51
|
Wang G, Chen L, Yu B, Zellmer L, Xu N, Liao DJ. Learning about the Importance of Mutation Prevention from Curable Cancers and Benign Tumors. J Cancer 2016; 7:436-45. [PMID: 26918057 PMCID: PMC4749364 DOI: 10.7150/jca.13832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023] Open
Abstract
Some cancers can be cured by chemotherapy or radiotherapy, presumably because they are derived from those cell types that not only can die easily but also have already been equipped with mobility and adaptability, which would later allow the cancers to metastasize without the acquisition of additional mutations. From a viewpoint of biological dispersal, invasive and metastatic cells may, among other possibilities, have been initial losers in the competition for resources with other cancer cells in the same primary tumor and thus have had to look for new habitats in order to survive. If this is really the case, manipulation of their ecosystems, such as by slightly ameliorating their hardship, may prevent metastasis. Since new mutations may occur, especially during and after therapy, to drive progression of cancer cells to metastasis and therapy-resistance, preventing new mutations from occurring should be a key principle for the development of new anticancer drugs. Such new drugs should be able to kill cancer cells very quickly without leaving the surviving cells enough time to develop new mutations and select resistant or metastatic clones. This principle questions the traditional use and the future development of genotoxic drugs for cancer therapy.
Collapse
Affiliation(s)
- Gangshi Wang
- 1. Department of Geriatric Gastroenterology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lichan Chen
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Baofa Yu
- 3. Beijing Baofa Cancer Hospital, Shahe Wangzhuang Gong Ye Yuan, Chang Pin Qu, Beijing 102206, P.R. China
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P.R. China
| | - D Joshua Liao
- 5. D. Joshua Liao, Clinical Research Center, Guizhou Medical University Hospital, Guizhou, Guiyang 550004, P.R. China
| |
Collapse
|
52
|
Clawson GA, Matters GL, Xin P, Imamura-Kawasawa Y, Du Z, Thiboutot DM, Helm KF, Neves RI, Abraham T. Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS One 2015; 10:e0134320. [PMID: 26267609 PMCID: PMC4534457 DOI: 10.1371/journal.pone.0134320] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 06/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background While the morbidity and mortality from cancer are largely attributable to its metastatic dissemination, the integral features of the cascade are not well understood. The widely accepted hypothesis is that the primary tumor microenvironment induces the epithelial-to-mesenchymal transition in cancer cells, facilitating their escape into the bloodstream, possibly accompanied by cancer stem cells. An alternative theory for metastasis involves fusion of macrophages with tumor cells (MTFs). Here we culture and characterize apparent MTFs from blood of melanoma patients. Methods We isolated enriched CTC populations from peripheral blood samples from melanoma patients, and cultured them. We interrogated these cultured cells for characteristic BRAF mutations, and used confocal microscopy for immunophenotyping, motility, DNA content and chromatin texture analyses, and then conducted xenograft studies using nude mice. Findings Morphologically, the cultured MTFs were generally large with many pseudopod extensions and lamellipodia. Ultrastructurally, the cultured MTFs appeared to be macrophages. They were rich in mitochondria and lysosomes, as well as apparent melanosomes. The cultured MTF populations were all heterogeneous with regard to DNA content, containing aneuploid and/or high-ploidy cells, and they typically showed large sheets (and/or clumps) of cytoplasmic chromatin. This cytoplasmic DNA was found within heterogeneously-sized autophagic vacuoles, which prominently contained chromatin and micronuclei. Cultured MTFs uniformly expressed pan-macrophage markers (CD14, CD68) and macrophage markers indicative of M2 polarization (CD163, CD204, CD206). They also expressed melanocyte-specific markers (ALCAM, MLANA), epithelial biomarkers (KRT, EpCAM), as well as the pro-carcinogenic cytokine MIF along with functionally related stem cell markers (CXCR4, CD44). MTF cultures from individual patients (5 of 8) contained melanoma-specific BRAF activating mutations. Chromatin texture analysis of deconvoluted images showed condensed DNA (DAPI-intense) regions similar to focal regions described in stem cell fusions. MTFs were readily apparent in vivo in all human melanomas examined, often exhibiting even higher DNA content than the cultured MTFs. When cultured MTFs were transplanted subcutaneously in nude mice, they disseminated and produced metastatic lesions at distant sites. Conclusions and Hypothesis Apparent MTFs are present in peripheral blood of patients with cutaneous melanomas, and they possess the ability to form metastatic lesions when transplanted into mice. We hypothesize that these MTFs arise at the periphery of primary tumors in vivo, that they readily enter the bloodstream and invade distant tissues, secreting cytokines (such as MIF) to prepare “niches” for colonization by metastasis initiating cells.
Collapse
Affiliation(s)
- Gary A. Clawson
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Gail L. Matters
- Department of Biochemistry & Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Ping Xin
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Yuka Imamura-Kawasawa
- Department of Pharmacology and the Institute for Personalized Medicine, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Zhen Du
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Diane M. Thiboutot
- Department of Dermatology, Division of Health Science Research, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Klaus F. Helm
- Department of Dermatopathology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Rogerio I. Neves
- Department of Surgery and the Melanoma Center, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Thomas Abraham
- Department of Neural and Behavioral Science and the Microscopy Imaging Facility, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| |
Collapse
|
53
|
Noubissi FK, Harkness T, Alexander CM, Ogle BM. Apoptosis-induced cancer cell fusion: a mechanism of breast cancer metastasis. FASEB J 2015; 29:4036-45. [PMID: 26085132 DOI: 10.1096/fj.15-271098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
Although cancer cell fusion has been suggested as a mechanism of cancer metastasis, the underlying mechanisms defining this process are poorly understood. In a recent study, apoptotic cells were newly identified as a type of cue that induces signaling via phosphatidylserine receptors to promote fusion of myoblasts. The microenvironment of breast tumors is often hypoxic, and because apoptosis is greatly increased in hypoxic conditions, we decided to investigate whether the mechanism of breast cancer cell fusion with mesenchymal stem/multipotent stromal cells (MSCs) involves apoptosis. We used a powerful tool for identification and tracking of hybrids based on bimolecular fluorescence complementation (BiFC) and found that breast cancer cells fused spontaneously with MSCs. This fusion was significantly enhanced with hypoxia and signaling associated with apoptotic cells, especially between nonmetastatic breast cancer cells and MSCs. In addition, the hybrids showed a significantly higher migratory capacity than did the parent cells. Taken together, these findings describe a mechanism by which hypoxia-induced apoptosis stimulates fusion between MSCs and breast tumor cells resulting in hybrids with an enhanced migratory capacity that may enable their dissemination to distant sites or metastases. In the long run, this study may provide new strategies for developing novel drugs for preventing cancer metastasis.
Collapse
Affiliation(s)
- Felicite K Noubissi
- *Department of Biomedical Engineering, Stem Cell Institute, Lillehei Heart Institute, Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA; and Department of Biomedical Engineering and Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ty Harkness
- *Department of Biomedical Engineering, Stem Cell Institute, Lillehei Heart Institute, Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA; and Department of Biomedical Engineering and Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caroline M Alexander
- *Department of Biomedical Engineering, Stem Cell Institute, Lillehei Heart Institute, Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA; and Department of Biomedical Engineering and Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brenda M Ogle
- *Department of Biomedical Engineering, Stem Cell Institute, Lillehei Heart Institute, Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA; and Department of Biomedical Engineering and Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
54
|
Tsai YM, Chong IW, Hung JY, Chang WA, Kuo PL, Tsai MJ, Hsu YL. Syringetin suppresses osteoclastogenesis mediated by osteoblasts in human lung adenocarcinoma. Oncol Rep 2015; 34:617-26. [PMID: 26044862 DOI: 10.3892/or.2015.4028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/04/2015] [Indexed: 11/05/2022] Open
Abstract
Bone metastasis in lung cancer results in an unfavorable outcome for patients by not only impairing the quality of life, yet also increasing the cancer-related death rates. In the present study, we discuss a novel treatment strategy that may benefit these patients. Human CD14+ monocytes treated with macrophage-colony stimulating factor (M-CSF)/receptor activator of nuclear factor κB ligand (RANKL) differentiated into osteoclasts, whereas syringetin (SGN), a flavonoid derivative found in both grapes and wine, suppressed the osteoclastogenesis in vitro in a dose-dependent manner. In addition, SGN inhibited osteoclast formation induced by human lung adenocarcinoma A549 and CL1-5 cells. The associated signaling transduction pathway in osteoclastogenesis and SGN inhibition was found to be via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. Blocking AKT and mTOR by respective inhibitors significantly decreased lung adenocarcinoma-mediated osteoclastogenesis. Moreover, SGN regulated the lung adenocarcinoma-mediated interaction between osteoblasts and osteoclasts by suppressing the stimulatory effect of lung adenocarcinoma on M-CSF and RANKL production in osteoblasts, and reversing the inhibitory effect of the lung adenocarcinoma on OPG production in osteoblasts. The present study has two novel findings. It is the first to illustrate lung adenocarcinoma-mediated interaction between osteoblasts and osteoclasts, leading to osteolytic bone metastasis. It also reveals that SGN, a flavonoid derivative, directly inhibits osteoclastogenesis and reverses lung adenocarcinoma-mediated osteoclastogenesis. In conclusion, the present study suggests that SGN, a natural compound, prevents and treats bone metastasis in patients with lung cancer.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Ju Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
55
|
Sun C, Cui H, Yang H, DU X, Yue L, Liu J, Lin YU. Anti-metastatic effect of jolkinolide B and the mechanism of activity in breast cancer MDA-MB-231 cells. Oncol Lett 2015; 10:1117-1122. [PMID: 26622636 DOI: 10.3892/ol.2015.3310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
Tumor metastasis is the main cause of mortality in cancer patients. However, no effective therapies are currently available to prevent metastasis. Cell adhesion to the extracellular matrix (ECM) is crucial in cancer progression and metastasis. Thus, suppression of cell adhesion may be an effective therapeutic strategy for the prevention of metastasis. In the present study, the anti-adhesion and anti-invasion effects of jolkinolide B, a diterpenoid compound from Euphorbia fischeriana Steud, that were exerted through suppression of β1-integrin expression and phosphorylation of focal adhesion kinase (FAK) were examined in human breast cancer MDA-MB-231 cells. Jolkinolide B inhibited the adhesion of MDA-MB-231 cells to fibronectin but not to poly-L-lysine. In addition, jolkinolide B inhibited extracellular signal-regulated kinase (ERK) phosphorylation. U0126, an ERK inhibitor, also suppressed the invasion and adhesion of MDA-MB-231 cells. Overall, the present data demonstrated that jolkinolide B is a novel inhibitor of FAK-mediated signaling pathways that is involved in decreasing cell adhesion and invasion. Mitogen-activated protein kinase/ERK kinase may play a critical role in these effects, indicating that jolkinolide B possesses therapeutic potential for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Chao Sun
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongxia Cui
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongyan Yang
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xiaohui DU
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liling Yue
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Jicheng Liu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Y U Lin
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
56
|
Wang H, Zhuo Y, Hu X, Shen W, Zhang Y, Chu T. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis. Biochem Biophys Res Commun 2015; 458:268-73. [DOI: 10.1016/j.bbrc.2015.01.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 12/28/2022]
|
57
|
Rijckaert B, Neffe AT, Roch T, Gebauer T, Pierce BF, Görs J, Smink JJ, Gossen M, Lendlein A, Leutz A. A High Content Screening Assay for Evaluation of Biomaterial-Mediated Cell Fusion Processes. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/masy.201400147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bart Rijckaert
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Berlin-Brandenburg Center for Regenerative Therapies; Föhrer Str 15 13353 Berlin Germany
- Institute of Biochemistry and Biology; University of Potsdam; 14476 Potsdam-Golm Germany
| | - Axel T. Neffe
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Institute of Chemistry; University of Potsdam; 14476 Potsdam-Golm Germany
| | - Toralf Roch
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
| | - Tim Gebauer
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Institute of Chemistry; University of Potsdam; 14476 Potsdam-Golm Germany
| | - Benjamin F. Pierce
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Berlin-Brandenburg Center for Regenerative Therapies; Föhrer Str 15 13353 Berlin Germany
| | - Julia Görs
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Berlin-Brandenburg Center for Regenerative Therapies; Föhrer Str 15 13353 Berlin Germany
- Institute of Biochemistry and Biology; University of Potsdam; 14476 Potsdam-Golm Germany
| | - Jeske J. Smink
- Berlin-Brandenburg Center for Regenerative Therapies; Föhrer Str 15 13353 Berlin Germany
- Max-Delbrueck-Center for Molecular Medicine; 13125 Berlin Germany
| | - Manfred Gossen
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Berlin-Brandenburg Center for Regenerative Therapies; Föhrer Str 15 13353 Berlin Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Berlin-Brandenburg Center for Regenerative Therapies; Föhrer Str 15 13353 Berlin Germany
- Institute of Biochemistry and Biology; University of Potsdam; 14476 Potsdam-Golm Germany
- Institute of Chemistry; University of Potsdam; 14476 Potsdam-Golm Germany
| | - Achim Leutz
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Berlin-Brandenburg Center for Regenerative Therapies; Föhrer Str 15 13353 Berlin Germany
- Max-Delbrueck-Center for Molecular Medicine; 13125 Berlin Germany
- Humboldt-University Berlin; Institute for Biology; Berlin Germany
| |
Collapse
|
58
|
Identification of novel Kirrel3 gene splice variants in adult human skeletal muscle. BMC PHYSIOLOGY 2014; 14:11. [PMID: 25488023 PMCID: PMC4269076 DOI: 10.1186/s12899-014-0011-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 11/19/2014] [Indexed: 01/08/2023]
Abstract
Background Multiple cell types including trophoblasts, osteoclasts and myoblasts require somatic cell fusion events as part of their physiological functions. In Drosophila Melanogaster the paralogus type 1 transmembrane receptors and members of the immunoglobulin superfamily Kin of Irre (Kirre) and roughest (Rst) regulate myoblast fusion during embryonic development. Present within the human genome are three homologs to Kirre termed Kin of Irre like (Kirrel) 1, 2 and 3. Currently it is unknown if Kirrel3 is expressed in adult human skeletal muscle. Results We investigated (using PCR and Western blot) Kirrel3 in adult human skeletal muscle samples taken at rest and after mild exercise induced muscle damage. Kirrel3 mRNA expression was verified by sequencing and protein presence via blotting with 2 different anti-Kirrel3 protein antibodies. Evidence for three alternatively spliced Kirrel3 mRNA transcripts in adult human skeletal muscle was obtained. Kirrel3 mRNA in adult human skeletal muscle was detected at low or moderate levels, or not at all. This sporadic expression suggests that Kirrel3 is expressed in a pulsatile manner. Several anti Kirrel3 immunoreactive proteins were detected in all adult human skeletal muscle samples analysed and results suggest the presence of different isoforms or posttranslational modification, or both. Conclusion The results presented here demonstrate for the first time that there are at least 3 splice variants of Kirrel3 expressed in adult human skeletal muscle, two of which have never previously been identified in human muscle. Importantly, mRNA of all splice variants was not always present, a finding with potential physiological relevance. These initial discoveries highlight the need for more molecular and functional studies to understand the role of Kirrel3 in human skeletal muscle.
Collapse
|
59
|
Song X, Zhong H, Zhou J, Hu X, Zhou Y, Ye Y, Lu X, Wang J, Ying B, Wang L. Association between polymorphisms of microRNA-binding sites in integrin genes and gastric cancer in Chinese Han population. Tumour Biol 2014; 36:2785-92. [PMID: 25472585 DOI: 10.1007/s13277-014-2903-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023] Open
Abstract
Highly elevated expression of integrin has been observed in a variety of malignant tumors. Single nucleotide polymorphisms (SNPs) in the microRNA-binding sites in the 3' UTR region of target genes may result in the level change of target gene expression and subsequently susceptible to diseases, including cancer. In this study, we aimed to investigate the association between polymorphisms of microRNA-binding sites of integrin genes and gastric cancer (GC) in Chinese Han population. Five SNPs of the microRNA-binding sites in the 3' UTR region of integrin genes (rs1062484 C/T in ITGA3, rs17664 A/G in ITGA6, rs3809865 A/T in ITGB3, rs743554 C/T in ITGB4, and rs2675 A/C in ITGB5) were studied using high resolution melting (HRM) analysis in 1000 GC patients and 1000 unrelated controls. The polymorphism of SNP rs2675 was associated with susceptibility of GC [odds ratio (OR) = 0.52, 95% confidence interval (CI) = 0.28-0.97, P = 0.028]. In addition, genotype AA of rs2675 and genotype GG of rs17664 were associated with a lower chance of GC at stage 1b [OR = 0.39 (0.18-0.85), P = 0.009; and OR = 0.37 (0.17-0.78), P = 0.004, respectively]; also, the frequency of allele G of rs17664 was associated with a lower chance of stage 1b tumor [OR = 0.50 (0.26-0.95), P = 0.021]. Furthermore, the frequency of genotype AA and allele A of rs3809865 were associated with a higher risk of stage 4 GC [OR = 1.85 (1.11-3.09), P = 0.012; and OR = 1.52 (0.99-2.33), P = 0.043, respectively]. For rs17664, GG genotype and allele G appeared to be associated with a higher risk with GC with lymphatic metastasis 3b [OR = 1.76 (1.00-3.11), P = 0.036; and OR = 1.64 (0.98-2.75), P = 0.048, respectively]. Our data suggest that polymorphisms of the microRNA-binding sites in the 3' UTR region of integrin are associated with GC susceptibility (rs2675), tumor stage (rs2675, rs17664, and rs3809865), and lymphatic metastasis (rs17664) in Chinese Han population.
Collapse
Affiliation(s)
- Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China, 610041
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Shenoy AK, Lu J. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett 2014; 380:534-544. [PMID: 25449784 DOI: 10.1016/j.canlet.2014.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics.
Collapse
Affiliation(s)
- Anitha K Shenoy
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| |
Collapse
|
61
|
Luddy KA, Robertson-Tessi M, Tafreshi NK, Soliman H, Morse DL. The role of toll-like receptors in colorectal cancer progression: evidence for epithelial to leucocytic transition. Front Immunol 2014; 5:429. [PMID: 25368611 PMCID: PMC4202790 DOI: 10.3389/fimmu.2014.00429] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023] Open
Abstract
Toll-like receptors (TLRs) are expressed by immune cells, intestinal epithelium, and tumor cells. In the homeostatic setting, they help to regulate control over invading pathogens and maintain the epithelial lining of the large and small intestines. Aberrant expression of certain TLRs by tumor cells can induce growth inhibition while others contribute to tumorigenesis and progression. Activation of these TLRs can induce inflammation, tumor cell proliferation, immune evasion, local invasion, and distant metastasis. These TLR-influenced behaviors have similarities with properties observed in leukocytes, suggesting that tumors may be hijacking immune programs to become more aggressive. The concept of epithelial to leucocytic-transition (ELT) is proposed, akin to epithelial to mesenchymal transition, in which tumors develop the ability to activate leucocytic traits otherwise inaccessible to epithelial cells. Understanding the mechanisms of ELT could lead to novel therapeutic strategies for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Kimberly A Luddy
- Department of Cancer Imaging and Metabolism, Imaging and Technology Center of Excellence, H. Lee Moffitt Cancer Center , Tampa, FL , USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center , Tampa, FL , USA
| | - Narges K Tafreshi
- Department of Cancer Imaging and Metabolism, Imaging and Technology Center of Excellence, H. Lee Moffitt Cancer Center , Tampa, FL , USA
| | - Hatem Soliman
- Don and Erika Wallace Comprehensive Breast Program, Center for Women's Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL , USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, Imaging and Technology Center of Excellence, H. Lee Moffitt Cancer Center , Tampa, FL , USA
| |
Collapse
|
62
|
Li G, Kikuchi K, Radka M, Abraham J, Rubin BP, Keller C. IL-4 receptor blockade abrogates satellite cell: rhabdomyosarcoma fusion and prevents tumor establishment. Stem Cells 2014; 31:2304-12. [PMID: 23897781 DOI: 10.1002/stem.1491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 06/26/2013] [Accepted: 07/07/2013] [Indexed: 11/07/2022]
Abstract
Tumor cells of the muscle-related cancer alveolar rhabdomyosarcoma (aRMS) have dysregulated terminal myogenic differentiation that is characterized by continuous proliferation, decreased capacity to express markers of terminal differentiation, and inability of tumor cells to fuse to one another in the manner seen for normal myoblasts. Whether aRMS tumor cells can fuse with normal myogenic progenitors such as skeletal muscle stem cells (satellite cells) or myoblasts is unknown, as is the biological effect of fusion events if the phenomenon occurs. To study this possibility, we isolated primary satellite cells harboring a lacZ Cre-LoxP reporter gene for coculture with murine aRMS primary tumor cells expressing Cre. Results of in vitro and in vivo experiments demonstrated tumor cell-muscle cell progenitor fusion events as well as accelerated rates of tumor establishment and progression when satellite cells and derived muscle progenitors were coinjected with tumor cells in an orthotopic allograft model. Interleukin 4 receptor (IL-4R) blocking antibody treatment reversed fusion events in vitro and blocked tumor initiation and progression in vivo. Taken together, this study supports a potential role of tumor cell-host cell fusion and the strong therapeutic potential of IL-4R blockade to prevent the establishment of RMS tumors at new anatomical sites.
Collapse
Affiliation(s)
- Guangheng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
Cancer stem cells (CSCs) have been identified in a growing list of malignancies and are believed to be responsible for cancer initiation, metastasis and relapse following certain therapies, even though they may only represent a small fraction of the cells in a given cancer. Like somatic stem cells and embryonic stem cells, CSCs are capable of self-renewal and differentiation into more mature, less tumorigenic cells that make up the bulk populations of cancer cells. Elimination of CSCs promises intriguing therapeutic potential and this concept has been adopted in preclinical drug discovery programs. Herein we will discuss the progress of these efforts, general considerations in practice, major challenges and possible solutions.
Collapse
|
64
|
Seyfried TN, Flores R, Poff AM, D'Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 2014; 356:289-300. [PMID: 25069036 DOI: 10.1016/j.canlet.2014.07.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023]
Abstract
Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.
Collapse
Affiliation(s)
| | | | - Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | | |
Collapse
|
65
|
Caretti V, Sewing ACP, Lagerweij T, Schellen P, Bugiani M, Jansen MHA, van Vuurden DG, Navis AC, Horsman I, Vandertop WP, Noske DP, Wesseling P, Kaspers GJL, Nazarian J, Vogel H, Hulleman E, Monje M, Wurdinger T. Human pontine glioma cells can induce murine tumors. Acta Neuropathol 2014; 127:897-909. [PMID: 24777482 DOI: 10.1007/s00401-014-1272-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/07/2014] [Accepted: 03/20/2014] [Indexed: 01/12/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG), with a median survival of only 9 months, is the leading cause of pediatric brain cancer mortality. Dearth of tumor tissue for research has limited progress in this disease until recently. New experimental models for DIPG research are now emerging. To develop preclinical models of DIPG, two different methods were adopted: cells obtained at autopsy (1) were directly xenografted orthotopically into the pons of immunodeficient mice without an intervening cell culture step or (2) were first cultured in vitro and, upon successful expansion, injected in vivo. Both strategies resulted in pontine tumors histopathologically similar to the original human DIPG tumors. However, following the direct transplantation method all tumors proved to be composed of murine and not of human cells. This is in contrast to the indirect method that included initial in vitro culture and resulted in xenografts comprising human cells. Of note, direct injection of cells obtained postmortem from the pons and frontal lobe of human brains not affected by cancer did not give rise to neoplasms. The murine pontine tumors exhibited an immunophenotype similar to human DIPG, but were also positive for microglia/macrophage markers, such as CD45, CD68 and CD11b. Serial orthotopic injection of these murine cells results in lethal tumors in recipient mice. Direct injection of human DIPG cells in vivo can give rise to malignant murine tumors. This represents an important caveat for xenotransplantation models of DIPG. In contrast, an initial in vitro culture step can allow establishment of human orthotopic xenografts. The mechanism underlying this phenomenon observed with direct xenotransplantation remains an open question.
Collapse
Affiliation(s)
- Viola Caretti
- Departments of Neurology, Neurosurgery and Pediatrics, Stanford University School of Medicine, Stanford, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Shabo I, Olsson H, Elkarim R, Sun XF, Svanvik J. Macrophage Infiltration in Tumor Stroma is Related to Tumor Cell Expression of CD163 in Colorectal Cancer. CANCER MICROENVIRONMENT 2014; 7:61-9. [PMID: 24771466 DOI: 10.1007/s12307-014-0145-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
The scavenger receptor, CD163, is a macrophage-specific marker. Recent studies have shown that CD163 expression in breast and rectal cancer cells is associated with poor prognosis. This study was conducted to evaluate the relationship between CD163 expression as a macrophage trait in cancer cells, and macrophage infiltration and its clinical significance in colorectal cancer. Immunostaining of CD163 and macrophage infiltration were evaluated in paraffin-embedded specimens, earlier analyzed for CD31, D2-40 and S-phase fraction, from primary tumors and normal colorectal mucosa of 75 patients with colorectal carcinoma. The outcomes were analyzed in relation to clinical-pathological data. CD163 expression was positive in cancer cells in 20 % of colorectal cancer patients and was related to advanced tumor stages (P = 0.008) and unfavorable prognosis (p = 0.001). High macrophage infiltration was related to shorter survival and positive CD163 expression in tumor cells. The prognostic impact of macrophage infiltration was independent of tumor stage and CD163 expression in cancer cells (p = 0.034). The expression of macrophage phenotype in colorectal cancer cells is associated with macrophage density in tumor stroma and lower survival rates. Macrophage infiltration has an independent prognostic impact on mortality in colorectal cancer. In accordance with previous experimental studies, these findings provide new insights into the role of macrophages in colorectal cancer.
Collapse
Affiliation(s)
- Ivan Shabo
- Department of surgery, County Council of Östergötland, Linköping, Sweden,
| | | | | | | | | |
Collapse
|
67
|
Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TKH, Tang T. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene 2014; 538:217-27. [DOI: 10.1016/j.gene.2013.12.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/27/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
|
68
|
Senchukova M, Kiselevsky MV. The "cavitary" type of angiogenesis by gastric cancer. Morphological characteristics and prognostic value. J Cancer 2014; 5:311-9. [PMID: 24723973 PMCID: PMC3982177 DOI: 10.7150/jca.8716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/02/2014] [Indexed: 02/05/2023] Open
Abstract
The “cavitary” type of angiogenesis in patients with gastric cancer (GC) is described for the first time. Material and methods: The samples of tumour and adjacent gastric mucosa (GM) in 73 patients with GC who had undergone radical surgery were being studied. The sections were stained with hematoxylin and eosin (H&E) and immunohistochemically (IGH) using antibodies to CD34. Results: А new type of vessel formation consists of the appearance of cavitary structures (CS) in tumours and the adjacent GM, which are then lined by endothelial cells and merged into the blood vessels of the organ. We believe that the CS can be formed by means: 1) of the abruption of layers of epithelial cells (both normal and tumoral) from their underlying foundation and their desquamation into the lumen of the “obliterated” gastric glands (GG); 2) of the dilatation of the GG and thinning of their walls; 3) of the formation of “cavity” directly in the lamina propria of GM or in the tumoral stroma. It was noted that only the presence of multiple “cavitary” vessels (CV) of type-1 had been associated with the decrease of 3-year overall survival (OR=15,0, 95%CI=2,96-76,31) and relapse-free survival (OR=14,93, 95%CI=4,34-51,38). We also observed the improvement of the long-term outcomes in patients with GC having received antibacterial therapy (AT) before surgery that can be associated with its influence on the formation of CV type-1. Conclusion: The described new type of angiogenesis is of great clinical importance.
Collapse
Affiliation(s)
| | - Mikhail V Kiselevsky
- 2. Institute of Experimental Diagnostics and Therapy of Tumors, Russian Oncological Scientific Center named after N.N.Blokhin, Moscow, Russia
| |
Collapse
|
69
|
Grossi AB, Hyttel P, Jensen HE, Leifsson PS. Porcine Melanotic Cutaneous Lesions and Lymph Nodes. Vet Pathol 2014; 52:83-91. [DOI: 10.1177/0300985814521637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Porcine melanomas have proven interesting in a wider biological perspective due to a common phenomenon of spontaneous regression, which is characterized by infiltration of macrophages, among others. Separation of neoplastic melanocytes from pigment-laden macrophages may, however, be challenging as the morphology of melanocytes varies considerably and sometimes resembles macrophages. The aim of this study was correspondingly to characterize and differentiate the cells in 20 porcine melanocytomas and regional lymph nodes by histologic examination and immunohistochemistry for melan A, PNL2, S100, lysozyme, alpha-1-antitrypsin, and ionized calcium binding adaptor molecule 1 (Iba1). Grossly, the melanocytomas were divided into 2 distinct types: pigmented maculae ( n = 7) and raised tumors ( n = 13). In the maculae, the pigmented cells were mainly melanocytes reactive for melan A, PNL2 and S100. In contrast, the majority of the cells in the raised tumors were melanophages, which expressed Iba1, alpha-1-antitrypsin, and lysozyme. Yet, cells histomorphologically indistinguishable from the melanophages expressed melan A and PNL2. These cells were Iba1 and S100 negative, and ultrastructurally, they were devoid of lysosomal bodies and filled with stage III and IV melanosomes. In the regional lymph nodes, melanocytes were present in the trabecular sinuses. In focally or diffusely black lymph nodes, pigmentation was, however, mainly due to aggregates of melanophages, which were confined to the trabeculae, deep cortex, and peripheral lymphoreticular tissue. Normal and neoplastic porcine melanocytes express melan A and PNL2, and immunohistochemical staining for melan A, PNL2, and Iba1 was found useful to identify and distinguish melanocytes and melanophages in porcine melanotic lesions.
Collapse
Affiliation(s)
- A. B. Grossi
- Department of Veterinary Disease Biology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P. Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H. E. Jensen
- Department of Veterinary Disease Biology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P. S. Leifsson
- Department of Veterinary Disease Biology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Lee N, Barthel SR, Schatton T. Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? J Transl Med 2014; 94:13-30. [PMID: 24126889 PMCID: PMC3941309 DOI: 10.1038/labinvest.2013.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Collapse
Affiliation(s)
- Nayoung Lee
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven R. Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Transplantation Research Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA,To whom correspondence should be addressed: Tobias Schatton, Pharm.D., Ph.D., Department of Dermatology, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| |
Collapse
|
71
|
Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 2013; 35:515-27. [PMID: 24343361 PMCID: PMC3941741 DOI: 10.1093/carcin/bgt480] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual’s unique physiology.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA and
| | | | | | | |
Collapse
|
72
|
Gao D, Li S. Biological resonance for cancer metastasis, a new hypothesis based on comparisons between primary cancers and metastases. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2013; 6:213-30. [PMID: 24214411 PMCID: PMC3855372 DOI: 10.1007/s12307-013-0138-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022]
Abstract
Many hypotheses have been proposed to try to explain cancer metastasis. However, they seem to be contradictory and have some limitations. Comparisons of primary tumors and matched metastases provide new insight into metastasis. The results show high concordances and minor differences at multiple scales from organic level to molecular level. The concordances reflect the commonality between primary cancer and metastasis, and also mean that metastatic cancer cells derived from primary cancer are quite conservative in distant sites. The differences reflect variation that cancer cells must acquire new traits to adapt to foreign milieu during the course of evolving into a new tumor in second organs. These comparisons also provided new information on understanding mechanism of vascular metastasis, organ-specific metastasis, and tumor dormancy. The collective results suggest a new hypothesis, biological resonance (bio-resonance) model. The hypothesis has two aspects. One is that primary cancer and matched metastasis have a common progenitor. The other is that both ancestors of primary cancer cells and metastatic cancer cells are under similar microenvironments and receive similar or same signals. When their interactions reach a status similar to primary cancer, metastasis will occur. Compared with previous hypotheses, the bio-resonance hypothesis seems to be more applicable for cancer metastasis to explain how, when and where metastasis occurs. Thus, it has important implications for individual prediction, prevention and treatment of cancer metastasis.
Collapse
Affiliation(s)
- Dongwei Gao
- 536 Hospital of PLA, 29# Xiadu street, Xining, 810007, Qinghai Province, People's Republic of China,
| | | |
Collapse
|
73
|
Upregulation of alpha and beta integrin subunits in metastatic macrophage-melanoma fusion hybrids. Melanoma Res 2013; 19:343-9. [PMID: 22760065 DOI: 10.1097/cmr.0b013e32832fe121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fusion of cancer cells with migratory bone-marrow-derived cells such as macrophages can produce cancer cells with increased metastatic potential. To study this, we fused mouse macrophages with weakly metastatic mouse melanoma cells and generated a panel of hybrid clones. About half of these showed increased metastatic potential in mice. These hybrids expressed traits and molecules that were known indicators of tumor progression in melanoma (chemotaxis toward fibronectin, melanogenesis, autophagy, cMet, MCR1, SPARC, cell surface LAMP-1, GnT-V and β1,6-branched oligosaccharides). Here, we investigated integrin subunit expression in selected hybrids. Integrins, especially those that are substrates for the glycosyltransferase GnT-V and carriers of β1,6-branched oligosaccharides, play an important role in cell migration. We report increased expression of the integrin subunits α3, α5, α6, αv, β1, and β3 in metastatic hybrids compared with parental melanoma cells and a weakly metastatic hybrid. Notably, each of these subunits is also a substrate for GnT-V. Integrin subunit expression was further increased by inducers of cyclic AMP. Expression of these integrin subunits is a characteristic of macrophages and also associated with progression in melanoma and other cancers. In summary, our studies of macrophage-melanoma hybrids show that several α and β integrin subunits are upregulated in the metastatic lines. This adds further support for the theory that generation of a metastatic phenotype may be initiated through a single event: fusion of migratory bone marrow-derived cells with cancer cells.
Collapse
|
74
|
Durcan PJ, Al-Shanti N, Stewart CE. Identification and characterization of novel Kirrel isoform during myogenesis. Physiol Rep 2013; 1:e00044. [PMID: 24303129 PMCID: PMC3835000 DOI: 10.1002/phy2.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022] Open
Abstract
Somatic cell fusion is an essential component of skeletal muscle development and growth and repair from injury. Additional cell types such as trophoblasts and osteoclasts also require somatic cell fusion events to perform their physiological functions. Currently we have rudimentary knowledge on molecular mechanisms regulating somatic cell fusion events in mammals. We therefore investigated during in vitro murine myogenesis a mammalian homolog, Kirrel, of the Drosophila Melanogaster genes Roughest (Rst) and Kin of Irre (Kirre) which regulate somatic muscle cell fusion during embryonic development. Our results demonstrate the presence of a novel murine Kirrel isoform containing a truncated cytoplasmic domain which we term Kirrel B. Protein expression levels of Kirrel B are inverse to the occurrence of cell fusion events during in vitro myogenesis which is in stark contrast to the expression profile of Rst and Kirre during myogenesis in Drosophila. Furthermore, chemical inhibition of cell fusion confirmed the inverse expression pattern of Kirrel B protein levels in relation to cell fusion events. The discovery of a novel Kirrel B protein isoform during myogenesis highlights the need for more thorough investigation of the similarities and potential differences between fly and mammals with regards to the muscle cell fusion process.
Collapse
Affiliation(s)
- Peter J Durcan
- Department of Physiological Sciences, Stellenbosch University Merriman avenue, Stellenbosch, 7600, Western Cape, South Africa ; Institute for Biomedical Research into Human movement, School of Healthcare Science, Manchester Metropolitan University Oxford road, M1 5GD, Manchester, U.K
| | | | | |
Collapse
|
75
|
Mehta RS, Liman AD, Passero VA, Liman AK. Lung cancer with gastrointestinal metastasis - review of theories of metastasis with three rare case descriptions. CANCER MICROENVIRONMENT 2013; 6:203-11. [PMID: 23963996 DOI: 10.1007/s12307-013-0135-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/08/2013] [Indexed: 12/27/2022]
Abstract
Approximately 1 in 14 men and women during their lifetime will be diagnosed with lung cancer, which is the leading cause of cancer-related mortality in the world. As of January 1, 2008, there were about 373,500 men and women living with lung cancer in the United States. Fewer than 60,000 of these are estimated to be alive by January 2013, reflecting a poor overall 5-year relative survival rate of under 16 %. With metastatic cancer, the overall 5-year survival is meager 4 %. On the other hand, the overall five-year survival is over 50 % when the cancer is still in the localized stage. However, unfortunately, more than half of cases of lung cancer are diagnosed at an advanced stage Howlader et al. (2010). Cancer metastasis, the single most critical prognostic factor, is still poorly understood and a highly complex phenomenon. The most common sites of lung cancer metastasis are the lymph nodes, liver, adrenals, brain and bones. The gastrointestinal (GI) tract is an exceptionally rare site of metastasis; with only a handful of cases reported in the literature Centeno et al. (Lung Cancer, 18: 101-105, 1997); Hirasaki et al. (World J Gastroenterol, 14: 5481-5483, 2008); Carr and Boulos (Br J Surg, 83: 647, 1996); Otera et al. (Eur Respir Rev, 19: 248-252, 2010); Antler et al. (Cancer, 49: 170-172, 1982); Fujiwara et al. (Gen Thorac Cardiovasc Surg, 59: 748-752, 2011); Stinchcombe et al. (J Clin Oncol, 24: 4939-4940, 2006); John et al. (J Postgrad Med, 48: 199-200, 2002); Carroll and Rajesh (Eur J Cardiothorac Surg, 19: 719-720, 2001); Brown et al. (Dis Colon Rectum, 23: 343-345, 1980). We report three cases of non-small cell (squamous cell) lung cancer with GI tract metastasis-two in the colon and one in the jejunum. Then we present a review of literature exploring various theories of metastasis, as an attempt to understand the reason of preferential tumor metastasis.
Collapse
|
76
|
Ma J, Cai W, Zhang Y, Huang C, Zhang H, Liu J, Tang K, Xu P, Katirai F, Zhang J, He W, Ye D, Shen GX, Huang B. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β₂ to tumor cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:3453-61. [PMID: 23956429 DOI: 10.4049/jimmunol.1300171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanisms by which tumor cells metastasize to distant organs still remain enigmatic. Immune cells have been assumed to be the root of metastasis by their fusing with tumor cells. This fusion theory, although interpreting tumor metastasis analogically and intriguingly, is arguable to date. We show in this study an alternative explanation by immune cell-derived microparticles (MPs). Upon stimulation by PMA or tumor cell-derived supernatants, immune cells released membrane-based MPs, which were taken up by H22 tumor cells, leading to tumor cell migration in vitro and metastasis in vivo. The underlying molecular basis was involved in integrin α(M)β₂ (CD11b/CD18), which could be effectively relayed from stimulated innate immune cells to MPs, then to tumor cells. Blocking either CD11b or CD18 led to significant decreases in MP-mediated tumor cell metastasis. This MP-mediated transfer of immune phenotype to tumor cells might also occur in vivo. These findings suggest that tumor cells may usurp innate immune cell phenotypes via MP pathway for their metastasis, providing new insight into tumor metastatic mechanism.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Lazova R, Laberge GS, Duvall E, Spoelstra N, Klump V, Sznol M, Cooper D, Spritz RA, Chang JT, Pawelek JM. A Melanoma Brain Metastasis with a Donor-Patient Hybrid Genome following Bone Marrow Transplantation: First Evidence for Fusion in Human Cancer. PLoS One 2013; 8:e66731. [PMID: 23840523 PMCID: PMC3694119 DOI: 10.1371/journal.pone.0066731] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022] Open
Abstract
Background Tumor cell fusion with motile bone marrow-derived cells (BMDCs) has long been posited as a mechanism for cancer metastasis. While there is much support for this from cell culture and animal studies, it has yet to be confirmed in human cancer, as tumor and marrow-derived cells from the same patient cannot be easily distinguished genetically. Methods We carried out genotyping of a metastatic melanoma to the brain that arose following allogeneic bone-marrow transplantation (BMT), using forensic short tandem repeat (STR) length-polymorphisms to distinguish donor and patient genomes. Tumor cells were isolated free of leucocytes by laser microdissection, and tumor and pre-transplant blood lymphocyte DNAs were analyzed for donor and patient alleles at 14 autosomal STR loci and the sex chromosomes. Results All alleles in the donor and patient pre-BMT lymphocytes were found in tumor cells. The alleles showed disproportionate relative abundances in similar patterns throughout the tumor, indicating the tumor was initiated by a clonal fusion event. Conclusions Our results strongly support fusion between a BMDC and a tumor cell playing a role in the origin of this metastasis. Depending on the frequency of such events, the findings could have important implications for understanding the generation of metastases, including the origins of tumor initiating cells and the cancer epigenome.
Collapse
Affiliation(s)
- Rossitza Lazova
- Deptartment of Dermatology, Yale School of Medicine, New Haven, Connecticut, United States of America ; The Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Yuan H, Hsiao YH, Zhang Y, Wang J, Yin C, Shen R, Su Y. Destructive impact of T-lymphocytes, NK and Mast cells on basal cell layers: implications for tumor invasion. BMC Cancer 2013; 13:258. [PMID: 23705594 PMCID: PMC3722065 DOI: 10.1186/1471-2407-13-258] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/14/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Our previous studies have suggested that the primary impact of immune cell infiltration into the normal or pre-invasive tissue component is associated with the physical destruction of epithelial capsules, which may promote tumor progression and invasion. Our current study attempted to further verify our previous observations and determine the primary type(s) of infiltrating immune cells and the possible mechanism associated with physical destructions of the epithelial capsules. METHODS In total, the study was conducted with 250 primary breast and prostate tumors, the primary immune cell of cytotoxic T-lymphocytes (CTL), Natural killer cells (NK) and Mast cells were analyzed by immunohistochemistry, fluorescent labeling and apoptosis assay. qRT-PCR was used for gene expression analysis. Our current study assessed the physical disruption of these immune cells and potential impact on the epithelial capsule of human breast and prostate tumors. RESULTS Our study yield several clinically-relevant findings that have not been studied before. (1) A vast majority of these infiltrating immune cells are distributed in the normal-appearing or pre-invasive tissue components rather than in invasive cancer tissues. (2) These cells often form rings or semilunar structures that either surround focally-disrupted basal cell layers or physically attach to the basal cells. (3) Basal cells physically associated with these immune cells generally displayed distinct signs of degeneration, including substantially elevated apoptosis, necrosis, and reduced tumor suppressor p63 expression. In contrast, luminal cells overlying focally disrupted basal cell layers had a substantially increased proliferation rate and elevated expression of stem cell markers compared to their adjacent morphologically similar counterparts that overlie a non-disrupted capsule. CONCLUSION Our findings suggest that at the early stage of tumor invasion, CTL, NK and Mast cells are the main types of tumor infiltrating immune cells involved in focal degenerative products in the tumor capsules. The primary impact of these infiltrating immune cells is that they are associated with focal disruptions of the tumor capsule, which selectively favor tumor stem cells proliferation and invasion.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology, the Affiliated Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
79
|
Spontaneous cell fusion of acute leukemia cells and macrophages observed in cells with leukemic potential. Neoplasia 2013; 14:1057-66. [PMID: 23226099 DOI: 10.1593/neo.12736] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/15/2012] [Accepted: 09/19/2012] [Indexed: 12/21/2022] Open
Abstract
Cell fusion plays a well-recognized physiological role during development, while its function during progression is still unclear. Here, we show that acute myeloid leukemia (AML) cells spontaneously fused with murine host cells in vivo. AML cells fused in most cases with mouse macrophages. Other targets of AML cell fusion were dendritic and endothelial cells. Cytogenetic and molecular analysis revealed that successive recipients conserved detectable amounts of parental DNA. Moreover, in a mouse AML1-ETO model where female AML1-ETO-leukemic cells, expressing CD45.2, were injected in congenic CD45.1 male mice AML cells, we found hybrid cells expressing both allelic types of CD45 and XXY set of sexual chromosomes. More importantly, the fusion protein AML1-ETO was transferred in the hybrid cells. When sorted hybrid cells were reinjected in a secondary recipient, they gave rise to leukemia with 100% penetrance and similar time of onset of leukemic cells. Our data indicate that in vivo fusion of cancer cells with host cells may be a mechanism of gene transfer for cancer dissemination and suggest that fused cells may be used to identify still unrecognized leukemogenic genes that are conserved in hybrid cells and able to perpetuate leukemia in vivo.
Collapse
|
80
|
Matters GL, Clawson GA. A Speculative Role for Stromal Gastrin Signaling in Development and Dissemination of Pancreatic Ductal Adenocarcinoma. ACTA ACUST UNITED AC 2013; Suppl 4:003. [PMID: 25346875 PMCID: PMC4208305 DOI: 10.4172/2165-7092.s4-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The peptide growth factor gastrin and its receptor, the G-protein coupled cholecystokinin receptor type B (CCKBR), play an integral role in the growth and progression of pancreatic ductal adenocarcinoma (PDAC). Gastrin immunoreactivity is found in the fetal pancreas but its expression is not detected in normal pancreas after birth, except when it is re-expressed in malignant lesions.
Collapse
Affiliation(s)
- Gail L Matters
- Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA
| | - Gary A Clawson
- Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA ; Gittlen Cancer Research Foundation and Departments of Pathology, Biochemistry and Molecular Biology, USA
| |
Collapse
|
81
|
Fibrillar type I collagen matrices enhance metastasis/invasion of ovarian epithelial cancer via β1 integrin and PTEN signals. Int J Gynecol Cancer 2013; 22:1316-24. [PMID: 23013730 DOI: 10.1097/igc.0b013e318263ef34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study investigated the involvement of fibrillar collagen in remodeling extracellular matrices (ECM) and its significant impact on the metastasis/invasion of epithelial ovarian cancer cells via β1 integrin/phosphatase and tensin homolog (PTEN) signaling. MATERIALS/METHODS Normal ovarian surface epithelium tissues (n = 13), ovarian cancer tissues (n = 28), ovarian cancer cell lines, and a 3-dimensional model of fibrillar type I collagen that mimicked pathological ECM in vivo were used in the study. We explored the specific mechanisms behind ECM remodeling and the cellular signals that affected the invasion of ovarian cancer cells. RESULTS The data showed that increased β1 integrin expression in ovarian cancer cells led to enhance migration/invasion of ovarian cancer cells via regulation of PTEN/protein kinase B (Akt) signal in response to fibrillar type I collagen matrices. Low PTEN activity corresponded to the following: (1) increased PTEN degradation and (2) phosphorylation of PTEN. Decreased protein phosphatase 2A activity was detected in ovarian cancer. Protein phosphatase 2A might play a role in enhancing the progression of ovarian cancer through regulating PTEN/Akt signal. CONCLUSION These findings indicate that fibrillar type I collagen, by modulating integrin-PTEN/PI3K/Akt signaling pathway in remodeling ECM, is very important in affecting the invasion of aggressive ovarian cancer cells. Moreover, these data provide direct evidence for pathological ECM remodeling and cell signaling networks involved in the invasion of ovarian cancer cells.
Collapse
|
82
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
83
|
Yu QM, Yu CD, Ling ZQ. Elevated circulating CD19+ lymphocytes predict survival advantage in patients with gastric cancer. Asian Pac J Cancer Prev 2013; 13:2219-24. [PMID: 22901197 DOI: 10.7314/apjcp.2012.13.5.2219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circulating lymphocyte subsets reflect the immunological status and might therefore be a prognostic indicator in cancer patients. Our aim was to evaluate the clinical significance of circulating lymphocyte subset in gastric cancer (GC) cases. METHODS A retrospective study on a prevalent cohort of 846 GC patients hospitalized at Hospital from Aug 2006 to Jul 2010 was conducted. We calculated the patient's disease free survival (DFS) after first hospital admission, and hazard ratios (HR) from the Cox proportional hazards model. RESULTS Our findings indicated a significantly decreased percentage of CD3+, and CD8+ cells, a significantly increased proportion of CD4+, CD19+, CD44+, CD25+, NK cells, and an increased CD4+/CD8+ ratio in GC patients as compared with healthy controls (all P<0.05). Alteration of lymphocyte subsets was positively correlated with sex, age, smoking, tumor stage and distant metastasis of GC patients (all P<0.05). Follow-up analysis indicated significantly higher DFS for patients with high circulating CD19+ lymphocytes compared to those with low CD19+ lymphocytes (P=0.037), with CD19+ showing an important cutoff of 7.91± 2.98%. CONCLUSION Circulating lymphocyte subsets in GC patients are significantly changed, and elevated CD19+ cells may predict a favorable survival.
Collapse
Affiliation(s)
- Qi-Ming Yu
- Zhejiang Cancer Research Institute, Hangzhou, China
| | | | | |
Collapse
|
84
|
Man YG, Stojadinovic A, Mason J, Avital I, Bilchik A, Bruecher B, Protic M, Nissan A, Izadjoo M, Zhang X, Jewett A. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J Cancer 2013; 4:84-95. [PMID: 23386907 PMCID: PMC3564249 DOI: 10.7150/jca.5482] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022] Open
Abstract
It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.
Collapse
Affiliation(s)
- Yan-gao Man
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Alexander Stojadinovic
- 3. Surgical Oncology, Walter Reed National Military Medical Center, and Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey Mason
- 4. Veterans Affair Medical Center, Washington, DC, USA
| | - Itzhak Avital
- 5. Bon Secours National Cancer Institute (BSNCI), Richmond VA, USA
| | - Anton Bilchik
- 6. John Wayne Cancer Institute; California Oncology Research Institute; and, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | - Mladjan Protic
- 8. Clinic of Abdominal, Endocrine, and Transplantation Surgery, Clinical Center of Vojvodina, University of Novi Sad - Medical Faculty, Novi Sad, Serbia
| | - Aviram Nissan
- 9. The Surgical Oncology Laboratory, Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Mina Izadjoo
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
| | - Xichen Zhang
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Anahid Jewett
- 10. Division of Oral Biology and Medicine, Jonsson Comprehensive Cancer Center, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
85
|
Abstract
Metastasis involves the spread of cancer cells from the primary tumor to surrounding tissues and to distant organs and is the primary cause of cancer morbidity and mortality. In order to complete the metastatic cascade, cancer cells must detach from the primary tumor, intravasate into the circulatory and lymphatic systems, evade immune attack, extravasate at distant capillary beds, and invade and proliferate in distant organs. Currently, several hypotheses have been advanced to explain the origin of cancer metastasis. These involve an epithelial mesenchymal transition, an accumulation of mutations in stem cells, a macrophage facilitation process, and a macrophage origin involving either transformation or fusion hybridization with neoplastic cells. Many of the properties of metastatic cancer cells are also seen in normal macrophages. A macrophage origin of metastasis can also explain the long-standing "seed and soil" hypothesis and the absence of metastasis in plant cancers. The view of metastasis as a macrophage metabolic disease can provide novel insight for therapeutic management.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | | |
Collapse
|
86
|
Jiang B, Mason J, Jewett A, Liu ML, Chen W, Qian J, Ding Y, Ding S, Ni M, Zhang X, Man YG. Tumor-infiltrating immune cells: triggers for tumor capsule disruption and tumor progression? Int J Med Sci 2013; 10:475-97. [PMID: 23532368 PMCID: PMC3607233 DOI: 10.7150/ijms.5798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our previous studies of human breast and prostate cancer have shown that aberrant immune cell infiltration is associated with focal tumor capsule disruption and tumor cell budding that facilitate invasion and metastasis. Our current study attempted to determine whether aberrant immune cell infiltration would have similar impact on colorectal cancer (CRC). MATERIALS AND METHODS Tissue sections from 100 patients with primary CRC were assessed for the frequencies of focal basement membrane (BM) disruption, muscularis mucosa (MM) fragmentation, and tumor cell dissemination in epithelial structures adjacent and distal to infiltrating lymphoid aggregates using a panel of biomarkers and quantitative digital imaging. RESULTS Our study revealed: (1) epithelial structures adjacent to lymphoid follicles or aggregates had a significantly higher (p<0.001) frequency of focally disrupted BM, dissociated epithelial cells in the stroma, disseminated epithelial cells within lymphatic ducts or blood vessels, and fragmented MM than their distal counterparts, (2) a majority of dissociated epithelial cells within the stroma or vascular structures were immediately subjacent to or physically associated with infiltrating immune cells, (3) the junctions of pre-invasive and invasive lesions were almost exclusively located at sites adjacent to lymphoid follicles or aggregates, (4) infiltrating immune cells were preferentially associated with epithelial capsules that show distinct degenerative alterations, and (5) infiltrating immune cells appeared to facilitate tumor stem cell proliferation, budding, and dissemination. CONCLUSIONS Aberrant immune cell infiltration may have the same destructive impact on the capsule of all epithelium-derived tumors. This, in turn, may selectively favor the proliferation of tumor stem or progenitor cells overlying these focal disruptions. These proliferating epithelial tumor cells subsequently disseminate from the focal disruption leading to tumor invasion and metastasis.
Collapse
Affiliation(s)
- Bin Jiang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine TCM, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Mercapide J, Anzanello F, Rappa G, Lorico A. Relationship between tumor cell invasiveness and polyploidization. PLoS One 2012; 7:e53364. [PMID: 23300919 PMCID: PMC3534062 DOI: 10.1371/journal.pone.0053364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
A number of studies have shown that tumor cells fuse with other tumor and non-tumor cells. In the present study on tumor cell lines derived from glioblastoma, breast cancer, and melanoma, we estimated the frequency of fusion between tumor cells by establishing the fraction of cells with whole tumor-genome duplication in each cell line. Together with this, the capacity of the tumor cell lines to spread through a basement membrane scaffold was assessed, in order to test the hypothesis that pericellular proteolysis by enzymatic release in the spaces of intercellular contact could account for differences in the fusogenicity of tumor cells. The difference in invasiveness between the cell lines accounted for their specific amount of cells with tumor-genome duplication, which, depending on the cell line analyzed, ranged from 2% to 25% of the total cells. These results support the hypothesis that cell-to-cell invasion eliciting membrane fusion causes polyploidization in tumor cells.
Collapse
Affiliation(s)
- Javier Mercapide
- Cancer Research Center, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Fabio Anzanello
- Cancer Research Center, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Germana Rappa
- Cancer Research Center, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Aurelio Lorico
- Cancer Research Center, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
- * E-mail:
| |
Collapse
|
88
|
Kushchayev SV, Kushchayeva YS, Wiener PC, Scheck AC, Badie B, Preul MC. Monocyte-derived cells of the brain and malignant gliomas: the double face of Janus. World Neurosurg 2012. [PMID: 23178919 DOI: 10.1016/j.wneu.2012.11.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Monocyte-derived cells of the brain (MDCB) are a diverse group of functional immune cells that are also highly abundant in gliomas. There is growing evidence that MDCB play essential roles in the pathogenesis of gliomas. The aim of this review was to collate and systematize contemporary knowledge about these cells as they relate to glioma progression and antiglioblastoma therapeutic modalities with a view toward improved effectiveness of therapy. METHODS We reviewed relevant studies to construct a summary of different MDCB subpopulations in steady state and in malignant gliomas and discuss their role in the development of malignant gliomas and potential future therapies. RESULTS Current studies suggest that MDCB subsets display different phenotypes and differentiation potentials depending on their milieu in the brain and exposure to tumoral influences. MDCB possess specific and unique functions, including those that are protumoral and those that are antitumoral. CONCLUSIONS Elucidating the role of mononuclear-derived cells associated with gliomas is crucial in designing novel immunotherapy strategies. Much progress is needed to characterize markers to identify cell subsets and their specific regulatory roles. Investigation of MDCB can be clinically relevant. Specific MDCB populations potentially can be used for glioma therapy as a target or as cell vehicles that might deliver cytotoxic substances or processes to the glioma microenvironment.
Collapse
Affiliation(s)
- Sergiy V Kushchayev
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Yevgeniya S Kushchayeva
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Department of Surgery, Medstar Washington Hospital Center, Washington, DC, USA
| | - Philip C Wiener
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Adrienne C Scheck
- Neuro-oncology Research Laboratory, Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Mark C Preul
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
89
|
Wu J, Ji X, Zhu L, Jiang Q, Wen Z, Xu S, Shao W, Cai J, Du Q, Zhu Y, Mao J. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells. Cancer Lett 2012; 329:155-63. [PMID: 23142292 DOI: 10.1016/j.canlet.2012.10.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/25/2012] [Accepted: 10/27/2012] [Indexed: 02/07/2023]
Abstract
Abnormal cytokinesis increases the possibility of nuclear fusion in tumor cells. However, the role of microRNAs (miRNAs) in abnormal cytokinesis is unclear. Here, we found that miR-1290 was significantly up-regulated in clinical colon cancer tissues. Up-regulation of miR-1290 postponed cytokinesis and led to the formation of multinucleated cells. KIF13B was a target of miR-1290 that was involved in aberrant cytokinesis. Furthermore, enforced expression of miR-1290 activated the Wnt pathway and increased the reprogramming-related transcript factors c-Myc and Nanog. Our results suggest that up-regulation of miR-1290 in colon cancer cells impaired cytokinesis and affected reprogramming.
Collapse
Affiliation(s)
- Jia Wu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Park JK, Jang SJ, Kang SW, Park S, Hwang SG, Kim WJ, Kang JH, Um HD. Establishment of animal model for the analysis of cancer cell metastasis during radiotherapy. Radiat Oncol 2012; 7:153. [PMID: 22963683 PMCID: PMC3493326 DOI: 10.1186/1748-717x-7-153] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/04/2012] [Indexed: 12/23/2022] Open
Abstract
Background Γ-Ionizing radiation (IR) therapy is one of major therapeutic tools in cancer treatment. Nevertheless, γ-IR therapy failed due to occurrence of metastasis, which constitutes a significant obstacle in cancer treatment. The main aim of this investigation was to construct animal model which present metastasis during radiotherapy in a mouse system in vivo and establishes the molecular mechanisms involved. Materials and methods The C6L transfectant cell line expressing firefly luciferase (fLuc) was treated with γ-IR, followed by immunoblotting, zymography and invasion assay in vitro. We additionally employed the C6L transfectant cell line to construct xenografts in nude mice, which were irradiated with γ-IR. Irradiated xenograft-containing mice were analyzed via survival curves, measurement of tumor size, and bioluminescence imaging in vivo and ex vivo. Metastatic lesions in organs of mice were further assessed using RT-PCR, H & E staining and immunohistochemistry. Results γ-IR treatment of C6L cells induced epithelial-mesenchymal transition (EMT) and increased cell invasion. In irradiated xenograft-containing mice, tumor sizes were decreased dramatically and survival rates extended. Almost all non-irradiated xenograft-containing control mice had died within 4 weeks. However, we also observed luminescence signals in about 22.5% of γ-IR-treated mice. Intestines or lungs of mice displaying luminescence signals contained several lesions, which expressed the fLuc gene and presented histological features of cancer tissues as well as expression of EMT markers. Conclusions These findings collectively indicate that occurrences of metastases during γ-IR treatment accompanied induction of EMT markers, including increased MMP activity. Establishment of a murine metastasis model during γ-IR treatment should aid in drug development against cancer metastasis and increase our understanding of the mechanisms underlying the metastatic process.
Collapse
Affiliation(s)
- Jong Kuk Park
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, 215-4, Gongneung-Dong, Nowon-Gu, Seoul 139-706, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
91
|
David MS, Huynh MD, Kelly E, Rizos H, Coleman H, Rogers G, Zoellner H. Membrane and cytoplasmic marker exchange between malignant neoplastic cells and fibroblasts via intermittent contact: increased tumour cell diversity independent of genetic change. J Pathol 2012; 228:495-505. [PMID: 22692803 DOI: 10.1002/path.4063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/22/2012] [Accepted: 05/27/2012] [Indexed: 12/29/2022]
Abstract
We previously demonstrated that human osteosarcoma cells (SAOS-2) induce contact-dependent apoptosis in endothelium, and expected similar apoptosis in human gingival fibroblasts (h-GF) using SAOS-2 alkaline phosphatase (AP) to identify cells. However, h-GF apoptosis did not occur, despite reduction in AP-negative h-GF number (p < 0.01) and enhancement of this by h-GF TNFα pretreatment (p < 0.01). We suggest that TNFα-enhanced transfer of membrane AP from SAOS-2 to h-GF would explain these data. This idea was investigated using fluorescence prelabelled cells and confocal laser scanning microscopy. Co-cultures of membrane-labelled h-GF (marker-DiO) and SAOS-2 (marker-DiD) generated dual-labelled cells, primarily at the expense of single labelled h-GF (p < 0.001), suggesting predominant membrane transfer from SAOS-2 to h-GF. However, opposite directional transfer predominated when membrane labels were reversed; SAOS-2 further expressed green fluorescent protein (GFP) in cytoplasm and nuclei, and h-GF additionally bore nuclear label (Syto59) (p < 0.001). Cytoplasmic exchange was investigated using h-GF prelabelled with cytoplasmic DDAO-SE and nuclear Syto59, co-cultured with SAOS-2 expressing GFP in cytoplasm and nuclei, and predominant cytoplasmic marker transferred from h-GF to SAOS-2 (p < 0.05). Pretreating h-GF with TNFα increased exchange of membrane markers (p < 0.04) but did not affect either cell surface area profile or circularity. Dual-labelled cells had a morphological phenotype differing from SAOS-2 and h-GF (p < 0.001). Time-lapse microscopy revealed extensive migration of SAOS-2 and cell process contact with h-GF, with the appearance of SAOS-2 indulging in 'cellular sipping' from h-GF. Similar exchange of membrane was seen between h-GF and with other cell lines (melanoma MeIRMu, NM39, WMM175, MM200-B12; osteosarcoma U20S; ovarian carcinoma cells PE01, PE04 and COLO316), while cytoplasmic sharing was also seen in all cell lines other than U20S. We suggest that in some neoplasms, cellular sipping may contribute to phenotypic change and the generation of diverse tumour cell populations independent of genetic change, raising the possibility of a role in tumour progression.
Collapse
Affiliation(s)
- Manu S David
- Cellular and Molecular Pathology Research Unit, Department of Oral Pathology and Oral Medicine, University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, Westmead, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
92
|
Oikawa T, Oyama M, Kozuka-Hata H, Uehara S, Udagawa N, Saya H, Matsuo K. Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion. ACTA ACUST UNITED AC 2012; 197:553-68. [PMID: 22584907 PMCID: PMC3352951 DOI: 10.1083/jcb.201111116] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tks5, a master regulator of invadopodia in cancer cells, is also crucial for osteoclast cell–cell fusion. Osteoclasts fuse to form multinucleated cells during osteoclastogenesis. This process is mediated by dynamic rearrangement of the plasma membrane and cytoskeleton, and it requires numerous factors, many of which have been identified. The underlying mechanism remains obscure, however. In this paper, we show that Tks5, a master regulator of invadopodia in cancer cells, is crucial for osteoclast fusion downstream of phosphoinositide 3-kinase and Src. Expression of Tks5 was induced during osteoclastogenesis, and prevention of this induction impaired both the formation of circumferential podosomes and osteoclast fusion without affecting cell differentiation. Tyrosine phosphorylation of Tks5 was attenuated in Src−/− osteoclasts, likely accounting for defects in podosome organization and multinucleation in these cells. Circumferential invadopodia formation in B16F0 melanoma cells was also accompanied by Tks5 phosphorylation. Co-culture of B16F0 cells with osteoclasts in an inflammatory milieu promoted the formation of melanoma–osteoclast hybrid cells. Our results thus reveal an unexpected link between circumferential podosome/invadopodium formation and cell–cell fusion in and beyond osteoclasts.
Collapse
Affiliation(s)
- Tsukasa Oikawa
- Laboratory of Cell and Tissue Biology, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
93
|
Clawson GA, Kimchi E, Patrick SD, Xin P, Harouaka R, Zheng S, Berg A, Schell T, Staveley-O'Carroll KF, Neves RI, Mosca PJ, Thiboutot D. Circulating tumor cells in melanoma patients. PLoS One 2012; 7:e41052. [PMID: 22829910 PMCID: PMC3400630 DOI: 10.1371/journal.pone.0041052] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs) are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X) from blood of melanoma patients using a simple centrifugation device (OncoQuick), and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF) were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively) compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001). There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001), and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50%) stained for both pan-cytokeratin (KRT) markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14). Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA) may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs). The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids, and their role in metastatic progression.
Collapse
Affiliation(s)
- Gary A Clawson
- Gittlen Cancer Research Foundation and Department of Pathology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Zhou C, Liu J, Tang Y, Liang X. Inflammation linking EMT and cancer stem cells. Oral Oncol 2012; 48:1068-75. [PMID: 22766510 DOI: 10.1016/j.oraloncology.2012.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 02/05/2023]
Abstract
Similar to actors changing costumes during a performance, cancer cells undergo many rapid changes during the process of tumor metastasis, including epithelial-mesenchymal transition (EMT), acquisition of cancer stem cells (CSCs) properties, and mesenchymal-epithelial transition (MET). Such changes allow the tumor to compete with the normal microenvironment to overcome anti-tumorigenic pressures. Then, once tissue homeostasis is lost, the altered microenvironment, like that accompanying inflammation, can itself become a potent tumor promoter. This review will discuss the changes that cancer cells undergo in converting from EMT to CSCs in an inflammation microenvironment, to understand the mechanisms behind invasion and metastasis and provide insights into prevention of metastasis.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14, Sec 3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China
| | | | | | | |
Collapse
|
95
|
Dewing D, Emmett M, Pritchard Jones R. The Roles of Angiogenesis in Malignant Melanoma: Trends in Basic Science Research over the Last 100 Years. ISRN ONCOLOGY 2012; 2012:546927. [PMID: 22720169 PMCID: PMC3376762 DOI: 10.5402/2012/546927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/28/2012] [Indexed: 12/13/2022]
Abstract
Blood vessels arose during evolution carrying oxygen and nutrients to distant organs via complex networks of blood vessels penetrating organs and tissues. Mammalian cells require oxygen and nutrients for survival, of which oxygen has a diffusion limit of 100 to 200 μm between cell and blood vessel. For growth beyond this margin, cells must recruit new blood vessels, first by vasculogenesis, where embryonic vessels form from endothelial precursors, then angiogenesis which is the sprouting of interstitial tissue columns into the lumen of preexisting blood vessels. Angiogenesis occurs in many inflammatory diseases and in many malignant disease states, including over 90% of solid tumours. Malignant melanoma (MM) is the most lethal skin cancer, highly angiogenic, highly metastatic, and refractory to all treatments. Raised serum levels of vascular endothelial growth factor (VEGF) strongly correlate MM disease progression and poor prognosis. Melanoma cells secrete several proangiogenic cytokines including VEGF-A, fibroblast growth factor (FGF-2), platelet growth factor (PGF-1), interleukin-8 (IL-8), and transforming growth factor (TGF-1) that modulate the angiogenic switch, changing expression levels during tumour transition from radial to invasive vertical and then metastatic growth. We highlight modern and historical lines of research and development that are driving this exciting area of research currently.
Collapse
Affiliation(s)
- D Dewing
- Department of Molecular and Clinical Cancer Medicine, Mersey Academic Plastic Surgery Group, Liverpool Cancer Research UK Centre, The Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | | | | |
Collapse
|
96
|
Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2504-15. [PMID: 22542847 DOI: 10.1016/j.ajpath.2012.02.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/13/2012] [Accepted: 02/13/2012] [Indexed: 12/12/2022]
Abstract
Breast cancer progression involves cancer cell heterogeneity, with generation of invasive/metastatic breast cancer cells within populations of nonmetastatic cells of the primary tumor. Sequential genetic mutations, epithelial-to-mesenchymal transition, interaction with local stroma, and formation of hybrids between cancer cells and normal bone marrow-derived cells have been advocated as tumor progression mechanisms. We report herein the spontaneous in vitro formation of heterotypic hybrids between human bone marrow-derived multipotent stromal cells (MSCs) and two different breast carcinoma cell lines, MDA-MB-231 (MDA) and MA11. Hybrids showed predominantly mesenchymal morphological characteristics, mixed gene expression profiles, and increased DNA ploidy. Both MA11 and MDA hybrids were tumorigenic in immunodeficient mice, and some MDA hybrids had an increased metastatic capacity. Both in culture and as xenografts, hybrids underwent DNA ploidy reduction and morphological reversal to breast carcinoma-like morphological characteristics, while maintaining a mixed breast cancer-mesenchymal expression profile. Analysis of coding single-nucleotide polymorphisms by RNA sequencing revealed genetic contributions from both parental partners to hybrid tumors and metastasis. Because MSCs migrate and localize to breast carcinoma, our findings indicate that formation of MSC-breast cancer cell hybrids is a potential mechanism of the generation of invasive/metastatic breast cancer cells. Our findings reconcile the fusion theory of cancer progression with the common observation that breast cancer metastases are generally aneuploid, but not tetraploid, and are histopathologically similar to the primary neoplasm.
Collapse
|
97
|
Krajcovic M, Overholtzer M. Mechanisms of ploidy increase in human cancers: a new role for cell cannibalism. Cancer Res 2012; 72:1596-601. [PMID: 22447569 DOI: 10.1158/0008-5472.can-11-3127] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aneuploidy is a hallmark of human cancers originating from abnormal mitoses. Many aneuploid cancer cells also have greater-than-diploid DNA content, suggesting that polyploidy is a common precursor to aneuploidy during tumor progression. Polyploid cells can originate from cell fusion, endoreplication, and cytokinesis failure. Recently we found that cell cannibalism by entosis, a form of cell engulfment involving live cells, also leads to polyploidy, as internalized cells disrupt cytokinesis of their engulfing cell hosts. By this mechanism, cannibalistic cell behavior could promote tumor progression by leading to aneuploidy. Here, we discuss cell cannibalism in cancer and other mechanisms that result in the formation of polyploid cancer cells.
Collapse
Affiliation(s)
- Matej Krajcovic
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, New York 10065, USA
| | | |
Collapse
|
98
|
Król M, Pawłowski KM, Majchrzak K, Gajewska M, Majewska A, Motyl T. Global gene expression profiles of canine macrophages and canine mammary cancer cells grown as a co-culture in vitro. BMC Vet Res 2012; 8:16. [PMID: 22353646 PMCID: PMC3315417 DOI: 10.1186/1746-6148-8-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/21/2012] [Indexed: 12/24/2022] Open
Abstract
Background Solid tumours comprise various cells, including cancer cells, resident stromal cells, migratory haemopoietic cells and other. These cells regulate tumour growth and metastasis. Macrophages constitute probably the most important element of all interactions within the tumour microenvironment. However, the molecular mechanism, that guides tumour environment, still remains unknown. Exploring the underlying molecular mechanisms that orchestrate these phenomena has been the aim of our study. A co-culture of canine mammary cancer cells and macrophages was established and maintained for 72 hrs. Having sorted the cells, gene expression in cancer cells and macrophages, using DNA microarrays, was examined. The results were confirmed using real-time qPCR and confocal microscopy. Moreover, their ability for migration and invasion has been assessed. Results Microarray analysis showed that the up-regulated genes in the cancer cell lines are involved in 15 highly over-manifested pathways. The pathways that drew our diligent attention included: the inflammation pathway mediated by chemokine and cytokine, the Toll receptor signalling pathway and the B cell activation. The up-regulated genes in the macrophages were involved in only 18 significantly over-manifested pathways: the angiogenesis, the p53 pathway feedback loops2 and the Wnt signalling pathway. The microarray analysis revealed that co-culturing of cancer cells with macrophages initiated the myeloid-specific antigen expression in cancer cells, as well as cytokine/chemokine genes expression. This finding was confirmed at mRNA and protein level. Moreover, we showed that macrophages increase cancer migration and invasion. Conclusions The presence of macrophages in the cancer environment induces acquisition of the macrophage phenotype (specific antigens and chemokines/cytokines expression) in cancer cells. We presumed that cancer cells also acquire other myeloid features, such as: capabilities of cell rolling, spreading, migration and matrix invasion (what has also been confirmed by our results). It may, perhaps, be the result of myeloid-cancer cell hybrid formation, or cancer cells mimicking macrophages phenotype, owing to various proteins secreted by macrophages.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Physiological Sciences, Warsaw University of Life Sciences - WULS, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
99
|
Biology and significance of circulating and disseminated tumour cells in colorectal cancer. Langenbecks Arch Surg 2012; 397:535-42. [PMID: 22350614 DOI: 10.1007/s00423-012-0917-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/15/2023]
Abstract
PURPOSE More than 130 years ago, circulating tumour cells (CTCs) and disseminated tumour cells (DTCs) have been linked to metastasis. Since then, a myriad of studies attempted to characterise and elucidate the clinical impact of CTCs/DTCs, amongst others in colorectal cancer (CRC). Due to a flood of heterogeneous findings regarding CTCs/DTCs in CRC, this review aims to describe the known facts about CTC/DTC biology and clinical impact. METHODS To identify the basic scientific literature regarding the biology and clinical impact of CTCs/DTCs in CRC, we reviewed the literature in the PubMed database. We focused on publications written in English and published until January 2012. As search terms, we used "colorectal cancer (CRC)", "colon cancer (CC)", "CTC", "DTC", "bone marrow (BM)", "lymph node (LN)", "peripheral blood (PB)", "significance" and "prognosis". RESULTS CTC detection and quantification under standardised conditions is feasible. Several studies in large patient settings have revealed prognostic impact of CTCs in CRC. CRC-derived DTC detection and analysis in BM exhibits a more heterogeneous picture but also shows clinical value. Furthermore, the presence of DTCs in LN has a strong prognostic impact in CRC. CONCLUSIONS Clinical relevance and prognostic significance of CTCs/DTCs in CRC have been clearly demonstrated in many experimental studies. The major challenge in CTC/DTC research is now to harmonise the various identification and detection approaches and consequently to conduct large prospective multi-institutional trials to verify the use of CTCs/DTCs as a valid prognostic and predictive biomarker for clinical routine.
Collapse
|
100
|
Sipos F, Valcz G, Molnár B. Physiological and pathological role of local and immigrating colonic stem cells. World J Gastroenterol 2012; 18:295-301. [PMID: 22294835 PMCID: PMC3261524 DOI: 10.3748/wjg.v18.i4.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/27/2011] [Accepted: 07/04/2011] [Indexed: 02/06/2023] Open
Abstract
The latest avenue of research is revealing the existence of and role for the colonic stem cells in the physiological renewal of the mucosa and in pathological circumstances where they have both positive and negative effects. In the case of human colon, different levels of stem cell compartments exist. First, the crypt epithelial stem cells, which have a role in the normal crypt epithelial cell dynamics and in colorectal carcinogenesis. Close to the crypts, the second layer of stem cells can be found; the local subepithelial stem cell niche, including the pericryptic subepithelial myofibroblasts that regulate the epithelial cell differentiation and have a crucial role in cancer progression and chronic inflammation-related fibrosis. The third level of stem cell compartment is the immigrating bone-marrow-derived stem cells, which have an important role in wound healing after severe mucosal inflammation, but are also involved in cancer invasion. This paper focuses on stem cell biology in the context of physiological and pathological processes in the human colon.
Collapse
Affiliation(s)
- Ferenc Sipos
- Ferenc Sipos, Gábor Valcz, 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary.
| | | | | |
Collapse
|