51
|
Lindberg HM, McKean KA, Wang IN. Phage fitness may help predict phage therapy efficacy. BACTERIOPHAGE 2014; 4:e964081. [PMID: 26713221 PMCID: PMC4589996 DOI: 10.4161/21597073.2014.964081] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
We isolated 6 phages from 2 environmental water sources and assessed their ability to treat Pseudomonas aeruginosa infection of Drosophila melanogaster. We found all 6 phages were able to significantly increase mean survival time (MST) of infected D. melanogaster. Although phage traits, such as adsorption rate, burst size, and lysis time, varied significantly among these phages, none of the traits correlated significantly with MST. Phage growth rate determined in vitro, however, was found to be significantly correlated with MST. Overall, our study shows that infected D. melanogaster can be used as a model system to test the therapeutic efficacy of phages. In addition, a more comprehensive characteristic, like the in vitro growth rate, seems to be a better indicator in predicting therapeutic success than constituent traits like the adsorption rate, burst size, or lysis time.
Collapse
|
52
|
Leon-Velarde CG, Kropinski AM, Chen S, Abbasifar A, Griffiths MW, Odumeru JA. Complete genome sequence of bacteriophage vB_YenP_AP5 which infects Yersinia enterocolitica of serotype O:3. Virol J 2014; 11:188. [PMID: 25347934 PMCID: PMC4283147 DOI: 10.1186/1743-422x-11-188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/19/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bacteriophage vB_YenP_AP5 is a lytic bacteriophage capable of infecting Yersinia enterocolitica strains of serotype O:3, an epidemiologically significant serotype within this bacterial species that causes yersiniosis in humans. This work describes the complete genome sequence of this phage. RESULTS The genome consists of linear double-stranded DNA of 38,646 bp, with direct terminal repeats of 235 bp in length, and a GC content of 50.7%. There are 45 open reading frames which occupy 89.9% of the genome. Most of the proteins encoded by this virus exhibit sequence similarity to Yersinia phage φYeO3-12 and Salmonella phage φSG-JL2 proteins. CONCLUSIONS Genomic and morphological analyses place the bacteriophage vB_YenP_AP5 in the T7likevirus genus of the subfamily Autographivirinae within the family Podoviridae.
Collapse
Affiliation(s)
- Carlos G Leon-Velarde
- />Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7 Canada
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Andrew M Kropinski
- />Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1 Canada
- />Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Shu Chen
- />Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7 Canada
| | - Arash Abbasifar
- />Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mansel W Griffiths
- />Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON N1G 2W1 Canada
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Joseph A Odumeru
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
53
|
Briers Y, Peeters LM, Volckaert G, Lavigne R. The lysis cassette of bacteriophage ϕKMV encodes a signal-arrest-release endolysin and a pinholin. BACTERIOPHAGE 2014; 1:25-30. [PMID: 21687532 DOI: 10.4161/bact.1.1.14868] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/11/2011] [Accepted: 01/17/2011] [Indexed: 12/13/2022]
Abstract
The lysis cassette of Pseudomonas aeruginosa phage ϕKMV encodes a holin, endolysin, Rz and Rz1 in the canonical order. It has a tight organization with a high degree of overlapping genes and is highly conserved (between 96 and 100% identity at the protein level) among several other members of the "phiKMV-like viruses." The endolysin KMV45 exhibits characteristics as expected for a signal-arrest-release (SAR) endolysin, whereas the holin KMV44 is a typical pinholin. KMV45 is initially secreted as an inactive, membrane-anchored endolysin, which is subsequently released by membrane depolarization driven by the pinholin KMV44. The SAR domain of KMV45 is necessary for its full enzymatic activity, suggesting a refolding of the catalytic cleft upon release from the membrane. The physical proximity of the catalytic glutamic acid residue close to SAR domain suggests an alternative activation mechanism compared to the SAR endolysin of phages P1, ERA103 and 21. Expression of KMV44 leads to a quick cell lysis when paired with SAR endolysin KMV45, but not with the cytoplasmic phage λ endolysin, indicating the membrane depolarizing function of KMV44 rather than the large hole-making function characteristic of classical holins.
Collapse
Affiliation(s)
- Yves Briers
- Laboratory of Gene Technology; Division of Gene Technology; Department of Biosystems; Leuven, Belgium
| | | | | | | |
Collapse
|
54
|
Kwiatek M, Mizak L, Parasion S, Gryko R, Olender A, Niemcewicz M. Characterization of five newly isolated bacteriophages active against Pseudomonas aeruginosa clinical strains. Folia Microbiol (Praha) 2014; 60:7-14. [PMID: 24993480 DOI: 10.1007/s12223-014-0333-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections, especially in patients with immunodeficiency. It exhibits multiple mechanisms of resistance, including efflux pumps, antibiotic modifying enzymes and limited membrane permeability. The primary reason for the development of novel therapeutics for P. aeruginosa infections is the declining efficacy of conventional antibiotic therapy. These clinical problems caused a revitalization of interest in bacteriophages, which are highly specific and have very effective antibacterial activity as well as several other advantages over traditional antimicrobial agents. Above all, so far, no serious or irreversible side effects of phage therapy have been described. Five newly purified P. aeruginosa phages named vB_PaeM_WP1, vB_PaeM_WP2, vB_PaeM_WP3, vB_PaeM_WP4 and vB_PaeP_WP5 have been characterized as potential candidates for use in phage therapy. They are representatives of the Myoviridae and Podoviridae families. Their host range, genome size, structural proteins and stability in various physical and chemical conditions were tested. The results of these preliminary investigations indicate that the newly isolated bacteriophages may be considered for use in phagotherapy.
Collapse
Affiliation(s)
- Magdalena Kwiatek
- Biological Threat Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 2, 24-100, Puławy, Poland,
| | | | | | | | | | | |
Collapse
|
55
|
Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA, Oliveira M, Vilela CL, Melo-Cristino J, Górski A, Pimentel M, São-José C, Cavaco-Silva P, Garcia M. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 2014; 63:1055-1065. [PMID: 24869663 DOI: 10.1099/jmm.0.071753-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In patients with diabetes mellitus, foot infections pose a significant risk. These are complex infections commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to bacteriophages. Here, we characterized five bacteriophages that we had determined previously to have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. baumannii infections. Morphological and genetic features indicated that the bacteriophages were lytic members of the family Myoviridae or Podoviridae and did not harbour any known bacterial virulence genes. Combinations of the bacteriophages had broad host ranges for the different target bacterial species. The activity of the bacteriophages against planktonic cells revealed effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. Using metabolic activity as a measure of cell viability within established biofilms, we found significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm cells occurred at a bacteriophage : bacterium input multiplicity of 10. These studies on both planktonic cells and established biofilms allowed us to better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, and the findings support further clinical development of bacteriophage therapy.
Collapse
Affiliation(s)
- João J Mendes
- Internal Medicine Department, Santa Marta's Hospital/Central Lisbon Hospital Center, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | | | - Carla Mottola
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | | | | | - Manuela Oliveira
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | - Cristina L Vilela
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | - José Melo-Cristino
- Institute of Microbiology, Faculty of Medicine of the University of Lisbon, Lisbon, Portugal
| | - Andrzej Górski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Madalena Pimentel
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | - Carlos São-José
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | - Patrícia Cavaco-Silva
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Superior Institute of Health Sciences Egas Moniz, Monte de Caparica, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | | |
Collapse
|
56
|
Khairnar K, Raut MP, Chandekar RH, Sanmukh SG, Paunikar WN. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in catfish. BMC Vet Res 2013; 9:264. [PMID: 24369750 PMCID: PMC3913374 DOI: 10.1186/1746-6148-9-264] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/23/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The bacteriophage therapy is an effective antimicrobial approach with potentially important applications in medicine and biotechnology which can be seen as an additional string in the bow. Emerging drug resistant bacteria in aquaculture industry due to unrestricted use of antibiotics warrants more sustainable and environmental friendly strategies for controlling fish infections.The isolated bacteria from fish lesions was characterised based on isolation on selective and differential medium like Pseudomonas agar, gram staining, biochemical tests and 16SrRNA sequencing. The metallo-beta-lactamase (MBL) producing bacterial isolate was evaluated using Imipenem - Ethylenediaminetetraacetic acid (EDTA) disk method. The specific bacteriophage was isolated and concentrated using coal bed developed in our lab at CSIR-NEERI. The isolated and enriched bacteriophage was characterised by nucleotide sequencing and electron microscopy. The phage therapy was applied for treating ulcerative lesion in fish. RESULTS The pathogenic bacterium responsible for causing ulcerative lesions in catfish species (Clarias gariepinus) was identified as Pseudomonas aeruginosa. One out of twenty P. aeruginosa isolate showing multi drug resistance (MDR) was incidentally found to be MBL producing as determined by Imipenem-EDTA disk method. The phage therapy effectively cured the ulcerative lesions of the infected fish in 8-10 days of treatment, with a sevenfold reduction of the lesion with untreated infection control. CONCLUSION Bacteriophage therapy can have potential applications soon as an alternative or as a complement to antibiotic treatment in the aquaculture. We present bacteriophage therapy as a treatment method for controlling MDR P. aeruginosa infection in C. gariepinus. To the best of our knowledge this is a first report of application of phage therapy against MBL producing P. aeruginosa isolated from aquatic ecosystem.
Collapse
Affiliation(s)
- Krishna Khairnar
- Environmental Virology Cell, Council for Scientific and Industrial Research - National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Mahendra P Raut
- Departments of Chemical and Biological Engineering, ChELSI, University Of Sheffield, Office No: D72, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Rajshree H Chandekar
- Environmental Virology Cell, Council for Scientific and Industrial Research - National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Swapnil G Sanmukh
- Environmental Virology Cell, Council for Scientific and Industrial Research - National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Waman N Paunikar
- Environmental Virology Cell, Council for Scientific and Industrial Research - National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| |
Collapse
|
57
|
Abstract
Acinetobacter baumannii is an emerging pathogen that was isolated from wounded soldiers in military treatment facilities in Iraq but has since become a problem in civilian hospitals. Here, we announce and describe the complete genome of the ϕKMV-like A. baumannii podophage Petty.
Collapse
|
58
|
Lynch KH, Abdu AH, Schobert M, Dennis JJ. Genomic characterization of JG068, a novel virulent podovirus active against Burkholderia cenocepacia. BMC Genomics 2013; 14:574. [PMID: 23978260 PMCID: PMC3765740 DOI: 10.1186/1471-2164-14-574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/09/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND As is true for many other antibiotic-resistant Gram-negative pathogens, members of the Burkholderia cepacia complex (BCC) are currently being assessed for their susceptibility to phage therapy as an antimicrobial treatment. The objective of this study was to perform genomic and limited functional characterization of the novel BCC phage JG068 (vB_BceP_JG068). RESULTS JG068 is a podovirus that forms large, clear plaques on Burkholderia cenocepacia K56-2. Host range analysis indicates that this phage can infect environmental, clinical, and epidemic isolates of Burkholderia multivorans, B. cenocepacia, Burkholderia stabilis, and Burkholderia dolosa, likely through interaction with the host lipopolysaccharide as a receptor. The JG068 chromosome is 41,604 base pairs (bp) in length and is flanked by 216 bp short direct terminal repeats. Gene expression originates from both host and phage promoters and is in the forward direction for all 49 open reading frames. The genome sequence shows similarity to Ralstonia phage ϕRSB1, Caulobacter phage Cd1, and uncharacterized genetic loci of blood disease bacterium R229 and Burkholderia pseudomallei 1710b. CoreGenesUniqueGenes analysis indicates that JG068 belongs to the Autographivirinae subfamily and ϕKMV-like phages genus. Modules within the genome encode proteins involved in DNA-binding, morphogenesis, and lysis, but none associated with pathogenicity or lysogeny. Similar to the signal-arrest-release (SAR) endolysin of ϕKMV, inducible expression of the JG068 SAR endolysin causes lysis of Escherichia coli that is dependent on the presence of an N-terminal signal sequence. In an in vivo assay using the Galleria mellonella infection model, treatment of B. cenocepacia K56-2-infected larvae with JG068 results in a significant increase in larval survival. CONCLUSIONS As JG068 has a broad host range, does not encode virulence factors, is obligately lytic, and has activity against an epidemic B. cenocepacia strain in vivo, this phage is a highly promising candidate for BCC phage therapy development.
Collapse
Affiliation(s)
- Karlene H Lynch
- Department of Biological Sciences, 6–008 Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | - Ashraf H Abdu
- Department of Biological Sciences, 6–008 Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | - Max Schobert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Jonathan J Dennis
- Department of Biological Sciences, 6–008 Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
59
|
Abstract
UNLABELLED In contrast to the rapidly increasing knowledge on genome content and diversity of bacterial viruses, insights in intracellular phage development and its impact on bacterial physiology are very limited. We present a multifaceted study combining quantitative PCR (qPCR), microarray, RNA-seq, and two-dimensional gel electrophoresis (2D-GE), to obtain a global overview of alterations in DNA, RNA, and protein content in Pseudomonas aeruginosa PAO1 cells upon infection with the strictly lytic phage LUZ19. Viral genome replication occurs in the second half of the phage infection cycle and coincides with degradation of the bacterial genome. At the RNA level, there is a sharp increase in viral mRNAs from 23 to 60% of all transcripts after 5 and 15 min of infection, respectively. Although microarray analysis revealed a complex pattern of bacterial up- and downregulated genes, the accumulation of viral mRNA clearly coincides with a general breakdown of abundant bacterial transcripts. Two-dimensional gel electrophoretic analyses shows no bacterial protein degradation during phage infection, and seven stress-related bacterial proteins appear. Moreover, the two most abundantly expressed early and late-early phage proteins, LUZ19 gene product 13 (Gp13) and Gp21, completely inhibit P. aeruginosa growth when expressed from a single-copy plasmid. Since Gp13 encodes a predicted GNAT acetyltransferase, this observation points at a crucial but yet unexplored level of posttranslational viral control during infection. IMPORTANCE Massive genome sequencing has led to important insights into the enormous genetic diversity of bacterial viruses (bacteriophages). However, for nearly all known phages, information on the impact of the phage infection on host physiology and intracellular phage development is scarce. This aspect of phage research should be revitalized, as phages evolved genes which can shut down or redirect bacterial processes in a very efficient way, which can be exploited towards antibacterial design. In this context, we initiated a study of the human opportunistic pathogen Pseudomonas aeruginosa under attack by one its most common predators, the Phikmvlikevirus. By analyzing various stages of infection at different levels, this study uncovers new features of phage infection, representing a cornerstone for future studies on members of this phage genus.
Collapse
|
60
|
Klimuk E, Akulenko N, Makarova KS, Ceyssens PJ, Volchenkov I, Lavigne R, Severinov K. Host RNA polymerase inhibitors encoded by ϕKMV-like phages of pseudomonas. Virology 2013; 436:67-74. [DOI: 10.1016/j.virol.2012.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/27/2012] [Accepted: 10/11/2012] [Indexed: 11/30/2022]
|
61
|
Abbasifar R, Kropinski AM, Sabour PM, Ackermann HW, Alanis Villa A, Abbasifar A, Griffiths MW. The Genome of Cronobacter sakazakii Bacteriophage vB_CsaP_GAP227 Suggests a New Genus within the Autographivirinae. GENOME ANNOUNCEMENTS 2013; 1:e00122-12. [PMID: 23409275 PMCID: PMC3569369 DOI: 10.1128/genomea.00122-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/18/2012] [Indexed: 11/20/2022]
Abstract
The genome of Cronobacter sakazakii podovirus vB_CsaP_GAP227 was fully sequenced. The DNA of this lytic phage consists of 41,796 bp and has a G+C content of 55.7%. Forty-nine open reading frames and no tRNAs were identified. This phage is related to Yersinia phages ϕR8-01 and ϕ80-18 and Aeromonas phage phiAS7.
Collapse
Affiliation(s)
- Reza Abbasifar
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| | - Andrew M. Kropinski
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
| | - Parviz M. Sabour
- Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, Ontario, Canada
| | - Hans-Wolfgang Ackermann
- Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Argentina Alanis Villa
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| | - Arash Abbasifar
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| | - Mansel W. Griffiths
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
62
|
Sajben-Nagy E, Maróti G, Kredics L, Horváth B, Párducz Á, Vágvölgyi C, Manczinger L. Isolation of new Pseudomonas tolaasii bacteriophages and genomic investigation of the lytic phage BF7. FEMS Microbiol Lett 2012; 332:162-9. [DOI: 10.1111/j.1574-6968.2012.02592.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 03/20/2012] [Accepted: 05/04/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Enikő Sajben-Nagy
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged; Hungary
| | | | - László Kredics
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged; Hungary
| | | | - Árpád Párducz
- Institute of Biophysics; Biological Research Center; Hungarian Academy of Sciences; Szeged; Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged; Hungary
| | - László Manczinger
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged; Hungary
| |
Collapse
|
63
|
BVPaP-3, a T7-Like Lytic Phage of Pseudomonas aeruginosa: Its Isolation and Characterisation. Curr Microbiol 2012; 64:305-11. [DOI: 10.1007/s00284-011-0071-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|
64
|
Casjens SR, Molineux IJ. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:143-79. [PMID: 22297513 DOI: 10.1007/978-1-4614-0980-9_7] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tailed dsDNA bacteriophage virions bind to susceptible cells with the tips of their tails and then deliver their DNA through the tail into the cells to initiate infection. This chapter discusses what is known about this process in the short-tailed phages (Podoviridae). Their short tails require that many of these virions adsorb to the outer layers of the cell and work their way down to the outer membrane surface before releasing their DNA. Interestingly, the receptor-binding protein of many short-tailed phages (and some with long tails) has an enzymatic activity that cleaves their polysaccharide receptors. Reversible adsorption and irreversible adsorption to primary and secondary receptors are discussed, including how sequence divergence in tail fiber and tailspike proteins leads to different host specificities. Upon reaching the outer membrane of Gram-negative cells, some podoviral tail machines release virion proteins into the cell that help the DNA efficiently traverse the outer layers of the cell and/or prepare the cell cytoplasm for phage genome arrival. Podoviruses utilize several rather different variations on this theme. The virion DNA is then released into the cell; the energetics of this process is discussed. Phages like T7 and N4 deliver their DNA relatively slowly, using enzymes to pull the genome into the cell. At least in part this mechanism ensures that genes in late-entering DNA are not expressed at early times. On the other hand, phages like P22 probably deliver their DNA more rapidly so that it can be circularized before the cascade of gene expression begins.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
65
|
Adriaenssens EM, Ceyssens PJ, Dunon V, Ackermann HW, Van Vaerenbergh J, Maes M, De Proft M, Lavigne R. Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, belonging to the "phiKMV-like viruses". Appl Environ Microbiol 2011; 77:3443-50. [PMID: 21421778 PMCID: PMC3126476 DOI: 10.1128/aem.00128-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/10/2011] [Indexed: 12/12/2022] Open
Abstract
Pantoea agglomerans is a common soil bacterium used in the biocontrol of fungi and bacteria but is also an opportunistic human pathogen. It has been described extensively in this context, but knowledge of bacteriophages infecting this species is limited. Bacteriophages LIMEzero and LIMElight of P. agglomerans are lytic phages, isolated from soil samples, belonging to the Podoviridae and are the first Pantoea phages of this family to be described. The double-stranded DNA (dsDNA) genomes (43,032 bp and 44,546 bp, respectively) encode 57 and 55 open reading frames (ORFs). Based on the presence of an RNA polymerase in their genomes and their overall genome architecture, these phages should be classified in the subfamily of the Autographivirinae, within the genus of the "phiKMV-like viruses." Phylogenetic analysis of all the sequenced members of the Autographivirinae supports the classification of phages LIMElight and LIMEzero as members of the "phiKMV-like viruses" and corroborates the subdivision into the different genera. These data expand the knowledge of Pantoea phages and illustrate the wide host diversity of phages within the "phiKMV-like viruses."
Collapse
Affiliation(s)
- Evelien M. Adriaenssens
- Division of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Box 2462
- Division of Plant Biotechnics, Katholieke Universiteit Leuven, Willem De Croylaan 42, Box 2427, Leuven B-3001
- Unit Plant—Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), B. van Gansberghelaan 96, Merelbeke B-9820, Belgium
| | - Pieter-Jan Ceyssens
- Division of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Box 2462
| | - Vincent Dunon
- Division of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Box 2462
| | - Hans-Wolfgang Ackermann
- Department of Microbiology, Faculty of Medicine, Vanry Pavilion, Laval University, Quebec, QC G1K 7P4, Canada
| | - Johan Van Vaerenbergh
- Unit Plant—Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), B. van Gansberghelaan 96, Merelbeke B-9820, Belgium
| | - Martine Maes
- Unit Plant—Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), B. van Gansberghelaan 96, Merelbeke B-9820, Belgium
| | - Maurice De Proft
- Division of Plant Biotechnics, Katholieke Universiteit Leuven, Willem De Croylaan 42, Box 2427, Leuven B-3001
| | - Rob Lavigne
- Division of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Box 2462
| |
Collapse
|
66
|
Sillankorva S, Kluskens LD, Lingohr EJ, Kropinski AM, Neubauer P, Azeredo J. Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A. Virol J 2011; 8:142. [PMID: 21439081 PMCID: PMC3080317 DOI: 10.1186/1743-422x-8-142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 03/26/2011] [Indexed: 12/11/2022] Open
Abstract
Background Phage ϕIBB-PF7A is a T7-like bacteriophage capable of infecting several Pseudomonas fluorescens dairy isolates and is extremely efficient in lysing this bacterium even when growing in biofilms attached to surfaces. This work describes the complete genome sequence of this phage. Results The genome consists of a linear double-stranded DNA of 40,973 bp, with 985 bp long direct terminal repeats and a GC content of approximately 56%. There are 52 open reading frames which occupy 94.6% of the genome ranging from 137 to 3995 nucleotides. Twenty eight (46.7%) of the proteins encoded by this virus exhibit sequence similarity to coliphage T7 proteins while 34 (81.0%) are similar to proteins of Pseudomonas phage gh-1. Conclusions That this phage is closely related to Pseudomonas putida phage gh-1 and coliphage T7 places it in the "T7-like viruses" genus of the subfamily Autographivirinae within the family Podoviridae. Compared to the genome of gh-1, the sequence of ϕIBB-PF7A is longer and contains more genes with unassigned function and lacks a few potentially essential and non-essential T7 genes, such as gene1.1, 3.8, and 7.
Collapse
Affiliation(s)
- Sanna Sillankorva
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
67
|
Pleteneva EA, Shaburova OV, Sykilinda NN, Miroshnikov KA, Kadykov VA, Krylov SV, Mesyanzhinov VV, Krylov VN. Study of the diversity in a group of phages of Pseudomonas aeruginosa species PB1 (Myoviridae) and their behavior in adsorbtion-resistant bacterial mutants. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795408020051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Ceyssens PJ, Glonti T, Kropinski NM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, Tediashvili M, Merabishvili M. Phenotypic and genotypic variations within a single bacteriophage species. Virol J 2011; 8:134. [PMID: 21429206 PMCID: PMC3072928 DOI: 10.1186/1743-422x-8-134] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/23/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although horizontal gene transfer plays a pivotal role in bacteriophage evolution, many lytic phage genomes are clearly shaped by vertical evolution. We investigated the influence of minor genomic deletions and insertions on various phage-related phenotypic and serological properties. FINDINGS We collected ten different isolates of Pseudomonas aeruginosa bacteriophage ϕKMV. All sequenced genomes (42-43 kb, long direct terminal repeats) are nearly identical, which intuitively implied strongly similar infections cycles. However, their latent periods vary between 21 and 28 minutes and they are able to lyse between 5 and 58% of a collection of 107 clinical P. aeruginosa strains. We also noted that phages with identical tail structures displayed profound differences in host spectra. Moreover, point mutations in tail and spike proteins were sufficient to evade neutralization by two phage-specific antisera, isolated from rabbits. CONCLUSION Although all analyzed phages are 83-97% identical at the genome level, they display a surprisingly large variation in various phenotypic properties. The small overlap in host spectrum and their ability to readily escape immune defences against a nearly identical phage are promising elements for the application of these phages in phage therapy.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Laboratory of Gene Technology (LoGT), Katholieke Universiteit Leuven, Kasteelpark Arenberg 21 bus 2462, B-3001 Leuven, Belgium
| | - Thea Glonti
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), 3 Gotua Street, 0160 Tbilisi, Georgia
| | - ndrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, N1G 3W4, Canada
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Rob Lavigne
- Laboratory of Gene Technology (LoGT), Katholieke Universiteit Leuven, Kasteelpark Arenberg 21 bus 2462, B-3001 Leuven, Belgium
| | - Nina Chanishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), 3 Gotua Street, 0160 Tbilisi, Georgia
| | - Leonid Kulakov
- School of Biological Sciences, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Nino Lashkhi
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), 3 Gotua Street, 0160 Tbilisi, Georgia
| | - Marina Tediashvili
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), 3 Gotua Street, 0160 Tbilisi, Georgia
| | - Maya Merabishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), 3 Gotua Street, 0160 Tbilisi, Georgia
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Wound Center, Queen Astrid Military Hospital, Bruynstraat 1, 1120 Brussels, Belgium
| |
Collapse
|
69
|
Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol 2011; 90:529-39. [DOI: 10.1007/s00253-011-3104-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/22/2010] [Accepted: 12/26/2010] [Indexed: 10/18/2022]
|
70
|
Chang KC, Lin NT, Hu A, Lin YS, Chen LK, Lai MJ. Genomic analysis of bacteriophage ϕAB1, a ϕKMV-like virus infecting multidrug-resistant Acinetobacter baumannii. Genomics 2011; 97:249-55. [PMID: 21241792 DOI: 10.1016/j.ygeno.2011.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/29/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
We present the complete genomic sequence of a lytic bacteriophage ϕAB1 which can infect many clinical isolates of multidrug-resistant Acinetobacter baumannii. The recently isolated bacteriophage displays morphology resembling Podoviridae family. The ϕAB1 genome is a linear double-stranded DNA of 41,526 bp containing 46 possible open reading frames (ORFs). The majority of the predicted structural proteins were identified as part of the phage particle by mass spectrometry analysis. According to the virion morphology, overall genomic structure, and the phylogenetic tree of RNA polymerase, we propose that ϕAB1 is a new member of the ϕKMV-like phages. Additionally, we identified four ORFs encoding putative HNH endonucleases, one of which is presumed to integrate and create a genes-in-pieces DNA polymerase. Also, a potential lysis cassette was identified in the late genome. The lytic power of this bacteriophage combined with its specificity for A. baumannii makes ϕAB1 an attractive agent for therapeutic or disinfection applications.
Collapse
Affiliation(s)
- Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
Pseudomonas species and their bacteriophages have been studied intensely since the beginning of the 20th century, due to their ubiquitous nature, and medical and ecological importance. Here, we summarize recent molecular research performed on Pseudomonas phages by reviewing findings on individual phage genera. While large phage collections are stored and characterized worldwide, the limits of their genomic diversity are becoming more and more apparent. Although this article emphasizes the biological background and molecular characteristics of these phages, special attention is given to emerging studies in coevolutionary and in therapeutic settings.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, bus 2462, B-3001 Leuven, Belgium
| | | |
Collapse
|
72
|
Deschavanne P, DuBow MS, Regeard C. The use of genomic signature distance between bacteriophages and their hosts displays evolutionary relationships and phage growth cycle determination. Virol J 2010; 7:163. [PMID: 20637121 PMCID: PMC2917420 DOI: 10.1186/1743-422x-7-163] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/17/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bacteriophage classification is mainly based on morphological traits and genome characteristics combined with host information and in some cases on phage growth lifestyle. A lack of molecular tools can impede more precise studies on phylogenetic relationships or even a taxonomic classification. The use of methods to analyze genome sequences without the requirement for homology has allowed advances in classification. RESULTS Here, we proposed to use genome sequence signature to characterize bacteriophages and to compare them to their host genome signature in order to obtain host-phage relationships and information on their lifestyle. We analyze the host-phage relationships in the four most representative groups of Caudoviridae, the dsDNA group of phages. We demonstrate that the use of phage genomic signature and its comparison with that of the host allows a grouping of phages and is also able to predict the host-phage relationships (lytic vs. temperate). CONCLUSIONS We can thus condense, in relatively simple figures, this phage information dispersed over many publications.
Collapse
Affiliation(s)
- Patrick Deschavanne
- Molécules Thérapeutiques in Silico MTI, INSERM UMR-M 973, Université Paris Diderot - Paris 7, Bât Lamarck, 75205, Paris Cedex 13, France.
| | | | | |
Collapse
|
73
|
Isolation and characterization of phi AB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol 2010; 161:308-14. [PMID: 20385229 DOI: 10.1016/j.resmic.2010.03.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 01/21/2023]
Abstract
Multidrug-resistant strains of Acinetobacter baumannii (MDRAB) are increasingly being reported worldwide. Bacteriophage therapy is a potential alternative treatment for MDR bacterial infections. Although A. baumannii infection has been experimentally treated with phages, no MDRAB-specific phage has been characterized. In this study, 10 phages with differing host ranges and lysis efficacy for MDRAB were isolated; one of these, phi AB2, was further studied. Electron microscopy revealed phi AB2 to have an isometric head (60 nm), a short tail (diameter, 9 nm; length, 11 nm) and a double-stranded DNA genome--which was resistant to digestion with several restriction endonucleases--estimated to be 40 kb by pulsed-field gel electrophoresis. Partial genome sequencing of a 2.1 kb region gave sequences resembling the tubular proteins A and B of Pseudomonas aeruginosa phage LKA1. These data suggest that phi AB2 resembles phi KMV-like phages and is a new member of the Podoviridae family. It exhibited rapid adsorption (>99% adsorbed in 8 min), a short latent period (<10 min) and a large burst size (ca. 200); moreover, it was capable of infecting a wide spectrum of A. baumannii strains, causing virtually complete lysis, indicating that phi AB2 may be a good candidate as a therapeutic/disinfectant agent to control nosocomial infections caused by MDRAB.
Collapse
|
74
|
Kozlov DG, Cheperegin SE, Chestkov AV, Krylov VN, Tsygankov YD. Cloning and expression of bacteriophage FMV lysocyme gene in cells of yeasts Saccharomyces cerevisiae and Pichia pastoris. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410030063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Kulakov LA, Ksenzenko VN, Shlyapnikov MG, Kochetkov VV, Del Casale A, Allen CCR, Larkin MJ, Ceyssens PJ, Lavigne R. Genomes of "phiKMV-like viruses" of Pseudomonas aeruginosa contain localized single-strand interruptions. Virology 2009; 391:1-4. [PMID: 19592061 DOI: 10.1016/j.virol.2009.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/29/2009] [Accepted: 06/13/2009] [Indexed: 10/20/2022]
Abstract
The "phiKMV-like viruses" comprise an important genus of T7 related phages infecting Pseudomonas aeruginosa. The genomes of these bacteriophages have localized single-strand interruptions (nicks), a distinguishing genomic trait previously thought to be unique for T5 related coliphages. Analysis of this feature in the newly sequenced phage phikF77 shows all four nicks to be localized on the non-coding DNA strand. They are present with high frequencies within the phage population and are introduced into the phage DNA at late stages of the lytic cycle. The general consensus sequence in the nicks (5'-CGACxxxxxCCTAoh pCTCCGG-3') was shown to be common among all phiKMV-related phages.
Collapse
Affiliation(s)
- Leonid A Kulakov
- School of Biological Sciences, The Queen's University of Belfast, Medical Biology Centre, Belfast BT9 7BL, Northern Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Kropinski AM, Prangishvili D, Lavigne R. Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol 2009; 11:2775-7. [PMID: 19519870 DOI: 10.1111/j.1462-2920.2009.01970.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada,110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | | | | |
Collapse
|
77
|
Verma V, Harjai K, Chhibber S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr Microbiol 2009; 59:274-81. [PMID: 19484297 DOI: 10.1007/s00284-009-9430-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Characterization of bacteriophages to be used prophylactically or therapeutically is mandatory, as use of uncharacterized bacteriophages is considered as one of the major reasons of failure of phage therapy in preantibiotic era. In the present study, one lytic bacteriophage, KPO1K2, specific for Klebsiella pneumoniae B5055, with broad host range was selected for characterization. As shown by TEM, morphologically KPO1K2 possessed icosahedral head with pentagonal nature with apex to apex head diameter of about 39 nm. Presence of short noncontractile tail (10 nm) suggested its inclusion into family Podoviridae with a designation of T7-like lytic bacteriophage. The phage growth cycle with a latent period of 15 min and a burst size of approximately 140 plaque forming units per infected cell as well as a genome of 42 kbps and structural protein pattern of this bacteriophage further confirmed its T7-like characteristics. Phage was stable over a wide pH range of 4-11 and demonstrated maximum activity at 37 degrees C. After injection into mice, at 6 h, a high phage titer was seen in blood as well as in kidney and urinary bladder, though titers in kidney and urinary bladder were higher as compared to blood. Phage got cleared completely in 36 h from blood while from kidneys and urinary bladder its clearance was delayed. We propose the use of this characterized phage, KPO1K2, as a prophylactic/therapeutic agent especially for the treatment of catheter associated UTI caused by Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | | | | |
Collapse
|
78
|
Representational Difference Analysis (RDA) of bacteriophage genomes. J Microbiol Methods 2009; 77:207-13. [DOI: 10.1016/j.mimet.2009.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/29/2009] [Accepted: 02/08/2009] [Indexed: 11/21/2022]
|
79
|
Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 2009; 4:e4944. [PMID: 19300511 PMCID: PMC2654153 DOI: 10.1371/journal.pone.0004944] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/13/2009] [Indexed: 12/16/2022] Open
Abstract
We describe the small-scale, laboratory-based, production and quality control of a cocktail, consisting of exclusively lytic bacteriophages, designed for the treatment of Pseudomonas aeruginosa and Staphylococcus aureus infections in burn wound patients. Based on succesive selection rounds three bacteriophages were retained from an initial pool of 82 P. aeruginosa and 8 S. aureus bacteriophages, specific for prevalent P. aeruginosa and S. aureus strains in the Burn Centre of the Queen Astrid Military Hospital in Brussels, Belgium. This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin. Quality control included Stability (shelf life), determination of pyrogenicity, sterility and cytotoxicity, confirmation of the absence of temperate bacteriophages and transmission electron microscopy-based confirmation of the presence of the expected virion morphologic particles as well as of their specific interaction with the target bacteria. Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, φKMV and phage G1. The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee.
Collapse
Affiliation(s)
- Maya Merabishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), Tbilisi, Georgia
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Centre, Queen Astrid Military Hospital, Bruynstraat, Neder-over-Heembeek, Brussels, Belgium
- Laboratory of Bacteriology Research (LBR), Ghent University Hospital, Ghent, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Centre, Queen Astrid Military Hospital, Bruynstraat, Neder-over-Heembeek, Brussels, Belgium
- * E-mail:
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Centre, Queen Astrid Military Hospital, Bruynstraat, Neder-over-Heembeek, Brussels, Belgium
| | - Nina Chanishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), Tbilisi, Georgia
| | - Marina Tediashvili
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), Tbilisi, Georgia
| | - Nino Lashkhi
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), Tbilisi, Georgia
| | - Thea Glonti
- Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV), Tbilisi, Georgia
| | - Victor Krylov
- Laboratory of Bacteriophage Genetics, State Institute for Genetics and Selection of Industrial Microorganisms (SIGSIM), Moscow, Russia
| | - Jan Mast
- Unit Electron Microscopy, Veterinary and Agricultural Research Centre (VAR), Ukkel, Brussels, Belgium
| | - Luc Van Parys
- Section Health of the Division Well-Being (Belgian Defence Staff), Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology (LoGT), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Guido Volckaert
- Laboratory of Gene Technology (LoGT), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wesley Mattheus
- Laboratory of Gene Technology (LoGT), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gunther Verween
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Centre, Queen Astrid Military Hospital, Bruynstraat, Neder-over-Heembeek, Brussels, Belgium
| | - Peter De Corte
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Centre, Queen Astrid Military Hospital, Bruynstraat, Neder-over-Heembeek, Brussels, Belgium
| | - Thomas Rose
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Centre, Queen Astrid Military Hospital, Bruynstraat, Neder-over-Heembeek, Brussels, Belgium
| | - Serge Jennes
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Centre, Queen Astrid Military Hospital, Bruynstraat, Neder-over-Heembeek, Brussels, Belgium
| | - Martin Zizi
- Section Health of the Division Well-Being (Belgian Defence Staff), Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
- Department of Physiology (FYSP), Vrije Universiteit Brussel, Jette Brussels, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Centre, Queen Astrid Military Hospital, Bruynstraat, Neder-over-Heembeek, Brussels, Belgium
| | - Mario Vaneechoutte
- Laboratory of Bacteriology Research (LBR), Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
80
|
Roucourt B, Lecoutere E, Chibeu A, Hertveldt K, Volckaert G, Lavigne R. A procedure for systematic identification of bacteriophage-host interactions of P. aeruginosa phages. Virology 2009; 387:50-8. [PMID: 19261318 DOI: 10.1016/j.virol.2009.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/24/2008] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Immediately after bacteriophage infection, phage early proteins establish optimal conditions for phage infection, often through a direct interaction with host-cell proteins. We implemented a yeast two-hybrid approach for Pseudomonas aeruginosa phages as a first step in the analysis of these - often uncharacterized - proteins. A 24-fold redundant prey library of P. aeruginosa PAO1 (7.32x10(6) independent clones), was screened against early proteins (gp1 to 9) of phiKMV, a P. aeruginosa-infecting member of the Podoviridae; interactions were verified using an independent in vitro assay. None resembles previously known bacteriophage-host interactions, as the three identified target malate synthase G, a regulator of a secretion system and a regulator of nitrogen assimilation. Although at least two-bacteriophage infections are non-essential to phiKMV infection, their disruption has an influence on infection efficiency. This methodology allows systematic analysis of phage proteins and is applicable as an interaction analysis tool for P. aeruginosa.
Collapse
Affiliation(s)
- Bart Roucourt
- Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21 box 2462, Leuven, B-3001, Belgium.
| | | | | | | | | | | |
Collapse
|
81
|
Shaburova OV, Krylov SV, Veiko VP, Pleteneva EA, Burkal’tseva MV, Miroshnikov KA, Cornelissen A, Lavigne R, Sykilinda NN, Kadykov VA, Mesyanzhinov VV, Volckaert G, Krylov VN. Search for destruction factors of bacterial biofilms: Comparison of phage properties in a group of Pseudomonas putida bacteriophages and specificity of their halo-formation products. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409020057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
82
|
Lavigne R, Villegas A, Kropinksi AM. In silico characterization of DNA motifs with particular reference to promoters and terminators. Methods Mol Biol 2009; 502:113-129. [PMID: 19082554 DOI: 10.1007/978-1-60327-565-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Knowledge of the regulatory elements contained within bacteriophage genomes forms the basis for understanding genomic expression and organization. The in silico prediction of promoter and terminator sequences in phage genomes is a first step towards this understanding. In this chapter, a number of programs and resources to identify regulatory elements are listed and discussed. Combining the available web-resources and literature data optimizes these predictions and can thus aid in a more directed experimental identification of these regulatory elements.
Collapse
Affiliation(s)
- Rob Lavigne
- Department of Biosystems, Division of Gene Technology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
83
|
Liu X, Kong S, Shi M, Fu L, Gao Y, An C. Genomic analysis of freshwater cyanophage Pf-WMP3 Infecting cyanobacterium Phormidium foveolarum: the conserved elements for a phage. MICROBIAL ECOLOGY 2008; 56:671-80. [PMID: 18443848 DOI: 10.1007/s00248-008-9386-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 02/17/2008] [Accepted: 02/20/2008] [Indexed: 05/14/2023]
Abstract
Cyanophages are ecologically abundant, genetically diverse in aquatic environments, and affect the population and evolutionary trajectories of their hosts. After reporting the cyanophage Pf-WMP4 genome (Liu et al. in Virology 366:28-39, 2007), we hereby present a related cyanophage, Pf-WMP3, which also infects the freshwater cyanobacterium Phormidium foveolarum. The Pf-WMP3 genome contains 43,249 bp with 234 bp direct terminal repeats. The overall genome organization and core genes of the two phages are comparable to those of the T7 supergroup phages. Compared with Pf-WMP4, cyanophage Pf-WMP3 has diverged extensively at the DNA level; however, they are closely related at the protein level and genome architecture. The left arm genes for the two phages, which mainly encode the DNA replication machinery, are not conserved in the gene order. Whereas the right arm genes of the two phages coding for structural proteins show high similarity in amino acid sequences and modular architecture, indicating that they have retained similar development strategies. The differences in similarity levels between the left and right arm genes suggest that the structural genes are the most conserved elements for a phage.
Collapse
Affiliation(s)
- Xinyao Liu
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
84
|
Sillankorva S, Neubauer P, Azeredo J. Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnol 2008; 8:80. [PMID: 18954452 PMCID: PMC2582237 DOI: 10.1186/1472-6750-8-80] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 10/27/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite the proven relevance of Pseudomonas fluorescens as a spoilage microorganism in milk, fresh meats and refrigerated food products and the recognized potential of bacteriophages as sanitation agents, so far no phages specific for P. fluorescens isolates from dairy industry have been closely characterized in view of their lytic efficiency. Here we describe the isolation and characterization of a lytic phage capable to infect a variety of P. fluorescens strains isolated from Portuguese and United States dairy industries. RESULTS Several phages were isolated which showed a different host spectrum and efficiency of lysis. One of the phages, phage phiIBB-PF7A, was studied in detail due to its efficient lysis of a wide spectrum of P. fluorescens strains and ribotypes. Phage phiIBB-PF7A with a head diameter of about 63 nm and a tail size of about 13 x 8 nm belongs morphologically to the Podoviridae family and resembles a typical T7-like phage, as analyzed by transmission electron microscopy (TEM). The phage growth cycle with a detected latent period of 15 min, an eclipse period of 10 min, a burst size of 153 plaque forming units per infected cell, its genome size of approximately 42 kbp, and the size and N-terminal sequence of one of the protein bands, which gave similarity to the major capsid protein 10A, are consistent with this classification. CONCLUSION The isolated T7-like phage, phage phiIBB-PF7A, is fast and efficient in lysing different P. fluorescens strains and may be a good candidate to be used as a sanitation agent to control the prevalence of spoilage causing P. fluorescens strains in dairy and food related environments.
Collapse
Affiliation(s)
- Sanna Sillankorva
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological, Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering and Biocenter Oulu, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Peter Neubauer
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering and Biocenter Oulu, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Joana Azeredo
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological, Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| |
Collapse
|
85
|
Genomic characterization of Ralstonia solanacearum phage phiRSB1, a T7-like wide-host-range phage. J Bacteriol 2008; 191:422-7. [PMID: 18952798 DOI: 10.1128/jb.01263-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PhiRSB1 is a wide-host-range, T7-like bacteriophage that infects and efficiently lyses the phytopathogenic bacterium Ralstonia solanacearum. The phiRSB1 genome comprises 43,079 bp of double-stranded DNA (61.7% G+C) with 325-bp terminal repeats and contains 47 open reading frames. Strong activity of tandem early promoters and wide specificity of phage promoters of phiRSB1 were demonstrated.
Collapse
|
86
|
Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum. Appl Environ Microbiol 2008; 74:6970-9. [PMID: 18820072 DOI: 10.1128/aem.01088-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.
Collapse
|
87
|
The intron-containing genome of the lytic Pseudomonas phage LUZ24 resembles the temperate phage PaP3. Virology 2008; 377:233-8. [PMID: 18519145 DOI: 10.1016/j.virol.2008.04.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/16/2008] [Accepted: 04/28/2008] [Indexed: 11/22/2022]
Abstract
The virulent Pseudomonas aeruginosa bacteriophage LUZ24 (45,625 bp) was isolated from hospital sewage. It belongs to the family of the Podoviridae, and carries a bidirectionally transcribed dsDNA genome delineated by two direct terminal repeats of 184 bp. In vitro transcriptional analysis identified seven sigma(70) promoters, revealing a bias towards stronger promoter strength in the late genomic region. Reverse transcription demonstrated in vivo splicing of a 668 bp Group I intron embedded inside the DNA polymerase gene. Using mass spectrometry, nine structural proteins were identified as part of the phage particle. The lytic characteristics of LUZ24 are evaluated against its genomic content, which displays an overall 71% sequence similarity to the temperate phage PaP3.
Collapse
|
88
|
Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 2008; 159:406-14. [PMID: 18555669 DOI: 10.1016/j.resmic.2008.03.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/18/2008] [Accepted: 03/31/2008] [Indexed: 11/19/2022]
Abstract
We defined phage genera by measuring genome relationships by the numbers of shared homologous/orthologous proteins. We used BLAST-based tools (CoreExtractor.vbs and CoreGenes) to analyze 55 fully sequenced bacteriophage genomes from the NCBI and EBI databases. This approach was first applied to the T7-related phages. Using a cut-off score of 40% homologous proteins, we identified three genera within the T7-related phages, redefined the phi29-related phages, and introduced five novel genera. The T7- and phi29-related phages were given subfamily status and named "Autographivirinae" and "Picovirinae", respectively. Our results confirm and refine the ICTV phage classification, enable elimination of errors in public databases, and provide a straightforward tool for the molecular classification of new phage genomes.
Collapse
Affiliation(s)
- Rob Lavigne
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | | | | | | | | |
Collapse
|
89
|
Structural analysis of bacteriophage-encoded peptidoglycan hydrolase domain KMV36C: crystallization and preliminary X-ray diffraction. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:263-5. [PMID: 18391422 DOI: 10.1107/s1744309108004569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/15/2008] [Indexed: 11/11/2022]
Abstract
The C-terminus of gp36 of bacteriophage varphiKMV (KMV36C) functions as a particle-associated muramidase, presumably as part of the injection needle of the phiKMV genome during infection. Crystals of KMV36C were obtained by hanging-drop vapour diffusion and diffracted to a resolution of 1.6 A. The crystals belong to the cubic space group P432, with unit-cell parameters a = b = c = 102.52 A. KMV36C shows 30% sequence identity to T4 lysozyme (PDB code 1l56).
Collapse
|
90
|
Complete genomic sequence of bacteriophage phiEcoM-GJ1, a novel phage that has myovirus morphology and a podovirus-like RNA polymerase. Appl Environ Microbiol 2007; 74:516-25. [PMID: 18039824 DOI: 10.1128/aem.00990-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The complete genome of phiEcoM-GJ1, a lytic phage that attacks porcine enterotoxigenic Escherichia coli of serotype O149:H10:F4, was sequenced and analyzed. The morphology of the phage and the identity of the structural proteins were also determined. The genome consisted of 52,975 bp with a G+C content of 44% and was terminally redundant and circularly permuted. Seventy-five potential open reading frames (ORFs) were identified and annotated, but only 29 possessed homologs. The proteins of five ORFs showed homology with proteins of phages of the family Myoviridae, nine with proteins of phages of the family Podoviridae, and six with proteins of phages of the family Siphoviridae. ORF 1 encoded a T7-like single-subunit RNA polymerase and was preceded by a putative E. coli sigma(70)-like promoter. Nine putative phage promoters were detected throughout the genome. The genome included a tRNA gene of 95 bp that had a putative 18-bp intron. The phage morphology was typical of phages of the family Myoviridae, with an icosahedral head, a neck, and a long contractile tail with tail fibers. The analysis shows that phiEcoM-GJ1 is unique, having the morphology of the Myoviridae, a gene for RNA polymerase, which is characteristic of phages of the T7 group of the Podoviridae, and several genes that encode proteins with homology to proteins of phages of the family Siphoviridae.
Collapse
|
91
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
92
|
Merabishvili M, Verhelst R, Glonti T, Chanishvili N, Krylov V, Cuvelier C, Tediashvili M, Vaneechoutte M. Digitized fluorescent RFLP analysis (fRFLP) as a universal method for comparing genomes of culturable dsDNA viruses: application to bacteriophages. Res Microbiol 2007; 158:572-81. [PMID: 17719750 DOI: 10.1016/j.resmic.2007.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/19/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
Identification and classification of bacteriophages remains a cumbersome process even with the use of genotypic approaches, due to the lack of genes present in all phages. Restriction fragment length polymorphism analysis (RFLP) of the viral genome is a universal approach, but RFLP fingerprints obtained on agarose gels remain difficult to compare between laboratories. Here we describe the digitization of RFLP of viral genomes by amplification of all restriction fragments - after ligation of adapters - using primers complementary to the adapters only. Since one of the primers is fluorescently labelled, the restriction fragments become visible to a fluorescent capillary electrophoresis system (ABI310) and their lengths can be digitized immediately. The digitized fluorescent RFLP (fRFLP) fingerprint can be stored as an entry in a library. Dendrogram construction of the fRFLP fingerprints obtained for a total of 69 Caudovirales (tailed bacteriophages) showed that genomically and/or serologically closely related phages clustered, whereas host range was not completely in correspondence with genotype. fRFLP might be a tool for quickly establishing the relationship of newly isolated phages to previously isolated ones and for constructing an fRFLP library electronically accessible on the internet, to which fRFLP patterns of new phages can be compared.
Collapse
Affiliation(s)
- Maia Merabishvili
- George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Roucourt B, Chibeu A, Lecoutere E, Lavigne R, Volckaert G, Hertveldt K. Homotypic interactions among bacteriophage phiKMV early proteins. Arch Virol 2007; 152:1467-75. [PMID: 17534690 DOI: 10.1007/s00705-007-0967-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 03/07/2007] [Indexed: 11/26/2022]
Abstract
Little is known about the bacteriophage proteins expressed immediately after infection of the host cell. Most of these early proteins are probably involved in bacteriophage-host interactions redirecting the bacterial metabolism to phage production. Interaction analysis of the first 16 phiKMV gene products (gp) identified homotypic interactions of gp7, gp9 and gp15. Two related yeast two-hybrid procedures, a matrix and a minilibrary approach, were applied to detect protein-protein interactions. A two-step selection procedure enabled drastic reduction of the background. Interactions were confirmed by drop tests. Multimerization of gp15 is consistent with its putative function as a DNA helicase involved in DNA replication. Homotypic interaction of gp7 and gp9 suggests they function as dimers or multimers. The absence of heterotypic interactions among early phiKMV proteins hints at their functional independence from other early phage proteins and their involvement in phage-host interactions that are important for creating optimal conditions for phage propagation. Besides, these results demonstrate the compatibility of phiKMV early gene products with the yeast two-hybrid system. Therefore, they are promising candidates to screen for interactions with host proteins.
Collapse
Affiliation(s)
- B Roucourt
- Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
94
|
Liu X, Shi M, Kong S, Gao Y, An C. Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: complete genome sequence and DNA translocation. Virology 2007; 366:28-39. [PMID: 17499329 DOI: 10.1016/j.virol.2007.04.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 04/05/2007] [Accepted: 04/10/2007] [Indexed: 11/27/2022]
Abstract
We report the complete 40,938-bp genome sequence of a cyanophage, Pf-WMP4, which infects the freshwater cyanobacterium Phormidium foveolarum Gom. Nine of the forty-five potential open reading frames in the Pf-WMP4 genome share similarities with the genes found in T7-like phages. Using in vitro transcription, we found that seven promoters at the leftmost end of the genome can be recognized by the host RNA polymerase. By blocking transcriptional and translational inhibitors, we found that Pf-WMP4 DNA translocation, with an average translocation rate of 19.8+/-2.7 bp s(-1) at 28 degrees C, requires both host transcription and protein synthesis of an unknown factor. Therefore the mechanism of cyanophage Pf-WMP4 DNA injection may be driven both by a T7-like internalization mechanism as well as an additional unknown mechanism requiring de novo protein synthesis. Our analysis of the Pf-WMP4 genome sheds new light on the translocation strategies and evolutionary traces of phages belonging to the T7 supergroup.
Collapse
Affiliation(s)
- Xinyao Liu
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, PR China.
| | | | | | | | | |
Collapse
|
95
|
Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the phiKMV subgroup within the T7 supergroup. J Bacteriol 2006; 188:6924-31. [PMID: 16980495 PMCID: PMC1595506 DOI: 10.1128/jb.00831-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic Pseudomonas aeruginosa phages LKD16 and LKA1 were locally isolated and morphologically classified as Podoviridae. While LKD16 adsorbs weakly to its host, LKA1 shows efficient adsorption (ka = 3.9 x 10(-9) ml min(-1)). LKA1, however, displays a narrow host range on clinical P. aeruginosa strains compared to LKD16. Genome analysis of LKD16 (43,200 bp) and LKA1 (41,593 bp) revealed that both phages have linear double-stranded DNA genomes with direct terminal repeats of 428 and 298 bp and encode 54 and 56 genes, respectively. The majority of the predicted structural proteins were experimentally confirmed as part of the phage particle using mass spectrometry. Phage LKD16 is closely related to bacteriophage phiKMV (83% overall DNA homology), allowing a more thoughtful gene annotation of both genomes. In contrast, LKA1 is more distantly related, lacking significant DNA homology and showing protein similarity to phiKMV in 48% of its gene products. The early region of the LKA1 genome has diverged strongly from phiKMV and LKD16, and intriguing differences in tail fiber genes of LKD16 and LKA1 likely reflect the observed discrepancy in infection-related properties. Nonetheless, general genome organization is clearly conserved among phiKMV, LKD16, and LKA1. The three phages carry a single-subunit RNA polymerase gene adjacent to the structural genome region, a feature which distinguishes them from other members of the T7 supergroup. Therefore, we propose that phiKMV represents an independent and widespread group of lytic P. aeruginosa phages within the T7 supergroup.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Division of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven B-3001, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Tan Y, Zhang K, Rao X, Jin X, Huang J, Zhu J, Chen Z, Hu X, Shen X, Wang L, Hu F. Whole genome sequencing of a novel temperate bacteriophage ofP. aeruginosa: evidence of tRNA gene mediating integration of the phage genome into the host bacterial chromosome. Cell Microbiol 2006; 9:479-91. [PMID: 16965514 DOI: 10.1111/j.1462-5822.2006.00804.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Whole genome sequencing of a novel Pseudomonas aeruginosa temperate bacteriophage PaP3 has been completed. The genome contains 45 503 bp with GC content of 52.1%, without more than 100 bp sequence hitting homologue in all sequenced phage genomes. A total of 256 open reading frames (ORFs) are found in the genome, and 71 ORFs are predicated as coding sequence (CDS). All 71 CDS are divided into the two opposite direction groups, and both groups meet at the bidirectional terminator site locating the near middle of the genome. The genome is dsDNA with 5'-protruded cohesive ends and cohesive sequence is 'GCCGGCCCCTTTCCGCGTTA' (20 mer). There are four tRNA genes (tRNA(Asn), tRNA(Asp), tRNA(Tyr) and tRNA(Pro)) clustering at the 5'-terminal of the genome. Analysis of integration site of PaP3 in the host bacterial genome confirmed that the core sequence of (GGTCGTAGGTTCGAATCCTAC-21mer) locates at tRNA(Pro) gene within the attP region and at tRNA(Lys) gene in the attB region. The results indicated that 3'-end of tRNA(Pro) gene of the PaP3 genome is involved in the integration reaction and 5'-end of tRNA(Lys) gene of host bacteria genome is hot spot of the integration.
Collapse
Affiliation(s)
- Yinling Tan
- Department of Microbiology, The Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Lavigne R, Noben JP, Hertveldt K, Ceyssens PJ, Briers Y, Dumont D, Roucourt B, Krylov VN, Mesyanzhinov VV, Robben J, Volckaert G. The structural proteome of Pseudomonas aeruginosa bacteriophage phiKMV. MICROBIOLOGY-SGM 2006; 152:529-534. [PMID: 16436440 DOI: 10.1099/mic.0.28431-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structural proteome of phiKMV, a lytic bacteriophage infecting Pseudomonas aeruginosa, was analysed using two approaches. In one approach, structural proteins of the phage were fractionated by SDS-PAGE for identification by liquid chromatography-mass spectrometry (LC-MS). In a second approach, a whole-phage shotgun analysis (WSA) was applied. WSA uses trypsin digestion of whole phage particles, followed by reversed-phase HPLC and gas-phase fractionation of the complex peptide mixture prior to MS. The results yield a comprehensive view of structure-related proteins in phiKMV and suggest subtle structural differences from phage T7.
Collapse
Affiliation(s)
- Rob Lavigne
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute, Limburgs Universitair Centrum and School of Life Sciences, University Hasselt, Diepenbeek, B-3590, Belgium
| | - Kirsten Hertveldt
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | - Yves Briers
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | - Debora Dumont
- Biomedical Research Institute, Limburgs Universitair Centrum and School of Life Sciences, University Hasselt, Diepenbeek, B-3590, Belgium
| | - Bart Roucourt
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | - Victor N Krylov
- State Institute for Genetics and Selection of Industrial Micro-organisms, 1st Dorozhnii proezd 1, Moscow, 113545 Russia
| | - Vadim V Mesyanzhinov
- Howard Hughes Medical Institute; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Street 16/10, Moscow, 117991 Russia
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | - Johan Robben
- Biomedical Research Institute, Limburgs Universitair Centrum and School of Life Sciences, University Hasselt, Diepenbeek, B-3590, Belgium
| | - Guido Volckaert
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| |
Collapse
|
98
|
Kwan T, Liu J, Dubow M, Gros P, Pelletier J. Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol 2006; 188:1184-7. [PMID: 16428425 PMCID: PMC1347338 DOI: 10.1128/jb.188.3.1184-1187.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genomic analysis of 18 P. aeruginosa phages, including nine newly sequenced DNA genomes, indicates a tremendous reservoir of proteome diversity, with 55% of open reading frames (ORFs) being novel. Comparative sequence analysis and ORF map organization revealed that most of the phages analyzed displayed little relationship to each other.
Collapse
Affiliation(s)
- Tony Kwan
- McIntyre Medical Sciences Building, Room 810, 3655 Promenade Sir William Osler, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
99
|
Miroshnikov KA, Faizullina NM, Sykilinda NN, Mesyanzhinov VV. Properties of the endolytic transglycosylase encoded by gene 144 of Pseudomonas aeruginosa bacteriophage phiKZ. BIOCHEMISTRY (MOSCOW) 2006; 71:300-5. [PMID: 16545067 DOI: 10.1134/s0006297906030102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteriophage endolysins degrading bacterial cell walls are prospective enzymes for therapy of bacterial infections. The genome of the giant bacteriophage phiKZ of Pseudomonas aeruginosa encodes two endolysins, gene products (g.p.) 144 and 181, which are homologous to lytic transglycosylases. Gene 144 encoding a 260 amino acid residue protein was cloned into the plasmid expression vector. Recombinant g.p. 144 purified from Escherichia coli effectively degrades chloroform-treated P. aeruginosa cell walls. The protein has predominantly alpha-helical conformation and exists in solution in stoichiometric monomer : dimer : trimer equilibrium. Antibodies against the protein bind the phage particle. This demonstrates that g.p. 144 is a structural component of the phiKZ particle, presumably, a phage tail.
Collapse
Affiliation(s)
- K A Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.
| | | | | | | |
Collapse
|
100
|
Krylov VN, Miller S, Rachel R, Biebl M, Pleteneva EA, Schuetz M, Krylov SV, Shaburova OV. Ambivalent bacteriophages of different species active on Escherichia coli K12 and Salmonella sp. strains. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406020025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|