51
|
Dkhireche N, Galai M, Ouakki M, Rbaa M, Ech-chihbi E, Lakhrissi B, EbnTouhami M. Electrochemical and theoretical study of newly quinoline derivatives as a corrosion inhibitors adsorption onmild steel in phosphoric acid media. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
52
|
Özbakır Işın D, Karakuş N, Lgaz H, Kaya S, Chung IIIM. Theoretical insights about inhibition efficiencies of some 8-Hydroxyqionoline derivatives against the corrosion of mild steel. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1834102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Dilara Özbakır Işın
- Faculty of Science, Department of Chemistry, Cumhuriyet University, Sivas, Turkey
| | - Nihat Karakuş
- Faculty of Science, Department of Chemistry, Cumhuriyet University, Sivas, Turkey
| | - Hassane Lgaz
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, Seoul, South Korea
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmaceuticals, Cumhuriyet University, Sivas, Turkey
| | - III-Min Chung
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
53
|
Nash RJ, Bartholomew B, Penkova YB, Rotondo D, Yamasaka F, Stafford GP, Jenkinson SF, Fleet GWJ. Iminosugar idoBR1 Isolated from Cucumber Cucumis sativus Reduces Inflammatory Activity. ACS OMEGA 2020; 5:16263-16271. [PMID: 32656449 PMCID: PMC7346245 DOI: 10.1021/acsomega.0c02092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 05/17/2023]
Abstract
Cucumbers have been anecdotally claimed to have anti-inflammatory activity for a long time, but the active principle was not identified. idoBR1, (2R,3R,4R,5S)-3,4,5-trihydroxypiperidine-2-carboxylic acid, is an iminosugar amino acid isolated from fruits of certain cucumbers, Cucumis sativus (Cucurbitaceae). It has no chromophore and analytically behaves like an amino acid making detection and identification difficult. It has anti-inflammatory activity reducing lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) in THP-1 cells and ex vivo human blood. It showed selective inhibition of human α-l-iduronidase and sialidases from both bacteria (Tannerella forsythia) and human THP-1 cells. idoBR1 and cucumber extract reduced the binding of hyaluronic acid (HA) to CD44 in LPS-stimulated THP-1 cells and may function as an anti-inflammatory agent by inhibiting induced sialidase involved in the production of functionally active HA adhesive CD44. Similar to the related iminosugars, idoBR1 is excreted unchanged in urine following consumption. Its importance in the diet should be further evaluated.
Collapse
Affiliation(s)
- Robert J. Nash
- PhytoQuest
Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K.
- . Phone: +44 1970 823200. Fax: +44 1970 823209
| | | | - Yana B. Penkova
- PhytoQuest
Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K.
| | - Dino Rotondo
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - Fernanda Yamasaka
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - Graham P. Stafford
- Integrated
BioSciences, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K.
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - George W. J. Fleet
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
54
|
Strategy for Designing Selective Lysosomal Acid α-Glucosidase Inhibitors: Binding Orientation and Influence on Selectivity. Molecules 2020; 25:molecules25122843. [PMID: 32575625 PMCID: PMC7357040 DOI: 10.3390/molecules25122843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Deoxynojirimycin (DNJ) is the archetypal iminosugar, in which the configuration of the hydroxyl groups in the piperidine ring truly mimic those of d-glucopyranose; DNJ and derivatives have beneficial effects as therapeutic agents, such as anti-diabetic and antiviral agents, and pharmacological chaperones for genetic disorders, because they have been shown to inhibit α-glucosidases from various sources. However, attempts to design a better molecule based solely on structural similarity cannot produce selectivity between α-glucosidases that are localized in multiple organs and tissues, because the differences of each sugar-recognition site are very subtle. In this study, we provide the first example of a design strategy for selective lysosomal acid α-glucosidase (GAA) inhibitors focusing on the alkyl chain storage site. Our design of α-1-C-heptyl-1,4-dideoxy-1,4-imino-l-arabinitol (LAB) produced a potent inhibitor of the GAA, with an IC50 value of 0.44 µM. It displayed a remarkable selectivity toward GAA (selectivity index value of 168.2). A molecular dynamic simulation study revealed that the ligand-binding conformation stability gradually improved with increasing length of the α-1-C-alkyl chain. It is noteworthy that α-1-C-heptyl-LAB formed clearly different interactions from DNJ and had favored hydrophobic interactions with Trp481, Phe525, and Met519 at the alkyl chain storage pocket of GAA. Moreover, a molecular docking study revealed that endoplasmic reticulum (ER) α-glucosidase II does not have enough space to accommodate these alkyl chains. Therefore, the design strategy focusing on the shape and acceptability of long alkyl chain at each α-glucosidase may lead to the creation of more selective and practically useful inhibitors.
Collapse
|
55
|
Crepidtumines A and B, Two Novel Indolizidine Alkaloids from Dendrobium crepidatum. Sci Rep 2020; 10:9564. [PMID: 32533030 PMCID: PMC7293321 DOI: 10.1038/s41598-020-66552-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Abstract
Two new indolizidine alkaloids crepidatumines A (1) and B (2) together with the stereoisomer of dendrocrepidine B (3) and known analog dendrocrepine (4) were isolated from D. crepidatum. Their structures were determined by HR-ESI-MS, NMR, and Electronic Circular Dichroism (ECD) experiments together with comparison of analogues. Compound (1) possess a (5/6/6/5) tetra-hetero-cyclic ring, whereas compound (2) contains a tricyclic system with an unusual bridged ring, which are the first report in Nature. The biological evaluation revealed that dendrocrepine (4) displayed a potent hypoglycemic effect in vitro.
Collapse
|
56
|
Phytochemical constituents and biological activities of longan (Dimocarpus longan Lour.) fruit: a review. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Synthesis and Therapeutic Applications of Iminosugars in Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21093353. [PMID: 32397443 PMCID: PMC7247015 DOI: 10.3390/ijms21093353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.
Collapse
|
58
|
Santoro E, Vergura S, Scafato P, Belviso S, Masi M, Evidente A, Superchi S. Absolute Configuration Assignment to Chiral Natural Products by Biphenyl Chiroptical Probes: The Case of the Phytotoxins Colletochlorin A and Agropyrenol. JOURNAL OF NATURAL PRODUCTS 2020; 83:1061-1068. [PMID: 32091903 PMCID: PMC7997626 DOI: 10.1021/acs.jnatprod.9b01068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The application of flexible biphenyls as chiroptical probes for the absolute configuration assignment to chiral natural products is described. The method is straightforward and reliable and can be applied to conformationally mobile and ECD silent compounds, not treatable by computational analysis of chiroptical data. By this approach, the (6'R) absolute configuration of the phytotoxin colletochlorin A (1) was confirmed, while the absolute configuration of the phytotoxin agropyrenol (2), previously assigned by the NMR Mosher method, was revised and assigned as (3'S,4'S). Moreover, with the biphenyl method the configurational assignment can be obtained simply by the sign of a diagnostic Cotton effect at 250 nm in the ECD spectrum, thus allowing application without the need of advanced knowledge of chiroptical spectroscopy and computational protocols.
Collapse
Affiliation(s)
- Ernesto Santoro
- Department
of Sciences, University of Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
| | - Stefania Vergura
- Department
of Sciences, University of Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
| | - Patrizia Scafato
- Department
of Sciences, University of Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
| | - Sandra Belviso
- Department
of Sciences, University of Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
| | - Marco Masi
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario Monte San’Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Antonio Evidente
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario Monte San’Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Stefano Superchi
- Department
of Sciences, University of Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
- Tel: +39-0971-20-6098. Fax: +39-0971-20-5678.
| |
Collapse
|
59
|
A novel Golgi mannosidase inhibitor: Molecular design, synthesis, enzyme inhibition, and inhibition of spheroid formation. Bioorg Med Chem 2020; 28:115492. [PMID: 32291147 DOI: 10.1016/j.bmc.2020.115492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/23/2022]
Abstract
Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell-cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.
Collapse
|
60
|
Prudel C, Huwig K, Kazmaier U. Stereoselective Allylic Alkylations of Amino Ketones and Their Application in the Synthesis of Highly Functionalized Piperidines. Chemistry 2020; 26:3181-3188. [PMID: 31943413 PMCID: PMC7079034 DOI: 10.1002/chem.202000051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 11/22/2022]
Abstract
Chelated ketone enolates are excellent nucleophiles for allylic alkylations. Electron-withdrawing groups on the allyl moiety allow subsequent intramolecular Michael additions giving rise to piperidines with up to five stereogenic centers.
Collapse
Affiliation(s)
- Cynthia Prudel
- Organic ChemistrySaarland University, Campus C4.266123SaarbrückenGermany
| | - Kai Huwig
- Organic ChemistrySaarland University, Campus C4.266123SaarbrückenGermany
| | - Uli Kazmaier
- Organic ChemistrySaarland University, Campus C4.266123SaarbrückenGermany
| |
Collapse
|
61
|
Hong KQ, Fu XM, Yin H, Li ST, Chen T, Wang ZW. Advances in the Extraction, Purification and Detection of the Natural Product 1-Deoxynojirimycin. Crit Rev Anal Chem 2020; 51:246-257. [PMID: 31914794 DOI: 10.1080/10408347.2019.1711012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1-Deoxynojirimycin (1-DNJ), a polyhydroxylated alkaloid, is a highly selective and potent glycosidase inhibitor that has garnered great interest as a tool to study cellular recognition and as a potential therapeutic agent. The development of analytical methods for the quantification polyhydroxylated alkaloids in natural products requires a multifaceted approach. Many publications over the past five decades have described analytical methods for this compound. However, recently more advanced techniques have come to prominence for sample extraction, purification, detection, and identification. This review provides an updated, extensive overview of the available methods for the extraction, purification, identification or detection of 1-DNJ. The review highlights different strategies for the design of 1-DNJ detection methods, which we analyzed in light of recent detection data. Finally, we conclude with perspectives on possible strategies for increasing the efficiency of identification and quantification of 1-DNJ in the future.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiao-Meng Fu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hao Yin
- Institute of Sericultural Sciences of Sichuan Province, Nanchong, China
| | - Shu-Ting Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Wen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
62
|
Hanessian-Hullar reaction in the synthesis of highly substituted trans-3,4-dihydroxypyrrolidines: Rhamnulose iminosugar mimics inhibit α-glucosidase. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
63
|
Arockia doss M, Rajarajan G, Dhineshkumar E, Amala S, Thanikachalam V, Selvanayagam S, Sridhar B. Synthesis, spectral characterization (FT-IR, NMR, XRD) and computational studies of chloroacetyl chloride incorporated 3t-butyl-2r,6c-diphenyl/di(thiophen-2-yl)piperidin-4-ones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Nuñez C, Horenstein NA. Functional Analysis of a Gene Cluster from Chitinophaga pinensis Involved in Biosynthesis of the Pyrrolidine Azasugar DAB-1. JOURNAL OF NATURAL PRODUCTS 2019; 82:3401-3409. [PMID: 31793783 DOI: 10.1021/acs.jnatprod.9b00758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Azasugars, "nitrogen in the ring" analogues of monosaccharides, are known to be distributed in select plant, fungal. and bacterial species. We identify Chitinophaga pinensis DSM 2588 as the first bacterial source of the plant pyrrolidine azasugar 1,4-dideoxy-1,4-aminoarabinitol (DAB-1). Comparative sequence analyses identified C. pinensis as a putative azasugar producer, via observation of a three-gene cluster coding for putative aminotransferase, alcohol dehydrogenase, and sugar phosphatase enzymes, similar to the previously reported azasugar biosynthetic signature identified in Bacillus amyloliquefaciens FZB42. Multistep fractionation of C. pinensis culture media guided by a maltase inhibition assay yielded a component with a mass consistent with the structure of DAB-1. Heterologous expression of the three-gene cluster in E. coli, a non-azasugar producer, led to the isolation of nectrisine, a biosynthetic precursor to DAB-1, which displayed potent slow tight binding inhibition of maltase. Reduction of nectrisine with NaBH4 removed the slow tight binding inhibition kinetics, and MS analysis provided evidence for the production of a compound matching that of the isolated DAB-1 from C. pinensis. 1H NMR analysis of the nectrisine produced in E. coli after NaBD4 reduction produced a spectrum consistent with DAB-1 deuterated at C-1, primarily at the pro-S position. These results support the idea that the azasugar three-gene cluster represents a general biosynthetic path leading to several different compounds, which may prove useful for the identification of other azasugar-producing organisms.
Collapse
Affiliation(s)
- Claribel Nuñez
- Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Nicole A Horenstein
- Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
65
|
|
66
|
The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins (Basel) 2019; 11:toxins11110656. [PMID: 31717922 PMCID: PMC6891610 DOI: 10.3390/toxins11110656] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
Collapse
|
67
|
Wu QK, Kinami K, Kato A, Li YX, Fleet GWJ, Yu CY, Jia YM. Synthesis and Glycosidase Inhibition of Broussonetine M and Its Analogues. Molecules 2019; 24:molecules24203712. [PMID: 31619020 PMCID: PMC6832352 DOI: 10.3390/molecules24203712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023] Open
Abstract
Cross-metathesis (CM) and Keck asymmetric allylation, which allows access to defined stereochemistry of a remote side chain hydroxyl group, are the key steps in a versatile synthesis of broussonetine M (3) from the d-arabinose-derived cyclic nitrone 14. By a similar strategy, ent-broussonetine M (ent-3) and six other stereoisomers have been synthesized, respectively, starting from l-arabino-nitrone (ent-14), l-lyxo-nitrone (ent-3-epi-14), and l-xylo-nitrone (2-epi-14) in five steps, in 26%–31% overall yield. The natural product broussonetine M (3) and 10’-epi-3 were potent inhibitors of β-glucosidase (IC50 = 6.3 μM and 0.8 μM, respectively) and β-galactosidase (IC50 = 2.3 μM and 0.2 μM, respectively); while their enantiomers, ent-3 and ent-10’-epi-3, were selective and potent inhibitors of rice α-glucosidase (IC50 = 1.2 μM and 1.3 μM, respectively) and rat intestinal maltase (IC50 = 0.29 μM and 18 μM, respectively). Both the configuration of the polyhydroxylated pyrrolidine ring and C-10’ hydroxyl on the alkyl side chain affect the specificity and potency of glycosidase inhibition.
Collapse
Affiliation(s)
- Qing-Kun Wu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kyoko Kinami
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, OX13TA Oxford, UK.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
68
|
Stereoselective addition of Grignard reagents to sulfinimines derived from tartrate diol (threitol): Generation of chiral building blocks for the collective total synthesis of lentiginosine, conhydrine and methyldihydropalustramate. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
69
|
O’Keefe S, Roebuck QP, Nakagome I, Hirono S, Kato A, Nash R, High S. Characterizing the selectivity of ER α-glucosidase inhibitors. Glycobiology 2019; 29:530-542. [PMID: 30976784 PMCID: PMC6583763 DOI: 10.1093/glycob/cwz029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) contains both α-glucosidases and α-mannosidases which process the N-linked oligosaccharides of newly synthesized glycoproteins and thereby facilitate polypeptide folding and glycoprotein quality control. By acting as structural mimetics, iminosugars can selectively inhibit these ER localized α-glycosidases, preventing N-glycan trimming and providing a molecular basis for their therapeutic applications. In this study, we investigate the effects of a panel of nine iminosugars on the actions of ER luminal α-glucosidase I and α-glucosidase II. Using ER microsomes to recapitulate authentic protein N-glycosylation and oligosaccharide processing, we identify five iminosugars that selectively inhibit N-glycan trimming. Comparison of their inhibitory activities in ER microsomes against their effects on purified ER α-glucosidase II, suggests that 3,7a-diepi-alexine acts as a selective inhibitor of ER α-glucosidase I. The other active iminosugars all inhibit α-glucosidase II and, having identified 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) as the most effective of these compounds, we use in silico modeling to understand the molecular basis for this enhanced activity. Taken together, our work identifies the C-3 substituted pyrrolizidines casuarine and 3,7a-diepi-alexine as promising "second-generation" iminosugar inhibitors.
Collapse
Affiliation(s)
- Sarah O’Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Quentin P Roebuck
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Izumi Nakagome
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Shuichi Hirono
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Robert Nash
- PhytoQuest Ltd, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
70
|
Anand PS, Sethukumar A, Kumar CU, Krishnasamy K, Senthan S, Manikandan G, Prakasam BA. Synthesis, spectroscopic investigation, computational, stereochemical and biological studies of 1,3-dimethyl-2,6-diphenylpiperidin-4-one N(4′)-cyclohexylsemicarbazone: Crystal structure and Hirshfeld surface analysis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
71
|
Martínez RF, Jenkinson SF, Nakagawa S, Kato A, Wormald MR, Fleet GWJ, Hollinshead J, Nash RJ. Isolation from Stevia rebaudiana of DMDP acetic acid, a novel iminosugar amino acid: synthesis and glycosidase inhibition profile of glycine and β-alanine pyrrolidine amino acids. Amino Acids 2019; 51:991-998. [PMID: 31079215 DOI: 10.1007/s00726-019-02730-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
DMDP acetic acid [N-carboxymethyl-2,5-dideoxy-2,5-imino-D-mannitol] 5 from Stevia rebaudiana is the first isolated natural amino acid derived from iminosugars bearing an N-alkyl acid side chain; it is clear from GCMS studies that such derivatives with acetic and propionic acids are common in a broad range of plants including mulberry, Baphia, and English bluebells, but that they are very difficult to purify. Reaction of unprotected pyrrolidine iminosugars with aqueous glyoxal gives the corresponding N-acetic acids in very high yield; Michael addition of both pyrrolidine and piperidine iminosugars and that of polyhydroxylated prolines to tert-butyl acrylate give the corresponding N-propionic acids in which the amino group of β-alanine is incorporated into the heterocyclic ring. These easy syntheses allow the identification of this new class of amino acid in plant extracts and provide pure samples for biological evaluation. DMDP N-acetic and propionic acids are potent α-galactosidase inhibitors in contrast to potent β-galactosidase inhibition by DMDP.
Collapse
Affiliation(s)
- R Fernando Martínez
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, IACYS-Unidad de Química Verde y Desarrollo Sostenible, 06006, Badajoz, Spain
| | - Sarah F Jenkinson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Shinpei Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Mark R Wormald
- Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - George W J Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jackie Hollinshead
- Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth, SY23 3EB, Ceredigion, Wales, UK
| | - Robert J Nash
- Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth, SY23 3EB, Ceredigion, Wales, UK.
| |
Collapse
|
72
|
Zoidl M, Wolfsgruber A, Schalli M, Nasseri SA, Weber P, Stütz AE, Withers SG, Wrodnigg TM. Synthesis of modified 1,5-imino-d-xylitols as ligands for lysosomal β-glucocerebrosidase. MONATSHEFTE FUR CHEMIE 2019; 150:831-842. [PMID: 31178604 PMCID: PMC6534063 DOI: 10.1007/s00706-019-02427-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT Modified 1,5-dideoxy-1,5-imino-d-xylitol analogues with different substitution patterns involving position C-1 and/or the ring nitrogen were prepared, which were designed to serve as precursors for the preparation of iminoxylitol-based ligands and tools for the elucidation and modulation of human lysosomal β-glucocerebrosidase. Biological evaluation of the synthesized glycomimetics with a series of glycoside hydrolases revealed that these substitution patterns elicit excellent β-glucosidase selectivities. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Manuel Zoidl
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Andreas Wolfsgruber
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Michael Schalli
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Seyed A. Nasseri
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Patrick Weber
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Arnold E. Stütz
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Tanja M. Wrodnigg
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
73
|
El-Nezhawy AOH, Alrobaian M, Khames A, El-Badawy MF, Abdelwahab SF. Design and total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues by O-(2-oxopyrrolidin-5-yl)trichloroacetimidate as amidoalkylating agent with improved antimicrobial activity via solid lipid nanoparticle formulations. Bioorg Med Chem 2019; 27:1263-1273. [PMID: 30777662 DOI: 10.1016/j.bmc.2019.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
Abstract
A general strategy towards total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues has been developed from (D)-tartaric acid via the intermediate (3S,4R)-1-methyl-2-oxo-5-(2,2,2-trichloroacetamido)pyrrolidinediacetate (7). α-amidoalkylation studies of 7 with electron rich benzene derivative 8a-g as C-nucleophiles afforded (aryl derivatives) 9a-g. The target compounds 1, 2 and 13c-g were readily obtained from 10a-gvia Grignard addition to the homochiral lactam which was produced by deoxygenation using Lewis-acid followed by deacetylation. The synthesized compounds were loaded onto solid lipid nanoparticle formulations (SLNs) prepared by hot emulsification-ultrasonication technique using Compritol as solid lipid and Pluronic f68 as surfactant. SLNs were fully evaluated and the permeation of synthesized compound from SLNs was assayed against non-formulated compounds through dialysis membranes using Franz cell. The data indicated good physical characteristics of the prepared SLNs, sustaining of release profiles and significant improvement of permeation ability when compared to the non-formulated compounds. The antibacterial and antifungal activities of 1, 2 and 13c-g were determined by disc diffusion and microbroth dilution method to determine the minimum inhibitory concentrations (MIC) against seven microorganisms (Staphyloccus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans). The most active compounds against the Gram positive S. aureus were 1, 13C, 13d, and 13g. Also, 13c, 13d, and 13e had antibacterial activity but not 13f against some Gram negative organisms (E. coli, and P. mirabilis). MIC concentrations against P. aeruginosa, and K. pneumoniae were ≥512 μg/ml, while that against A. baumannii was ≥128 μg/ml except for nanoformulae of 13e and 13f that were 16 and 64 μg/ml, respectively. No antifungal activity against Candida albicans was recorded for all compounds and their nanoformulae (MIC > 1024 μg/ml). SLNs were found to decrease the MIC values for some of the compounds with no effect on the antifungal activity. In conclusion, we demonstrated a novel, straight-forward and economical procedure for the total synthesis of (-)-codonopsinine 1, (-)-codonopsine 2 and codonopsinine analogues 13c-g from simple and commercially available starting materials; d-tartaric acid; with antimicrobial activities against Gram positive and Gram-negative organisms that were improved by SLNs formulations.
Collapse
Affiliation(s)
- Ahmed O H El-Nezhawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Chemistry of Natural and Microbial Products, National Research Center, Dokki 12622, Cairo, Egypt.
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed F El-Badawy
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, Al-Motamayez District, P.O. Box 77, 6th of October City 12568, Egypt
| | - Sayed F Abdelwahab
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| |
Collapse
|
74
|
Polyphenols and Alkaloids in Byproducts of Longan Fruits ( Dimocarpus Longan Lour.) and Their Bioactivities. Molecules 2019; 24:molecules24061186. [PMID: 30917573 PMCID: PMC6471414 DOI: 10.3390/molecules24061186] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longan industry produces a large amount of byproducts such as pericarp and seed, resulting in environmental pollution and resource wastage. The present study was performed to systematically evaluate functional components, i.e., polyphenols (phenolics and flavonoids) and alkaloids, in longan byproducts and their bioactivities, including antioxidant activities, nitrite scavenging activities in simulated gastric fluid and anti-hyperglycemic activities in vitro. Total phenolic and total flavonoid contents in pericarp were slightly higher than those in seeds, but seeds possessed higher alkaloid content than pericarp. Four polyphenolic substances, i.e., gallic acid, ethyl gallate, corilagin and ellagic acid, were identified and quantified using high-performance liquid chromatography. Among these polyphenolic components, corilagin was the major one in both pericarp and seed. Alkaloid extract in seed showed the highest DPPH radical scavenging activity and oxygen radical absorbance capacity. Nitrite scavenging activities were improved with extract concentration and reaction time increasing. Flavonoids in seed and alkaloids in pericarp had potential to be developed as anti-hyperglycemic agents. The research result was a good reference for exploring longan byproducts into various valuable health-care products.
Collapse
|
75
|
Myeong IS, Lee YT, Kang J, Ham WH. Stereoselective Total Syntheses of (+)-Castanospermine and Neu5Ac Methyl Ester. J Org Chem 2019; 84:4211-4220. [DOI: 10.1021/acs.joc.9b00216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- In-Soo Myeong
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Yong-Taek Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jihun Kang
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Won-Hun Ham
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Yonsung Fine Chemicals Co., Ltd., Sujeong-ro 207, Jangan-myeon, Hwaseong-si, Gyeonggi-do 18581, Republic of Korea
| |
Collapse
|
76
|
Carroll AW, Willis AC, Hoshino M, Kato A, Pyne SG. Corrected Structure of Natural Hyacinthacine C 1 via Total Synthesis. JOURNAL OF NATURAL PRODUCTS 2019; 82:358-367. [PMID: 30714734 DOI: 10.1021/acs.jnatprod.8b00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyacinthacines C1 and C4 are natural products that were isolated from Hyacinthoides non-scripta and Scilla socialis in 1999 and 2007, respectively. Despite their different 1H NMR and 13C NMR spectroscopic data, these compounds have been assigned the same structures, including absolute configurations. This work details the total synthesis of natural (+)-hyacinthacine C1, whose structure is confirmed as being the C-6 epimer of that reported. The synthetic strategy focused on inverting the configuration at C-1 of the final hyacinthacines via operating the inversion at the corresponding carbon atom in three previously synthesized intermediates. To do this, the advanced intermediates were subjected to Swern oxidation, followed by a stereoselective reduction with L-Selectride. This approach led to the synthesis of (+)-5 -epi-hyacinthacine C1 (15), the corrected structure for (+)-hyacinthacine C1 (19), (+)-6,7-di- epi-hyacinthacine C1 (23), and (+)-7- epi-hyacinthacine C1 (29). Glycosidase inhibition assays revealed that (+)-hyacinthacine C1 (19) proved the most active, with IC50 values of 33.7, 55.5, and 78.2 μM, against the α-glucosidase of rice, human lysosome, and rat intestinal maltase, respectively.
Collapse
Affiliation(s)
- Anthony W Carroll
- School of Chemistry , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| | - Anthony C Willis
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Masako Hoshino
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Stephen G Pyne
- School of Chemistry , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
77
|
Zanardi MM, Sortino MA, Sarotti AM. On the effect of intramolecular H-bonding in the configurational assessment of polyhydroxylated compounds with computational methods. The hyacinthacines case. Carbohydr Res 2019; 474:72-79. [DOI: 10.1016/j.carres.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
|
78
|
Schramm S, Köhler N, Rozhon W. Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants. Molecules 2019; 24:E498. [PMID: 30704105 PMCID: PMC6385001 DOI: 10.3390/molecules24030498] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals. Finally, several examples of PA-producing crop plants are discussed.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Nikolai Köhler
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| |
Collapse
|
79
|
Fan A, Chuah GK, Jaenicke S. A novel and environmental friendly synthetic route for hydroxypyrrolidines using zeolites. Carbohydr Res 2019; 472:103-114. [PMID: 30544044 DOI: 10.1016/j.carres.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
A critical step in the synthesis of the hydroxypyrrolidines, 1,4-dideoxy-1,4-imino-l-lyxitol and 1,4-dideoxy-1,4-imino-d-lyxitol, from the corresponding d-sugars is the synthesis of O-methyl 2,3-O-isopropylidenepentofuranoses. Instead of applying homogeneous catalysis process with conventional inorganic acid catalysts like HCl and HClO4, it was found that heterogeneous catalysis using zeolites could be used for the one-pot synthesis of O-methyl 2,3-O-isopropylidenepentofuranoses directly from d-sugars, MeOH and acetone at mild condition. The best catalyst was H-beta zeolite containing a Si/Al molar ratio of 150, where a yield of >83% was obtained. The overall yields of the five-step procedure to 1,4-dideoxy-1,4-imino-l-lyxitol and 1,4-dideoxy-1,4-imino-d-lyxitol were 57% and 50%, respectively. This synthetic procedure has several advantages such as competitive overall yield, reduced number of steps, and mild reaction conditions. Furthermore, the zeolite catalyst can be easily recovered from the reaction mixture and reused with no loss of activity.
Collapse
Affiliation(s)
- A Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - G K Chuah
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Stephan Jaenicke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
80
|
Wu H, Zeng W, Chen G, Guo Y, Yao C, Li J, Liang Z. Spectroscopic techniques investigation on the interaction of glucoamylase with 1-deoxynojirimycin: Mechanistic and conformational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:613-621. [PMID: 30098884 DOI: 10.1016/j.saa.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/22/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
1-Deoxynojirimycin (DNJ), a representative polyhydroxylated alkaloids, is widely used in the field of antidiabetic, antitumor, and anti-HIV. The present study tried to clarify the interaction mechanism of DNJ with glucoamylase by multi-spectroscopic techniques, dynamic light scattering in combination with molecular modeling strategies from biophysics point of view. Fluorescence and UV-vis data indicated that fluorescence quenching mechanism of glucoamylase and DNJ was a dynamic manner. The association constant, binding site and thermodynamic parameters were also obtained from fluorescence spectrum at different temperatures. Synchronous fluorescence, circular dichroism and dynamic light scattering methods demonstrated that their interaction induced microenvironment changes around tryptophan residue and protein conformational alteration. The main driving force was hydrophobic interaction and hydrogen bonding. In addition, molecular docking study indicated that 1-deoxynojirimycin could bind in the catalytic domain of glucoamylase and interact with amino acid residues Arg78, Asp79, Glu203 and Glu424 by forming hydrogen bonds. Molecular dynamics simulation demonstrated that profiles of atomic fluctuation remained the rigidity of ligand binding site. This study elucidated the detailed interaction mechanism of DNJ with glucoamylase, which will be helpful for pharmaceutical companies to design new α-glucosidase inhibitor drugs based on polyhydroxylated alkaloids compound like DNJ.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Wei Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Ye Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Chengzhen Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
81
|
Gonda J, Široký M, Martinková M, Homolya S, Vilková M, Pilátová MB, Šesták S. Synthesis and biological activity of diastereoisomeric octahydro-1H-indole-5,6,7-triols, analogues of castanospermine. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
82
|
Sampaio-Dias IE, Silva-Reis SC, Pinto da Silva L, García-Mera X, Maestro MA, Rodríguez-Borges JE. Mechanistic insights for the transprotection of tertiary amines with Boc2O via charged carbamates: access to both enantiomers of 2-azanorbornane-3-exo-carboxylic acids. Org Chem Front 2019. [DOI: 10.1039/c9qo00957d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of a synthetic methodology for the selective transprotection in hindered tertiary amines using Boc2O under N–C hydrogenolysis catalyzed by Pd/C: access to both enantiomers of 2-azanorbornane-3-exo-carboxylates.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Sara C. Silva-Reis
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP)
- Department of Chemistry and Biochemistry
- Faculty of Sciences of University of Porto
- 4169-007 Porto
- Portugal
| | - Xerardo García-Mera
- Department of Organic Chemistry
- Faculty of Pharmacy
- University of Santiago de Compostela
- Santiago de Compostela
- Spain
| | - Miguel A. Maestro
- Department of Chemistry-CICA
- Faculty of Sciences
- University of Coruña
- A Coruña
- Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| |
Collapse
|
83
|
Carroll AW, Pyne SG. The History of the Glycosidase Inhibiting Hyacinthacine C-type Alkaloids: From Discovery to Synthesis. Curr Org Synth 2019; 16:498-522. [PMID: 31984928 PMCID: PMC7432187 DOI: 10.2174/1570179416666190126100312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND The inherent glycosidase inhibitory activity and potentially therapeutic value of the polyhydroxylated pyrrolizidine alkaloids containing a hydroxymethyl substituent at the C-3 position have been well documented. Belonging to this class, the naturally occurring hyacinthacine C-type alkaloids are of general interest among iminosugar researchers. Their selective micromolar α -glycosidase inhibitory ranges (10 - 100 μM) suggest that these azasugars are potential leads for treating type II diabetes. However, the structures of hyacinthacine C1, C3 and C4 are insecure with hyacinthacine C5 being recently corrected. OBJECTIVE This review presents the hyacinthacine C-type alkaloids: their first discovery to the most recent advancements on the structures, biological activities and total synthesis. CONCLUSION The hyacinthacine C-type alkaloids are of exponentially increasing interest and will undoubtedly continue to be reported as synthetic targets. They represent a challenging but rewarding synthetic feat for the community of those interested in accessing biologically active iminosugars. Since 2009, ten total syntheses have been employed towards accessing similarly related products but only three have assessed the glycosidase inhibitory activity of the final products. This suggests the need for an accessible and universal glycosidase inhibitory assay so to accurately determine the structure-activity relationship of how the hyacinthacine C-type alkaloids inhibit specific glycosidases. Confirming the correct structures of the hyacinthacine C-type alkaloids as well as accessing various analogues continues to strengthen the foundation towards a marketable treatment for type II diabetes and other glycosidase related illnesses.
Collapse
Affiliation(s)
- Anthony W. Carroll
- School of Chemistry, University of Wollongong, Wollongong, New South Wales, Wollongong, NSW 2522, Australia
| | - Stephen G. Pyne
- School of Chemistry, University of Wollongong, Wollongong, New South Wales, Wollongong, NSW 2522, Australia
| |
Collapse
|
84
|
Liu B, van Mechelen J, van den Berg RJBHN, van den Nieuwendijk AMCH, Aerts JMFG, van der Marel GA, Codée JDC, Overkleeft HS. Synthesis of Glycosylated 1-Deoxynojirimycins Starting from Natural and Synthetic Disaccharides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bing Liu
- Bioorganic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeanine van Mechelen
- Bioorganic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | | | | | - Johannes M. F. G. Aerts
- Medical Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Bioorganic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Bioorganic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Bioorganic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
85
|
Myeong IS, Ham WH. Stereoselective Syntheses of (+)-Broussonetine D and (+)-Australine via a Functionalized Pyrrolidine from an Extended Chiral 1,3-Oxazine. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- In-Soo Myeong
- School of Pharmacy; Sungkyunkwan University; Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419 Republic of Korea
| | - Won-Hun Ham
- School of Pharmacy; Sungkyunkwan University; Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419 Republic of Korea
- Yonsung Fine Chemicals Co., Ltd.; Sujeong-ro 207, Jangan-myeon, Hwaseong-si, Gyeonggi-do 18581 Republic of Korea
| |
Collapse
|
86
|
Ben Bdira F, Artola M, Overkleeft HS, Ubbink M, Aerts JMFG. Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. J Lipid Res 2018; 59:2262-2276. [PMID: 30279220 PMCID: PMC6277158 DOI: 10.1194/jlr.r086629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific β-glycosidic bond in glycoconjugate substrates; β-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (β/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic β-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marcellus Ubbink
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | | |
Collapse
|
87
|
Simple Determination of 1-Deoxynojirimycin in a New Dietary Supplement by Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
88
|
Song W, Li M, Zheng N, Ullah K, Li J, Dong K, Zheng Y. Iridium-Catalyzed Highly Regioselective and Diastereoselective Allylic Etherification To Access cis-2,6-Disubstituted Dihydropyridinones. J Org Chem 2018; 83:12822-12830. [PMID: 30234304 DOI: 10.1021/acs.joc.8b01598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly regio- and diastereoselective method to access cis-2,6-disubstituted dihydropyridinones under mild conditions by an iridium-catalyzed allylic etherification is reported. cis-2,6-Disubstituted dihydropyridinones are important precursors for the de novo synthesis of the corresponding piperidine alkaloids and iminosugars. This strategy features a broad substrate scope, high yields, and excellent regio- and diastereoselectivities. A π-allyl-Ir intermediate is involved in the mechanism. The strong A1,3-strain from the tosyl group may also favor the formation of cis-products in this transformation.
Collapse
Affiliation(s)
- Wangze Song
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Ming Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian , 116024 , P. R. China.,School of Chemical Engineering , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Karim Ullah
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Junhao Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Kun Dong
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Yubin Zheng
- School of Chemical Engineering , Dalian University of Technology , Dalian , 116024 , P. R. China
| |
Collapse
|
89
|
Lee H, Shin HH, Kim HR, Nam YD, Seo DH, Seo MJ. Culture Optimization Strategy for 1-Deoxynojirimycin-producing Bacillus methylotrophicus K26 Isolated from Korean Fermented Soybean Paste, Doenjang. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0159-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
90
|
Echave H, Bastida I, López R, Palomo C. Bifunctional Brønsted Base Catalyzed Mannich Reaction of β‐Alkoxy α‐Keto Amides: Stereocontrolled Entry to Functionalized Amino Diols. Chemistry 2018; 24:11554-11558. [DOI: 10.1002/chem.201802550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/18/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Haizea Echave
- Departamento de Química Orgánica I, Facultad de QuímicaUniversidad del País Vasco Manuel de Lardizabal 3 20018 San Sebastián Spain
| | - Iñaki Bastida
- Departamento de Química Orgánica I, Facultad de QuímicaUniversidad del País Vasco Manuel de Lardizabal 3 20018 San Sebastián Spain
| | - Rosa López
- Departamento de Química Orgánica I, Facultad de QuímicaUniversidad del País Vasco Manuel de Lardizabal 3 20018 San Sebastián Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Facultad de QuímicaUniversidad del País Vasco Manuel de Lardizabal 3 20018 San Sebastián Spain
| |
Collapse
|
91
|
Characterization of the PLP-dependent transaminase initiating azasugar biosynthesis. Biochem J 2018; 475:2241-2256. [PMID: 29907615 DOI: 10.1042/bcj20180340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022]
Abstract
Biosynthesis of the azasugar 1-deoxynojirimycin (DNJ) critically involves a transamination in the first committed step. Here, we identify the azasugar biosynthetic cluster signature in Paenibacillus polymyxa SC2 (Ppo), homologous to that reported in Bacillus amyloliquefaciens FZB42 (Bam), and report the characterization of the aminotransferase GabT1 (named from Bam). GabT1 from Ppo exhibits a specific activity of 4.9 nmol/min/mg at 30°C (pH 7.5), a somewhat promiscuous amino donor selectivity, and curvilinear steady-state kinetics that do not reflect the predicted ping-pong behavior typical of aminotransferases. Analysis of the first half reaction with l-glutamate in the absence of the acceptor fructose 6-phosphate revealed that it was capable of catalyzing multiple turnovers of glutamate. Kinetic modeling of steady-state initial velocity data was consistent with a novel hybrid branching kinetic mechanism which included dissociation of PMP after the first half reaction to generate the apoenzyme which could bind PLP for another catalytic deamination event. Based on comparative sequence analyses, we identified an uncommon His-Val dyad in the PLP-binding pocket which we hypothesized was responsible for the unusual kinetics. Restoration of the conserved PLP-binding site motif via the mutant H119F restored classic ping-pong kinetic behavior.
Collapse
|
92
|
Synthesis and glycosidase inhibition potency of all- trans substituted 1- C -perfluoroalkyl iminosugars. Carbohydr Res 2018; 464:2-7. [DOI: 10.1016/j.carres.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
|
93
|
Koyama R, Hakamata W, Hirano T, Nishio T. Identification of Small-Molecule Inhibitors of Human Golgi Mannosidase via a Drug Repositioning Screen. Chem Pharm Bull (Tokyo) 2018. [DOI: 10.1248/cpb.c17-01009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryosuke Koyama
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Takako Hirano
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Toshiyuki Nishio
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| |
Collapse
|
94
|
Lieou Kui E, Kanazawa A, Behr JB, Py S. Ring-Junction-Substituted Polyhydroxylated Pyrrolizidines and Indolizidines from Ketonitrone Cycloadditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Evelyn Lieou Kui
- Univ. Grenoble Alpes; CNRS; Département de Chimie Moléculaire (DCM); 38000 Grenoble France
| | - Alice Kanazawa
- Univ. Grenoble Alpes; CNRS; Département de Chimie Moléculaire (DCM); 38000 Grenoble France
| | - Jean-Bernard Behr
- Univ. Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims (ICMR); CNRS UMR 7312; 51687 Reims CEDEX 2 France
| | - Sandrine Py
- Univ. Grenoble Alpes; CNRS; Département de Chimie Moléculaire (DCM); 38000 Grenoble France
| |
Collapse
|
95
|
Carroll AW, Savaspun K, Willis AC, Hoshino M, Kato A, Pyne SG. Total Synthesis of Natural Hyacinthacine C 5 and Six Related Hyacinthacine C 5 Epimers. J Org Chem 2018; 83:5558-5576. [PMID: 29701065 DOI: 10.1021/acs.joc.8b00585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The total synthesis of natural (+)-hyacinthacine C5 was achieved, which allowed correction of its initially proposed structure, as well as six additional hyacinthacine C-type compounds. These compounds were readily accessible from two epimeric anti-1,2-amino alcohols. Keeping a common A-ring configuration, chemical manipulation occurred selectively on the B-ring of the hyacinthacine C-type products through methods of syn-dihydroxylation, SN2 ring-opening of a cyclic sulfate, and also employing either ( R)- or ( R, S)-α-methylallyl amine for the Petasis borono Mannich reaction. Our small analogue library was then assessed for its glycosidase inhibitory potency against a panel of glycosidases. (-)-6- Epi-hyacinthacine C5 and (+)-7- epi-hyacinthacine C5 (compound names are based on the corrected structure of hyacinthacine C5) proved most active, with inhibitory activities ranging between weak (IC50 = 130 μM) and moderate (IC50 = 9.9 μM) against the α-glucosidases of rat intestinal maltase, isomaltase, and sucrase, thus identifying potential new leads for future antidiabetic drug development.
Collapse
Affiliation(s)
- Anthony W Carroll
- School of Chemistry, University of Wollongong , Wollongong , New South Wales 2522 , Australia
| | - Kongdech Savaspun
- School of Chemistry, University of Wollongong , Wollongong , New South Wales 2522 , Australia
| | - Anthony C Willis
- Research School of Chemistry, Australian National University , Canberra , ACT 0200 , Australia
| | - Masako Hoshino
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Stephen G Pyne
- School of Chemistry, University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
96
|
Lv Z, Song C, Niu Y, Li Q, Ye XS. Synthesis of N-Substituted Iminosugar Derivatives and Evaluation of Their Immunosuppressive Activities. ChemMedChem 2018; 13:338-351. [PMID: 29323471 DOI: 10.1002/cmdc.201700706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/24/2017] [Indexed: 01/28/2023]
Abstract
It is important to find more effective and safer immunosuppressants, because clinically used immunosuppressive agents have significant side effects. A series of N-substituted iminosugar derivatives were designed and synthesized, and their immunosuppressive effects were evaluated by the CCK-8 assay. The results revealed that iminosugars 10 e and 10 i, that is, (3R,4S)-1-(4-heptyloxylphenylethyl)pyrrolidine-3,4-diol and (3R,4S)-1-[2-(2-chloro-4-(p-tolylthio)-phenyl-1-yl)ethyl]pyrrolidine-3,4-diol, respectively, exhibited the strongest inhibitory effects on mouse splenocyte proliferation (IC50 =2.16 and 2.48 μm, respectively), whereas the iminosugars containing an amide group near the hydrophilic head (compounds 10 j-n) exhibited no inhibitory effects. Further studies revealed that the inhibitory effects on splenocyte proliferation may have come from the suppression of both IFN-γ and IL-4 cytokines. Our results suggest that synthetic iminosugars, especially compounds 10 e and 10 i, hold potential as immunosuppressive agents.
Collapse
Affiliation(s)
- Zhuo Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Chengcheng Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Youhong Niu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
97
|
Yi CB, She ZY, Cheng YF, Qu J. Redox-Neutral α-C–H Functionalization of Pyrrolidin-3-ol. Org Lett 2018; 20:668-671. [DOI: 10.1021/acs.orglett.7b03807] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cheng-Bo Yi
- The State Key Laboratory
and Institute of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi-Ying She
- The State Key Laboratory
and Institute of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Feng Cheng
- The State Key Laboratory
and Institute of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin Qu
- The State Key Laboratory
and Institute of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
98
|
|
99
|
Kumar RS, Almansour AI, Arumugam N, Mohammad F, Alshahrani WS, D K, Altaf M, Azam M, Menéndez JC. Highly functionalized pyrrolidine analogues: stereoselective synthesis and caspase-dependent apoptotic activity. RSC Adv 2018; 8:41226-41236. [PMID: 35559303 PMCID: PMC9091711 DOI: 10.1039/c8ra07985d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
Spiropyrrolidines were synthesized employing a new class of azomethine ylide for the first time and were tested for their anticancer activity, where the cell death mechanism revealed that it is occurring through the caspase-3 dependent pathway.
Collapse
Affiliation(s)
- Raju Suresh Kumar
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | - Natarajan Arumugam
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Faruq Mohammad
- Surfactant Research Chair
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
| | | | - Kotresha D
- Department of Microbiology
- East West Group of Institution
- Bangaluru-560091
- India
| | - Mohammad Altaf
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Mohammad Azam
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense
- 28040 Madrid
| |
Collapse
|
100
|
Stereoselective synthesis and spectral studies of some benzotriazolylacetyl hydrazones of 3–alkyl–2,6–diarylpiperidin–4–ones. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|