51
|
Luo SD, Shi GW, Baker BS. Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development 2011; 138:2761-71. [PMID: 21652649 DOI: 10.1242/dev.065227] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uncovering the direct regulatory targets of doublesex (dsx) and fruitless (fru) is crucial for an understanding of how they regulate sexual development, morphogenesis, differentiation and adult functions (including behavior) in Drosophila melanogaster. Using a modified DamID approach, we identified 650 DSX-binding regions in the genome from which we then extracted an optimal palindromic 13 bp DSX-binding sequence. This sequence is functional in vivo, and the base identity at each position is important for DSX binding in vitro. In addition, this sequence is enriched in the genomes of D. melanogaster (58 copies versus approximately the three expected from random) and in the 11 other sequenced Drosophila species, as well as in some other Dipterans. Twenty-three genes are associated with both an in vivo peak in DSX binding and an optimal DSX-binding sequence, and thus are almost certainly direct DSX targets. The association of these 23 genes with optimum DSX binding sites was used to examine the evolutionary changes occurring in DSX and its targets in insects.
Collapse
Affiliation(s)
- Shengzhan D Luo
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
52
|
Casper AL, Baxter K, Van Doren M. no child left behind encodes a novel chromatin factor required for germline stem cell maintenance in males but not females. Development 2011; 138:3357-66. [PMID: 21752937 DOI: 10.1242/dev.067942] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Male and female germ cells follow distinct developmental paths with respect to germline stem cell (GSC) production and the types of differentiated progeny they produce (sperm versus egg). An essential aspect of germline development is how sexual identity is used to differentially regulate the male and female germ cell genomes to allow for these distinct outcomes. Here, we identify a gene, no child left behind (nclb), that plays very different roles in the male versus female germline in Drosophila. In particular, nclb is required for GSC maintenance in males, but not in females. Male GSCs mutant for nclb are rapidly lost from the niche, and begin to differentiate but cannot complete spermatogenesis. We further find that nclb encodes a member of a new family of conserved chromatin-associated proteins. NCLB interacts with chromatin in a specific manner and is associated with sites of active transcription. Thus, NCLB appears to be a novel chromatin regulator that exhibits very different effects on the male and female germ cell genomes.
Collapse
Affiliation(s)
- Abbie L Casper
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
53
|
Hashiyama K, Hayashi Y, Kobayashi S. Drosophila Sex lethal gene initiates female development in germline progenitors. Science 2011; 333:885-8. [PMID: 21737698 DOI: 10.1126/science.1208146] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sex determination in the Drosophila germ line is regulated by both the sex of the surrounding soma and cell-autonomous cues. How primordial germ cells (PGCs) initiate sexual development via cell-autonomous mechanisms is unclear. Here, we demonstrate that, in Drosophila, the Sex lethal (Sxl) gene acts autonomously in PGCs to induce female development. Sxl is transiently expressed in PGCs during their migration to the gonads; this expression, which was detected only in XX PGCs, is necessary for PGCs to assume a female fate. Ectopic expression of Sxl in XY PGCs was sufficient to induce them to enter oogenesis and produce functional eggs when transplanted into an XX host. Our data provide powerful evidence that Sxl initiates female germline fate during sexual development.
Collapse
Affiliation(s)
- Kazuya Hashiyama
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | |
Collapse
|
54
|
Weyers JJ, Milutinovich AB, Takeda Y, Jemc JC, Van Doren M. A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev Biol 2011; 353:217-28. [PMID: 21377458 PMCID: PMC3635084 DOI: 10.1016/j.ydbio.2011.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/19/2022]
Abstract
Organogenesis is a complex process requiring multiple cell types to associate with one another through correct cell contacts and in the correct location to achieve proper organ morphology and function. To better understand the mechanisms underlying gonad formation, we performed a mutagenesis screen in Drosophila and identified twenty-four genes required for gonadogenesis. These genes affect all different aspects of gonad formation and provide a framework for understanding the molecular mechanisms that control these processes. We find that gonad formation is regulated by multiple, independent pathways; some of these regulate the key cell adhesion molecule DE-cadherin, while others act through distinct mechanisms. In addition, we discover that the Slit/Roundabout pathway, best known for its role in regulating axonal guidance, is essential for proper gonad formation. Our findings shed light on the complexities of gonadogenesis and the genetic regulation required for proper organ formation.
Collapse
Affiliation(s)
- Jill J Weyers
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
55
|
Chatterjee SS, Uppendahl LD, Chowdhury MA, Ip PL, Siegal ML. The female-specific doublesex isoform regulates pleiotropic transcription factors to pattern genital development in Drosophila. Development 2011; 138:1099-109. [PMID: 21343364 DOI: 10.1242/dev.055731] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulatory networks driving morphogenesis of animal genitalia must integrate sexual identity and positional information. Although the genetic hierarchy that controls somatic sexual identity in the fly Drosophila melanogaster is well understood, there are very few cases in which the mechanism by which it controls tissue-specific gene activity is known. In flies, the sex-determination hierarchy terminates in the doublesex (dsx) gene, which produces sex-specific transcription factors via alternative splicing of its transcripts. To identify sex-specifically expressed genes downstream of dsx that drive the sexually dimorphic development of the genitalia, we performed genome-wide transcriptional profiling of dissected genital imaginal discs of each sex at three time points during early morphogenesis. Using a stringent statistical threshold, we identified 23 genes that have sex-differential transcript levels at all three time points, of which 13 encode transcription factors, a significant enrichment. We focus here on three sex-specifically expressed transcription factors encoded by lozenge (lz), Drop (Dr) and AP-2. We show that, in female genital discs, Dsx activates lz and represses Dr and AP-2. We further show that the regulation of Dr by Dsx mediates the previously identified expression of the fibroblast growth factor Branchless in male genital discs. The phenotypes we observe upon loss of lz or Dr function in genital discs explain the presence or absence of particular structures in dsx mutant flies and thereby clarify previously puzzling observations. Our time course of expression data also lays the foundation for elucidating the regulatory networks downstream of the sex-specifically deployed transcription factors.
Collapse
Affiliation(s)
- Sujash S Chatterjee
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
56
|
Salz HK. Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Genet Dev 2011; 21:395-400. [PMID: 21474300 DOI: 10.1016/j.gde.2011.03.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/11/2011] [Indexed: 12/22/2022]
Abstract
The gene regulatory networks that control sex determination vary between species. Despite these differences, comparative studies in insects have found that alternative splicing is reiteratively used in evolution to control expression of the key sex-determining genes. Sex determination is best understood in Drosophila where activation of the RNA binding protein-encoding gene Sex-lethal is the central female-determining event. Sex-lethal serves as a genetic switch because once activated it controls its own expression by a positive feedback splicing mechanism. Sex fate choice in is also maintained by self-sustaining positive feedback splicing mechanisms in other dipteran and hymenopteran insects, although different RNA binding protein-encoding genes function as the binary switch. Studies exploring the mechanisms of sex-specific splicing have revealed the extent to which sex determination is integrated with other developmental regulatory networks.
Collapse
Affiliation(s)
- Helen K Salz
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4955, USA.
| |
Collapse
|
57
|
Gallach M, Betrán E. Intralocus sexual conflict resolved through gene duplication. Trends Ecol Evol 2011; 26:222-8. [PMID: 21397976 DOI: 10.1016/j.tree.2011.02.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/27/2022]
Abstract
Gene duplication is mainly recognized by its primary role in the origin of new genes and functions. However, the idea that gene duplication can be a central player in resolving sexual genetic conflicts through its potential to generate sex-biased and sex-specifically expressed genes, has been almost entirely overlooked. We review recent data and theory that support gene duplication as a theoretically predicted and experimentally supported means of resolving intralocus sexual antagonism. We believe that this role is probably the consequence of sexual conflict for housekeeping genes that are required in males and females, and which are expressed in sexually dimorphic tissues (i.e. where sexually antagonistic selection is exerted). We think that these genes cannot evolve tissue-specific expression unless they duplicate.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Arlington, TX, USA
| | | |
Collapse
|
58
|
Snell-Rood EC, Cash A, Han MV, Kijimoto T, Andrews J, Moczek AP. Developmental decoupling of alternative phenotypes: insights from the transcriptomes of horn-polyphenic beetles. Evolution 2011; 65:231-45. [PMID: 20731717 PMCID: PMC3010270 DOI: 10.1111/j.1558-5646.2010.01106.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developmental mechanisms play an important role in determining the costs, limits, and evolutionary consequences of phenotypic plasticity. One issue central to these claims is the hypothesis of developmental decoupling, where alternate morphs result from evolutionarily independent developmental pathways. We address this assumption through a microarray study that tests whether differences in gene expression between alternate morphs are as divergent as those between sexes, a classic example of developmental decoupling. We then examine whether genes with morph-biased expression are less conserved than genes with shared expression between morphs, as predicted if developmental decoupling relaxes pleiotropic constraints on divergence. We focus on the developing horns and brains of two species of horned beetles with impressive sexual- and morph-dimorphism in the expression of horns and fighting behavior. We find that patterns of gene expression were as divergent between morphs as they were between sexes. However, overall patterns of gene expression were also highly correlated across morphs and sexes. Morph-biased genes were more evolutionarily divergent, suggesting a role of relaxed pleiotropic constraints or relaxed selection. Together these results suggest that alternate morphs are to some extent developmentally decoupled, and that this decoupling has significant evolutionary consequences. However, alternative morphs may not be as developmentally decoupled as sometimes assumed and such hypotheses of development should be revisited and refined.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington, Indiana 47405-7107, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Murray SM, Yang SY, Van Doren M. Germ cell sex determination: a collaboration between soma and germline. Curr Opin Cell Biol 2010; 22:722-9. [PMID: 21030233 DOI: 10.1016/j.ceb.2010.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 01/28/2023]
Abstract
Sex determination is regulated very differently in the soma vs. the germline, yet both processes are critical for the creation of the male and female gametes. In general, the soma plays an essential role in regulating sexual identity of the germline. However, in some species, such as Drosophila and mouse, the sex chromosome constitution of the germ cells makes an autonomous contribution to germline sexual development. Here we review how the soma and germline cooperate to determine germline sexual identity for some important model systems, the fly, the worm and the mouse, and discuss some of the implications of 'dual control' (soma plus germline) as compared to species where germline sex is dictated only by the surrounding soma.
Collapse
Affiliation(s)
- Sheryl M Murray
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
60
|
Robinett CC, Vaughan AG, Knapp JM, Baker BS. Sex and the single cell. II. There is a time and place for sex. PLoS Biol 2010; 8:e1000365. [PMID: 20454565 PMCID: PMC2864297 DOI: 10.1371/journal.pbio.1000365] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/25/2010] [Indexed: 01/28/2023] Open
Abstract
In both male and female Drosophila, only a subset of cells have the potential to sexually differentiate, making both males and females mosaics of sexually differentiated and sexually undifferentiated cells. The Drosophila melanogaster sex hierarchy controls sexual differentiation of somatic cells via the activities of the terminal genes in the hierarchy, doublesex (dsx) and fruitless (fru). We have targeted an insertion of GAL4 into the dsx gene, allowing us to visualize dsx-expressing cells in both sexes. Developmentally and as adults, we find that both XX and XY individuals are fine mosaics of cells and tissues that express dsx and/or fruitless (fruM), and hence have the potential to sexually differentiate, and those that don't. Evolutionary considerations suggest such a mosaic expression of sexuality is likely to be a property of other animal species having two sexes. These results have also led to a major revision of our view of how sex-specific functions are regulated by the sex hierarchy in flies. Rather than there being a single regulatory event that governs the activities of all downstream sex determination regulatory genes—turning on Sex lethal (Sxl) RNA splicing activity in females while leaving it turned off in males—there are, in addition, elaborate temporal and spatial transcriptional controls on the expression of the terminal regulatory genes, dsx and fru. Thus tissue-specific aspects of sexual development are jointly specified by post-transcriptional control by Sxl and by the transcriptional controls of dsx and fru expression. Morphologically, fruit flies are either male or female. The specification of sex is a multi-step process that depends on whether the fertilized egg has only one X chromosome (will develop as male) or two X chromosomes (will develop as female). This initial assessment of sex activates a cascade of regulatory genes that ultimately results in expression of either the male or female version of the protein encoded by the doublesex gene (dsx). These sex-specific proteins from the dsx gene direct most aspects of somatic sexual development, including the development of all of the secondary sexual characteristics that visibly distinguish males and females. In flies, as in most animal species, only some tissues are obviously different between the two sexes, so we asked the question of whether all cells in the animal nevertheless know which sex they are. That is, do all cells express dsx? We have developed a genetic tool that lets us visualize the cells in which the dsx is expressed. Strikingly, dsx is only expressed in a subset of tissues. Thus, adult flies of both sexes appear to be mosaics of cells that do know their sex and cells that do not know their sex.
Collapse
Affiliation(s)
- Carmen C. Robinett
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Alexander G. Vaughan
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Jon-Michael Knapp
- Biology Department, Stanford University, Stanford, California, United States of America
- Neuroscience Program, Stanford University, Stanford, California, United States of America
| | - Bruce S. Baker
- Biology Department, Stanford University, Stanford, California, United States of America
- Neuroscience Program, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
61
|
Rideout EJ, Dornan AJ, Neville MC, Eadie S, Goodwin SF. Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nat Neurosci 2010; 13:458-66. [PMID: 20305646 PMCID: PMC3092424 DOI: 10.1038/nn.2515] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/09/2010] [Indexed: 01/07/2023]
Abstract
Doublesex proteins, which are part of the structurally and functionally conserved Dmrt gene family, are important for sex determination throughout the animal kingdom. We inserted Gal4 into the doublesex (dsx) locus of Drosophila melanogaster, allowing us to visualize and manipulate cells expressing dsx in various tissues. In the nervous system, we detected differences between the sexes in dsx-positive neuronal numbers, axonal projections and synaptic density. We found that dsx was required for the development of male-specific neurons that coexpressed fruitless (fru), a regulator of male sexual behavior. We propose that dsx and fru act together to form the neuronal framework necessary for male sexual behavior. We found that disrupting dsx neuronal function had profound effects on male sexual behavior. Furthermore, our results suggest that dsx-positive neurons are involved in pre- to post-copulatory female reproductive behaviors.
Collapse
Affiliation(s)
- Elizabeth J Rideout
- Faculty of Biomedical and Life Sciences, Integrative and Systems Biology, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
62
|
Shen J, Ford D, Landis GN, Tower J. Identifying sexual differentiation genes that affect Drosophila life span. BMC Geriatr 2009; 9:56. [PMID: 20003237 PMCID: PMC2803781 DOI: 10.1186/1471-2318-9-56] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/09/2009] [Indexed: 12/24/2022] Open
Abstract
Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF) during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF) during development was lethal to males, and produced a limited number of female escapers, whereas over-expression of dsxF specifically in adults greatly reduced both male and female life span. Similarly, over-expression of fruitless male isoform A (fru-MA) during development was lethal to both males and females, whereas over-expression of fru-MA in adults greatly reduced both male and female life span. Conclusion Manipulation of sexual differentiation gene expression specifically in the adult, after morphological sexual differentiation is complete, was still able to affect life span. In addition, by manipulating gene expression during development, it was possible to significantly alter morphological sexual differentiation without a significant effect on adult life span. The data demonstrate that manipulation of sexual differentiation pathway genes either during development or in adults can affect adult life span.
Collapse
Affiliation(s)
- Jie Shen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | | | | | | |
Collapse
|
63
|
Casper AL, Van Doren M. The establishment of sexual identity in the Drosophila germline. Development 2009; 136:3821-30. [PMID: 19855024 PMCID: PMC2766343 DOI: 10.1242/dev.042374] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2009] [Indexed: 12/11/2022]
Abstract
The establishment of sexual identity is a crucial step of germ cell development in sexually reproducing organisms. Sex determination in the germline is controlled differently than in the soma, and often depends on communication from the soma. To investigate how sexual identity is established in the Drosophila germline, we first conducted a molecular screen for genes expressed in a sex-specific manner in embryonic germ cells. Sex-specific expression of these genes is initiated at the time of gonad formation (stage 15), indicating that sexual identity in the germline is established by this time. Experiments where the sex of the soma was altered relative to that of the germline (by manipulating transformer) reveal a dominant role for the soma in regulating initial germline sexual identity. Germ cells largely take on the sex of the surrounding soma, although the sex chromosome constitution of the germ cells still plays some role at this time. The male soma signals to the germline through the JAK/STAT pathway, while the nature of the signal from the female soma remains unknown. We also find that the genes ovo and ovarian tumor (otu) are expressed in a female-specific manner in embryonic germ cells, consistent with their role in promoting female germline identity. However, removing the function of ovo and otu, or reducing germline function of Sex lethal, had little effect on establishment of germline sexual identity. This is consistent with our findings that signals from the soma are dominant over germline autonomous cues at the initial stage of germline sex determination.
Collapse
Affiliation(s)
- Abbie L Casper
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|