 increases DNA oxidation, base excision repair activity and 8-oxoguanine DNA glycosylase 1 levels in mouse lung. Toxicology 2014; 321:21-6. [DOI: 10.1016/j.tox.2014.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/03/2014] [Accepted: 03/16/2014] [Indexed: 11/24/2022]
|
90
|
Herman KN, Toffton S, McCulloch SD. Detrimental effects of UV-B radiation in a xeroderma pigmentosum-variant cell line. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:375-384. [PMID: 24549972 PMCID: PMC4102177 DOI: 10.1002/em.21857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 06/03/2023]
Abstract
DNA polymerase η (pol η), of the Y-family, is well known for its in vitro DNA lesion bypass ability. The most well-characterized lesion bypassed by this polymerase is the cyclobutane pyrimidine dimer (CPD) caused by ultraviolet (UV) light. Historically, cellular and whole-animal models for this area of research have been conducted using UV-C (λ=100-280 nm) owing to its ability to generate large quantities of CPDs and also the more structurally distorting 6-4 photoproduct. Although UV-C is useful as a laboratory tool, exposure to these wavelengths is generally very low owing to being filtered by stratospheric ozone. We are interested in the more environmentally relevant wavelength range of UV-B (λ=280-315 nm) for its role in causing cytotoxicity and mutagenesis. We evaluated these endpoints in both a normal human fibroblast control line and a Xeroderma pigmentosum variant cell line in which the POLH gene contains a truncating point mutation, leading to a nonfunctional polymerase. We demonstrate that UV-B has similar but less striking effects compared to UV-C in both its cytotoxic and its mutagenic effects. Analysis of the mutation spectra after a single dose of UV-B shows that a majority of mutations can be attributed to mutagenic bypass of dipyrimidine sequences. However, we do note additional types of mutations with UV-B that are not previously reported after UV-C exposure. We speculate that these differences are attributed to a change in the spectra of photoproduct lesions rather than other lesions caused by oxidative stress.
Collapse
Affiliation(s)
- Kimberly N. Herman
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, North Carolina
| | - Shannon Toffton
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, North Carolina
| | - Scott D. McCulloch
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, North Carolina
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
91
|
Kuntić VS, Stanković MB, Vujić ZB, Brborić JS, Uskoković-Marković SM. Radioprotectors - the evergreen topic. Chem Biodivers 2014; 10:1791-803. [PMID: 24130023 DOI: 10.1002/cbdv.201300054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Indexed: 11/08/2022]
Abstract
To protect organisms from ionizing radiation (IR), and to reduce morbidity or mortality, various agents, called radioprotectors, have been utilized. Because radiation-induced cellular damage is attributed primarily to the harmful effects of free radicals, molecules with radical-scavenging properties are particularly promising as radioprotectors. Early development of such agents focused on thiol synthetic compounds, known as WR protectors, but only amifostine (WR-2721) has been used in clinical trials as an officially approved radioprotector. Besides thiol compounds, various compounds with different chemical structure were investigated, but an ideal radioprotector has not been found yet. Plants and natural products have been evaluated as promising sources of radioprotectors because of their low toxicity, although they exhibit an inferior protection level compared to synthetic thiol compounds. Active plant constituents seem to exert the radioprotection through antioxidant and free radical-scavenging activities. Our research established that plants containing polyphenolic compounds (raspberry, blueberry, strawberry, grape, etc.) exhibit antioxidative activities and protect genetic material from IR.
Collapse
Affiliation(s)
- Vesna S Kuntić
- University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, P.O. Box 146, 11221 Belgrade, Serbia (phone: +381-11-39-51-238; fax: +381-11-39-72-840)
| | | | | | | | | |
Collapse
|
92
|
Lee HC, Huang KH, Yeh TS, Chi CW. Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World J Gastroenterol 2014; 20:3950-3959. [PMID: 24744584 PMCID: PMC3983450 DOI: 10.3748/wjg.v20.i14.3950] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/26/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023] Open
Abstract
Energy metabolism reprogramming was recently identified as one of the cancer hallmarks. One of the underlying mechanisms of energy metabolism reprogramming is mitochondrial dysfunction caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the past decades, several types of somatic mtDNA alterations have been identified in gastric cancer. However, the role of these mtDNA alterations in gastric cancer progression remains unclear. In this review, we summarize recently identified somatic mtDNA alterations in gastric cancers as well as the relationship between these alterations and the clinicopathological features of gastric cancer. The causative factors and potential roles of the somatic mtDNA alterations in cancer progression are also discussed. We suggest that point mutations and mtDNA copy number decreases are the two most common mtDNA alterations that result in mitochondrial dysfunction in gastric cancers. The two primary mutation types (transition mutations and mononucleotide or dinucleotide repeat instability) imply potential causative factors. Mitochondrial dysfunction-generated reactive oxygen species may be involved in the malignant changes of gastric cancer. The search for strategies to prevent mtDNA alterations and inhibit the mitochondrial retrograde signaling will benefit the development of novel treatments for gastric cancer and other malignancies.
Collapse
|
93
|
Irrazábal T, Belcheva A, Girardin S, Martin A, Philpott D. The Multifaceted Role of the Intestinal Microbiota in Colon Cancer. Mol Cell 2014; 54:309-20. [DOI: 10.1016/j.molcel.2014.03.039] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
94
|
Agashe D, Shankar N. The evolution of bacterial DNA base composition. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:517-28. [DOI: 10.1002/jez.b.22565] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/22/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Deepa Agashe
- National Center for Biological Sciences; Tata Institute of Fundamental Research; Bangalore India
| | - Nachiket Shankar
- National Center for Biological Sciences; Tata Institute of Fundamental Research; Bangalore India
| |
Collapse
|
95
|
Analysis of guanine oxidation products in double-stranded DNA and proposed guanine oxidation pathways in single-stranded, double-stranded or quadruplex DNA. Biomolecules 2014; 4:140-59. [PMID: 24970209 PMCID: PMC4030987 DOI: 10.3390/biom4010140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/05/2023] Open
Abstract
Guanine is the most easily oxidized among the four DNA bases, and some guanine-rich sequences can form quadruplex structures. In a previous study using 6-mer DNA d(TGGGGT), which is the shortest oligomer capable of forming quadruplex structures, we demonstrated that guanine oxidation products of quadruplex DNA differ from those of single-stranded DNA. Therefore, the hotooxidation products of double-stranded DNA (dsDNA) may also differ from that of quadruplex or single-stranded DNA, with the difference likely explaining the influence of DNA structures on guanine oxidation pathways. In this study, the guanine oxidation products of the dsDNA d(TGGGGT)/d(ACCCCA) were analyzed using HPLC and electrospray ionization-mass spectrometry (ESI-MS). As a result, the oxidation products in this dsDNA were identified as 2,5-diamino-4H-imidazol-4-one (Iz), 8-oxo-7,8-dihydroguanine (8oxoG), dehydroguanidinohydantoin (Ghox), and guanidinohydantoin (Gh). The major oxidation products in dsDNA were consistent with a combination of each major oxidation product observed in single-stranded and quadruplex DNA. We previously reported that the kinds of the oxidation products in single-stranded or quadruplex DNA depend on the ease of deprotonation of the guanine radical cation (G•+) at the N1 proton. Similarly, this mechanism was also involved in dsDNA. Deprotonation in dsDNA is easier than in quadruplex DNA and more difficult in single-stranded DNA, which can explain the formation of the four oxidation products in dsDNA.
Collapse
|
96
|
Abstract
The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32Δ and rad27Δ (replication), msh2Δ (mismatch repair), tsa1Δ (oxidative stress), mre11Δ (recombination), mec1Δ tel1Δ (DNA damage/S-phase checkpoints), pif1Δ (maintenance of mitochondrial genome and telomere length), cac1Δ cac3Δ (nucleosome deposition), and clb5Δ (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5Δ/CCNB1, mec1Δ/ATR, tel1Δ/ATM, and rad27Δ/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells.
Collapse
|
97
|
Sudhahar V, Fukai T. Antioxidant Supplementation and Therapies. STUDIES ON PEDIATRIC DISORDERS 2014. [DOI: 10.1007/978-1-4939-0679-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
98
|
Barg M, Rezin GT, Leffa DD, Balbinot F, Gomes LM, Carvalho-Silva M, Vuolo F, Petronilho F, Dal-Pizzol F, Streck EL, Andrade VM. Evaluation of the protective effect of Ilex paraguariensis and Camellia sinensis extracts on the prevention of oxidative damage caused by ultraviolet radiation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:195-201. [PMID: 24361697 DOI: 10.1016/j.etap.2013.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 11/03/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
We evaluated the effects green and mate teas on oxidative and DNA damages in rats exposed to ultraviolet radiation. Were utilized 70 adult male Wistar rats that received daily oral or topic green or mate tea treatment during exposed to radiation by seven days. After, animals were killed by decapitation. Thiobarbituric acid-reactive species levels, protein oxidative damage were evaluated in skin and DNA damage in blood. Our results show that the rats exposed to ultraviolet radiation presented DNA damage in blood and increased protein carbonylation and lipid peroxidation in skin. Oral and topic treatment with green tea and mate tea prevented lipid peroxidation, both treatments with mate tea also prevented DNA damage. However, only topic treatment with green tea and mate tea prevented increases in protein carbonylation. Our findings contribute to elucidate the beneficial effects of green tea and mate tea, here in demonstrated by the antioxidant and antigenotoxic properties presented by these teas.
Collapse
Affiliation(s)
- Marlon Barg
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Daniela D Leffa
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda Balbinot
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Francieli Vuolo
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabricia Petronilho
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| |
Collapse
|
99
|
Simulation of oxidative stress of guanosine and 8-oxo-7,8-dihydroguanosine by electrochemically assisted injection–capillary electrophoresis–mass spectrometry. Anal Bioanal Chem 2013; 406:687-94. [DOI: 10.1007/s00216-013-7500-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 11/26/2022]
|
100
|
Gorbachev AY, Fisunov GY, Izraelson M, Evsyutina DV, Mazin PV, Alexeev DG, Pobeguts OV, Gorshkova TN, Kovalchuk SI, Kamashev DE, Govorun VM. DNA repair in Mycoplasma gallisepticum. BMC Genomics 2013; 14:726. [PMID: 24148612 PMCID: PMC4007778 DOI: 10.1186/1471-2164-14-726] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/15/2013] [Indexed: 01/04/2023] Open
Abstract
Background DNA repair is essential for the maintenance of genome stability in all living beings. Genome size as well as the repertoire and abundance of DNA repair components may vary among prokaryotic species. The bacteria of the Mollicutes class feature a small genome size, absence of a cell wall, and a parasitic lifestyle. A small number of genes make Mollicutes a good model for a “minimal cell” concept. Results In this work we studied the DNA repair system of Mycoplasma gallisepticum on genomic, transcriptional, and proteomic levels. We detected 18 out of 22 members of the DNA repair system on a protein level. We found that abundance of the respective mRNAs is less than one per cell. We studied transcriptional response of DNA repair genes of M. gallisepticum at stress conditions including heat, osmotic, peroxide stresses, tetracycline and ciprofloxacin treatment, stationary phase and heat stress in stationary phase. Conclusions Based on comparative genomic study, we determined that the DNA repair system M. gallisepticum includes a sufficient set of proteins to provide a cell with functional nucleotide and base excision repair and mismatch repair. We identified SOS-response in M. gallisepticum on ciprofloxacin, which is a known SOS-inducer, tetracycline and heat stress in the absence of established regulators. Heat stress was found to be the strongest SOS-inducer. We found that upon transition to stationary phase of culture growth transcription of DNA repair genes decreases dramatically. Heat stress does not induce SOS-response in a stationary phase.
Collapse
Affiliation(s)
- Alexey Y Gorbachev
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|