51
|
Sircar R, Borbat PP, Lynch MJ, Bhatnagar J, Beyersdorf MS, Halkides CJ, Freed JH, Crane BR. Assembly states of FliM and FliG within the flagellar switch complex. J Mol Biol 2014; 427:867-886. [PMID: 25536293 DOI: 10.1016/j.jmb.2014.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023]
Abstract
At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from Thermotoga maritima with X-ray crystallography and pulsed dipolar ESR spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled components fit a self-consistent model that agree well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. These data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions.
Collapse
Affiliation(s)
- Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jaya Bhatnagar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Matthew S Beyersdorf
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Christopher J Halkides
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
52
|
Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. J Bacteriol 2014; 197:420-30. [PMID: 25349157 DOI: 10.1128/jb.02130-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The second messenger cyclic diguanylate (c-di-GMP) plays a critical role in the regulation of motility. In Pseudomonas aeruginosa PA14, c-di-GMP inversely controls biofilm formation and surface swarming motility, with high levels of this dinucleotide signal stimulating biofilm formation and repressing swarming. P. aeruginosa encodes two stator complexes, MotAB and MotCD, that participate in the function of its single polar flagellum. Here we show that the repression of swarming motility requires a functional MotAB stator complex. Mutating the motAB genes restores swarming motility to a strain with artificially elevated levels of c-di-GMP as well as stimulates swarming in the wild-type strain, while overexpression of MotA from a plasmid represses swarming motility. Using point mutations in MotA and the FliG rotor protein of the motor supports the conclusion that MotA-FliG interactions are critical for c-di-GMP-mediated swarming inhibition. Finally, we show that high c-di-GMP levels affect the localization of a green fluorescent protein (GFP)-MotD fusion, indicating a mechanism whereby this second messenger has an impact on MotCD function. We propose that when c-di-GMP level is high, the MotAB stator can displace MotCD from the motor, thereby affecting motor function. Our data suggest a newly identified means of c-di-GMP-mediated control of surface motility, perhaps conserved among Pseudomonas, Xanthomonas, and other organisms that encode two stator systems.
Collapse
|
53
|
Interaction of the C-terminal tail of FliF with FliG from the Na+-driven flagellar motor of Vibrio alginolyticus. J Bacteriol 2014; 197:63-72. [PMID: 25313387 DOI: 10.1128/jb.02271-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotation of the polar flagellum of Vibrio alginolyticus is driven by a Na(+)-type flagellar motor. FliG, one of the essential rotor proteins located at the upper rim of the C ring, binds to the membrane-embedded MS ring. The MS ring is composed of a single membrane protein, FliF, and serves as a foundation for flagellar assembly. Unexpectedly, about half of the Vibrio FliF protein produced at high levels in Escherichia coli was found in the soluble fraction. Soluble FliF purifies as an oligomer of ∼700 kDa, as judged by analytical size exclusion chromatography. By using fluorescence correlation spectroscopy, an interaction between a soluble FliF multimer and FliG was detected. This binding was weakened by a series of deletions at the C-terminal end of FliF and was nearly eliminated by a 24-residue deletion or a point mutation at a highly conserved tryptophan residue (W575). Mutations in FliF that caused a defect in FliF-FliG binding abolish flagellation and therefore confer a nonmotile phenotype. As data from in vitro binding assays using the soluble FliF multimer correlate with data from in vivo functional analyses, we conclude that the C-terminal region of the soluble form of FliF retains the ability to bind FliG. Our study confirms that the C-terminal tail of FliF provides the binding site for FliG and is thus required for flagellation in Vibrio, as reported for other species. This is the first report of detection of the FliF-FliG interaction in the Na(+)-driven flagellar motor, both in vivo and in vitro.
Collapse
|
54
|
Abstract
Many bacteria glide smoothly on surfaces, despite having no discernable propulsive organelles on their surface. Recent experiments with Myxococcus xanthus and Flavobacterium johnsoniae show that both of these distantly related bacterial species glide using proteins that move in helical tracks, albeit with significantly different motility mechanisms. Both species utilize proton-motive force for movement. Although the motors that power gliding in M. xanthus have been identified, the F. johnsoniae motors remain to be discovered.
Collapse
Affiliation(s)
- Beiyan Nan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, WI 53201, USA
| | - Jing Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Zusman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - George Oster
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
55
|
Lee W, Kim Y, Olson SD, Lim S. Nonlinear dynamics of a rotating elastic rod in a viscous fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033012. [PMID: 25314534 DOI: 10.1103/physreve.90.033012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 05/21/2023]
Abstract
The dynamics of an elastic rod in a viscous fluid at zero Reynolds number is investigated when the bottom end of the rod is tethered at a point in space and rotates at a prescribed angular frequency, while the other part of the rod freely moves through the fluid. A rotating elastic rod, which is intrinsically straight, exhibits three dynamical motions: twirling, overwhirling, and whirling. The first two motions are stable, whereas the last motion is unstable. The stability of dynamical motions is determined by material and geometrical properties of the rod, fluid properties, and the angular frequency of the rod. We employ the regularized Stokes flow to describe the fluid motion and the Kirchhoff rod model to describe the elastic rod. Our simulation results display subcritical Hopf bifurcation diagrams indicating the bistability region. We also investigate the whirling motion generated by the rotation of an intrinsically bent rod. It is observed that the angular frequency determines the handedness of the whirling rod and thus the flow direction and that there is a critical frequency which separates the positive (upward) flow at frequencies above it from the negative (downward) flow at frequencies below it.
Collapse
Affiliation(s)
- Wanho Lee
- National Institute for Mathematical Sciences, KT Daeduk 2 Research Center, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Yongsam Kim
- Department of Mathematics, Chung-Ang University, Dongjakgu, Heukseokdong, Seoul 156-756, Republic of Korea
| | - Sarah D Olson
- Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road Worcester, Massachusetts 01609, USA
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, 4199 French Hall West, Cincinnati, Ohio 45221, USA
| |
Collapse
|
56
|
Abstract
![]()
The flagellum is one of the most
sophisticated self-assembling
molecular machines in bacteria. Powered by the proton-motive force,
the flagellum rapidly rotates in either a clockwise or counterclockwise
direction, which ultimately controls bacterial motility and behavior. Escherichia coli and Salmonella enterica have served as important model systems for extensive genetic, biochemical,
and structural analysis of the flagellum, providing unparalleled insights
into its structure, function, and gene regulation. Despite these advances,
our understanding of flagellar assembly and rotational mechanisms
remains incomplete, in part because of the limited structural information
available regarding the intact rotor–stator complex and secretion
apparatus. Cryo-electron tomography (cryo-ET) has become a valuable
imaging technique capable of visualizing the intact flagellar motor
in cells at molecular resolution. Because the resolution that can
be achieved by cryo-ET with large bacteria (such as E. coli and S. enterica) is limited, analysis of small-diameter
bacteria (including Borrelia burgdorferi and Campylobacter jejuni) can provide additional insights into
the in situ structure of the flagellar motor and
other cellular components. This review is focused on the application
of cryo-ET, in combination with genetic and biophysical approaches,
to the study of flagellar structures and its potential for improving
the understanding of rotor–stator interactions, the rotational
switching mechanism, and the secretion and assembly of flagellar components.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston , Houston, Texas 77030, United States
| | | | | |
Collapse
|
57
|
Nakamura S, Minamino T, Kami-Ike N, Kudo S, Namba K. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Biophysics (Nagoya-shi) 2014; 10:35-41. [PMID: 27493496 PMCID: PMC4629662 DOI: 10.2142/biophysics.10.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/28/2014] [Indexed: 01/21/2023] Open
Abstract
The bacterial flagellar motor generates torque by converting the energy of proton translocation through the transmembrane proton channel of the stator complex formed by MotA and MotB. The MotA/B complex is thought to be anchored to the peptidoglycan (PG) layer through the PG-binding domain of MotB to act as the stator. The stator units dynamically associate with and dissociate from the motor during flagellar motor rotation, and an electrostatic interaction between MotA and a rotor protein FliG is required for efficient stator assembly. However, the association and dissociation mechanism of the stator units still remains unclear. In this study, we analyzed the speed fluctuation of the flagellar motor of Salmonella enterica wild-type cells carrying a plasmid encoding a nonfunctional stator complex, MotA/B(D33N), which lost the proton conductivity. The wild-type motor rotated stably but the motor speed fluctuated considerably when the expression level of MotA/B(D33N) was relatively high compared to MotA/B. Rapid accelerations and decelerations were frequently observed. A quantitative analysis of the speed fluctuation and a model simulation suggested that the MotA/B(D33N) stator retains the ability to associate with the motor at a low affinity but dissociates more rapidly than the MotA/B stator. We propose that the stator dissociation process depends on proton translocation through the proton channel.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tohru Minamino
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobunori Kami-Ike
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Keiichi Namba
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
58
|
Mouslim C, Hughes KT. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. PLoS Pathog 2014; 10:e1003987. [PMID: 24603858 PMCID: PMC3946378 DOI: 10.1371/journal.ppat.1003987] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/25/2014] [Indexed: 12/22/2022] Open
Abstract
The flagellar regulon controls Salmonella biofilm formation, virulence gene expression and the production of the major surface antigen present on the cell surface: flagellin. At the top of a flagellar regulatory hierarchy is the master operon, flhDC, which encodes the FlhD₄C₂ transcriptional complex required for the expression of flagellar, chemotaxis and Salmonella pathogenicity island 1 (Spi1) genes. Of six potential transcriptional start-sites within the flhDC promoter region, only two, P1(flhDC) and P5(flhDC), were functional in a wild-type background, while P6(flhDC) was functional in the absence of CRP. These promoters are transcribed differentially to control either flagellar or Spi1 virulent gene expression at different stages of cell growth. Transcription from P1(flhDC) initiates flagellar assembly and a negative autoregulatory loop through FlhD₄C₂-dependent transcription of the rflM gene, which encodes a repressor of flhDC transcription. Transcription from P1(flhDC) also initiates transcription of the Spi1 regulatory gene, hilD, whose product, in addition to activating Spi1 genes, also activates transcription of the flhDC P5 promoter later in the cell growth phase. The regulators of flhDC transcription (RcsB, LrhA, RflM, HilD, SlyA and RtsB) also exert their control at different stages of the cell growth phase and are also subjected to cell growth phase control. This dynamic of flhDC transcription separates the roles of FlhD₄C₂ transcriptional activation into an early cell growth phase role for flagellar production from a late cell growth phase role in virulence gene expression.
Collapse
Affiliation(s)
- Chakib Mouslim
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
59
|
Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. J Bacteriol 2014; 196:1377-85. [PMID: 24464458 DOI: 10.1128/jb.01392-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In torque generation by the bacterial flagellar motor, it has been suggested that electrostatic interactions between charged residues of MotA and FliG at the rotor-stator interface are important. However, the actual role(s) of those charged residues has not yet been clarified. In this study, we systematically made mutants of Vibrio alginolyticus whose charged residues of PomA (MotA homologue) and FliG were replaced by uncharged or charge-reversed residues and characterized the motilities of those mutants. We found that the members of a group of charged residues, 7 in PomA and 6 in FliG, collectively participate in torque generation of the Na(+)-driven flagellar motor in Vibrio. An additional specific interaction between PomA-E97 and FliG-K284 is critical for proper performance of the Vibrio motor. Our results also reveal that more charged residues are involved in the PomA-FliG interactions in the Vibrio Na(+)-driven motor than in the MotA-FliG interactions in the H(+)-driven one. This suggests that a larger number of conserved charged residues at the PomA-FliG interface contributes to the robustness of the Vibrio motor against mutations. The interaction surfaces of the stator and rotor of the Na(+)-driven motor seem to be more complex than those previously proposed in the H(+)-driven motor.
Collapse
|
60
|
Onoue Y, Abe-Yoshizumi R, Gohara M, Kobayashi S, Nishioka N, Kojima S, Homma M. Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor. J Biochem 2014; 155:207-16. [DOI: 10.1093/jb/mvt115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
61
|
Castillo DJ, Nakamura S, Morimoto YV, Che YS, Kami-Ike N, Kudo S, Minamino T, Namba K. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Biophysics (Nagoya-shi) 2013; 9:173-81. [PMID: 27493556 PMCID: PMC4629673 DOI: 10.2142/biophysics.9.173] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/07/2013] [Indexed: 12/29/2022] Open
Abstract
The bacterial flagellar motor is made of a rotor and stators. In Salmonella it is thought that about a dozen MotA/B complexes are anchored to the peptidoglycan layer around the motor through the C-terminal peptidoglycan-binding domain of MotB to become active stators as well as proton channels. MotB consists of 309 residues, forming a single transmembrane helix (30–50), a stalk (51–100) and a C-terminal peptidoglycan-binding domain (101–309). Although the stalk is dispensable for torque generation by the motor, it is required for efficient motor performance. Residues 51 to 72 prevent premature proton leakage through the proton channel prior to stator assembly into the motor. However, the role of residues 72–100 remains unknown. Here, we analyzed the torque-speed relationship of the MotB(Δ72–100) motor. At a low speed near stall, this mutant motor produced torque at the wild-type level. Unlike the wild-type motor, however, torque dropped off drastically by slight decrease in external load and then showed a slow exponential decay over a wide range of load by its further reduction. Since it is known that the stator is a mechano-sensor and that the number of active stators changes in a load-dependent manner, we interpreted this unusual torque-speed relationship as anomaly in load-dependent control of the number of active stators. The results suggest that residues 72–100 of MotB is required for proper load-dependent control of the number of active stators around the rotor.
Collapse
Affiliation(s)
- David J Castillo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Tohoku University, 6-6-05 Aoba, Aramakiaza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yusuke V Morimoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yong-Suk Che
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - Nobunori Kami-Ike
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seishi Kudo
- Department of Applied Physics, Tohoku University, 6-6-05 Aoba, Aramakiaza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
62
|
Gohara M, Kobayashi S, Abe-Yoshizumi R, Nonoyama N, Kojima S, Asami Y, Homma M. Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+-driven flagellar motor. J Biochem 2013; 155:83-9. [DOI: 10.1093/jb/mvt100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
63
|
A distant homologue of the FlgT protein interacts with MotB and FliL and is essential for flagellar rotation in Rhodobacter sphaeroides. J Bacteriol 2013; 195:5285-96. [PMID: 24056105 DOI: 10.1128/jb.00760-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this work, we describe a periplasmic protein that is essential for flagellar rotation in Rhodobacter sphaeroides. This protein is encoded upstream of flgA, and its expression is dependent on the flagellar master regulator FleQ and on the class III flagellar activator FleT. Sequence comparisons suggest that this protein is a distant homologue of FlgT. We show evidence that in R. sphaeroides, FlgT interacts with the periplasmic regions of MotB and FliL and with the flagellar protein MotF, which was recently characterized as a membrane component of the flagellum in this bacterium. In addition, the localization of green fluorescent protein (GFP)-MotF is completely dependent on FlgT. The Mot(-) phenotype of flgT cells was weakly suppressed by point mutants of MotB that presumably keep the proton channel open and efficiently suppress the Mot(-) phenotype of motF and fliL cells, indicating that FlgT could play an additional role beyond the opening of the proton channel. The presence of FlgT in purified filament-hook-basal bodies of the wild-type strain was confirmed by Western blotting, and the observation of these structures under an electron microscope showed that the basal bodies from flgT cells had lost the ring that covers the LP ring in the wild-type structure. Moreover, MotF was detected by immunoblotting in the basal bodies obtained from the wild-type strain but not from flgT cells. From these results, we suggest that FlgT forms a ring around the LP ring, which anchors MotF and stabilizes the stator complex of the flagellar motor.
Collapse
|
64
|
Olsen JE, Hoegh-Andersen KH, Rosenkrantz JT, Schroll C, Casadesús J, Aabo S, Christensen JP. Intestinal invasion of Salmonella enterica serovar Typhimurium in the avian host is dose dependent and does not depend on motility and chemotaxis. Vet Microbiol 2013; 165:373-7. [DOI: 10.1016/j.vetmic.2013.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
65
|
Mertins S, Allan BJ, Townsend HG, Köster W, Potter AA. Role of motAB in adherence and internalization in polarized Caco-2 cells and in cecal colonization of Campylobacter jejuni. Avian Dis 2013; 57:116-22. [PMID: 23678739 DOI: 10.1637/10235-050412-resnote.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Campylobacter jejuni, a gram-negative motile bacterium commonly found in the chicken gastrointestinal tract, is one of the leading causes of bacterial gastroenteritis in humans worldwide. An intact and functional flagellum is important for C. jejuni virulence and colonization. To understand the role of C. jejuni motility in adherence and internalization in polarized Caco-2 cells and in cecal colonization of chickens we constructed a C. jejuni NCTC11168 V1 deltamotAB mutant. The motAB genes code for the flagellar motor, which enables the rotation of the flagellum. The nonmotile deltamotAB mutant expressed a full-length flagellum, which allowed us to differentiate between the roles of full-length flagella and motility in the ability of C. jejuni to colonize. To study the adherence and invasion abilities of the C. jejuni deltamotAB mutant we chose to use polarized Caco-2 cells, which are thought to be more representative of in vivo intestinal cell architecture and function. Although the C. jejuni deltamotAB mutant adhered significantly better than the wild type to the Caco-2 cells, we observed a significant reduction in the ability to invade the cells. In this study we obtained evidence that the flagellar rotation triggers C. jejuni invasion into polarized Caco-2 cells and we believe that C. jejuni is propelled into the cell with a drill-like rotation. The deltamotAB mutant was also tested for its colonization potential in a 1-day-old chicken model. The nonmotile C. jejuni deltamotAB mutant was not able to colonize any birds at days 3 and 7, suggesting that motility is essential for C. jejuni colonization.
Collapse
Affiliation(s)
- Sonja Mertins
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | | | | | |
Collapse
|
66
|
Terashima H, Terauchi T, Ihara K, Nishioka N, Kojima S, Homma M. Mutation in the a-subunit of F(1)F(O)-ATPase causes an increased motility phenotype through the sodium-driven flagella of Vibrio. J Biochem 2013; 154:177-84. [PMID: 23750030 DOI: 10.1093/jb/mvt042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial flagellar motors exploit the electrochemical potential gradient of a coupling ion as energy source and are composed of stator and rotor proteins. Vibrio alginolyticus has a Na(+)-driven motor and its stator is composed of PomA and PomB. Recently, we isolated increased motility strains (sp1-sp4) from the PomA-N194D/PomB-D24N mutant whose motility was quite weak. To detect the responsible mutation, we have used a next-generation sequencer and determined the entire genome sequences of the sp1 and sp2 strains. Candidate mutations were identified in the gene encoding the a-subunit of F1Fo-ATPase (uncB). To confirm this, we constructed a deletion strain, which gave the increased motility phenotype. The amount of membrane-bound ATPase was reduced in the sp2 and ΔuncB mutants. From these results, we conclude that a mutation in the uncB gene causes the increased motility phenotype in V. alginolyticus. They confer faster motility in low concentrations of sodium than in the parental strain and this phenotype is suppressed in the presence of KCN. Those results may suggest that the proton gradient generated by the respiratory chain is increased by the uncB mutation, consequently the sodium motive force is increased and causes the increased motility phenotype.
Collapse
Affiliation(s)
- Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Olsen JE, Hoegh-Andersen KH, Casadesús J, Rosenkranzt J, Chadfield MS, Thomsen LE. The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium. BMC Microbiol 2013; 13:67. [PMID: 23530934 PMCID: PMC3621167 DOI: 10.1186/1471-2180-13-67] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 03/19/2013] [Indexed: 11/11/2022] Open
Abstract
Background The importance of flagella and chemotaxis genes in host pathogen interaction in Salmonella enterica is mainly based on studies of the broad host range serovar, S. Typhimurium, while little is known on the importance in host specific and host adapted serovars, such as S. Dublin. In the current study we have used previously characterized insertion mutants in flagella and chemotaxis genes to investigate this and possible differences in the importance between the two serovars. Results fliC (encoding the structural protein of the flagella) was essential for adhesion and fliC and cheB (CheB restores the chemotaxis system to pre-stimulus conformation) were essential for invasion of S. Dublin into epithelial Int407 cells. In S. Typhimurium, both lack of flagella (fliC/fljB double mutant) and cheB influenced adhesion, and invasion was influenced by lack of both cheA (the histidine-kinase of the chemotaxis system), fliC/fljB and cheB mutation. Uptake in J774A.1 macrophage cells was significantly reduced in cheA, cheB and fliC mutants of S. Dublin, while cheA was dispensable in S. Typhimurium. Removal of flagella in both serotypes caused an increased ability to propagate intracellular in J774 macrophage cells and decreased cytotoxicity toward these cells. Flagella and chemotaxis genes were found not to influence the oxidative response. The induction of IL-6 from J774A-1 cells depended on the presence of flagella in S. Typhimurium, whilst this was not the case following challenge with S. Dublin. Addition of fliC from S. Typhimurium in trans to a fliC mutant of S. Dublin increased cytotoxicity but it did not increase the IL-6 production. Flagella were demonstrated to contribute to the outcome of infection following oral challenge of mice in S. Dublin, while an S. Typhimurium fliC/fljB mutant showed increased virulence following intra peritoneal challenge. Conclusions The results showed that flagella and chemotaxis genes differed in their role in host pathogen interaction between S. Dublin and S. Typhimurium. Notably, lack of flagella conferred a more virulent phenotype in S. Typhimurium at systemic sites, while this was not the case in S. Dublin. In vitro assays suggested that this could be related to flagella-induced induction of the IL-6 pro-inflammatory response, but further in vivo studies are needed to confirm this.
Collapse
Affiliation(s)
- John Elmerdahl Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|
68
|
Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT. Proc Natl Acad Sci U S A 2013; 110:6133-8. [PMID: 23530206 DOI: 10.1073/pnas.1222655110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Flagellar motility is a key factor for bacterial survival and growth in fluctuating environments. The polar flagellum of a marine bacterium, Vibrio alginolyticus, is driven by sodium ion influx and rotates approximately six times faster than the proton-driven motor of Escherichia coli. The basal body of the sodium motor has two unique ring structures, the T ring and the H ring. These structures are essential for proper assembly of the stator unit into the basal body and to stabilize the motor. FlgT, which is a flagellar protein specific for Vibrio sp., is required to form and stabilize both ring structures. Here, we report the crystal structure of FlgT at 2.0-Å resolution. FlgT is composed of three domains, the N-terminal domain (FlgT-N), the middle domain (FlgT-M), and the C-terminal domain (FlgT-C). FlgT-M is similar to the N-terminal domain of TolB, and FlgT-C resembles the N-terminal domain of FliI and the α/β subunits of F1-ATPase. To elucidate the role of each domain, we prepared domain deletion mutants of FlgT and analyzed their effects on the basal-body ring formation. The results suggest that FlgT-N contributes to the construction of the H-ring structure, and FlgT-M mediates the T-ring association on the LP ring. FlgT-C is not essential but stabilizes the H-ring structure. On the basis of these results, we propose an assembly mechanism for the basal-body rings and the stator units of the sodium-driven flagellar motor.
Collapse
|
69
|
Takekawa N, Kojima S, Homma M. Fluorescence imaging of GFP-fused periplasmic components of Na+-driven flagellar motor using Tat pathway in Vibrio alginolyticus. J Biochem 2013; 153:547-53. [PMID: 23457404 DOI: 10.1093/jb/mvt017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The twin-arginine translocation (Tat) system works to export folded proteins across the cytoplasmic membrane via specific signal peptides harbouring a twin-arginine motif. In Escherichia coli, a functional GFP is exported to the periplasm through the Tat pathway by fusion of the signal peptide of TorA, which is one of the periplasmic proteins exported by the Tat pathway. In this study, we fused the signal peptide of Vibrio alginolyticus TorA (TorASP) to GFP and demonstrate the export of functional GFP to the periplasm of V. alginolyticus. We also made fusions of TorASP-GFP with MotX, MotY and FlgT, which are periplasmic components of the Na(+)-driven flagellar motor. Those fusion proteins were localized to the flagellar motor independent of the Na(+) concentration in the environment.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
70
|
Lu W, Li L, Chen M, Zhou Z, Zhang W, Ping S, Yan Y, Wang J, Lin M. Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase. MOLECULAR BIOSYSTEMS 2013; 9:522-30. [PMID: 23247721 DOI: 10.1039/c2mb25374g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The shikimate pathway enzymes offer attractive targets for the development of antimetabolites. Glyphosate is an effective antimetabolite that inhibits 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase in the shikimate pathway, thereby resulting in a shortage of the chorismate-derived essential aromatic amino acids. However, little is known about the genome-wide transcriptional responses of bacteria to glyphosate shock. In the current study, a transcriptome analysis of Escherichia coli (E. coli) exposed to glyphosate identified the differential expression of 1040 genes, which represent 23.2% of the genome. The differentially expressed genes are primarily involved in amino acid metabolism, cell motility, and central carbon metabolism, indicating that the impact of glyphosate on the shikimate pathway also extends to other metabolic pathways. Expectedly, almost all genes encoding the proteins for the shikimate and specific aromatic amino acid pathways were downregulated after the addition of glyphosate. Furthermore, the expression of many energy- and metabolism-related genes was repressed. In contrast, glyphosate treatment induced the coordinated upregulation of at least 50 genes related to cell motility and chemotaxis. The reverse transcription-quantitative real-time PCR (RT-qPCR) data showed that the expression profiles of selected genes from the referred pathways were found to be consistent with the microarray data. The results suggest that the presence of glyphosate during growth induces metabolic starvation, an energy drain and other non-target effects.
Collapse
Affiliation(s)
- Wei Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Biotechnology, Ministry of Agriculture, Beijing 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Toll-like receptors (TLRs) sense structural patterns in microbial molecules and initiate immune defense mechanisms. The structures of many extracellular and intracellular domains of TLRs have been studied in the last 10 years. These structures reveal the extraordinary diversity of TLR-ligand interactions. Some TLRs use internal hydrophobic pockets to bind bacterial ligands and others use solvent-exposed surfaces to bind hydrophilic ligands. The structures suggest a common activation mechanism for TLRs: ligand binding to extracellular domains induces dimerization of the intracellular domains and so activates intracellular signaling pathways. Recently, the structure of the death domain complex of one of the signaling adapters, myeloid differentiation factor 88 (MyD88), has been determined. This structure shows how aggregation of signaling adapters recruits downstream kinases. However, we are still far from a complete understanding of TLR activation. We need to study the structures of TLR7-10 in complex with their ligands. We also need to determine the structures of TLR-adapter aggregates to understand activation mechanisms and the specificity of the signaling pathways. Ultimately, we will have to study the structures of the complete TLR signaling complexes containing full-length receptors, ligands, signaling, and bridging adapters, and some of the downstream kinases to understand how TLRs sense microbial infections and activate immune responses against them.
Collapse
|
72
|
Takekawa N, Terauchi T, Morimoto YV, Minamino T, Lo CJ, Kojima S, Homma M. Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA. J Biochem 2013; 153:441-51. [PMID: 23420849 DOI: 10.1093/jb/mvt011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PomA and PomB form the stator complex, which functions as a Na(+) channel, in the Na(+)-driven flagellar motor of Vibrio alginolyticus. The plug region of PomB is thought to regulate the Na(+) flow and to suppress massive ion influx through the stator channel. In this study, in order to measure the Na(+) conductivity of the unplugged stator, we over-produced a plug-deleted stator of the Na(+)-driven flagellar motor in Escherichia coli. The over-production of the plug-deleted stator in E. coli cells caused more severe growth inhibition than in Vibrio cells and that growth inhibition depended on the Na(+) concentration in the growth medium. Measurement of intracellular Na(+) concentration by flame photometry and fluorescent analysis with a Na(+) indicator, Sodium Green, revealed that over-production of the plug-deleted stator increased the Na(+) concentration in cell. Some mutations in the channel region of PomB or in the cytoplasmic region of PomA suppressed both the growth inhibition and the increase in intracellular Na(+) concentration. These results suggest that the level of growth inhibition correlates with the intracellular Na(+) concentration, probably due to the Na(+) conductivity through the stator due to the mutations.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
High hydrostatic pressure induces counterclockwise to clockwise reversals of the Escherichia coli flagellar motor. J Bacteriol 2013; 195:1809-14. [PMID: 23417485 DOI: 10.1128/jb.02139-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bacterial flagellar motor is a reversible rotary machine that rotates a left-handed helical filament, allowing bacteria to swim toward a more favorable environment. The direction of rotation reverses from counterclockwise (CCW) to clockwise (CW), and vice versa, in response to input from the chemotaxis signaling circuit. CW rotation is normally caused by binding of the phosphorylated response regulator CheY (CheY-P), and strains lacking CheY are typically locked in CCW rotation. The detailed mechanism of switching remains unresolved because it is technically difficult to regulate the level of CheY-P within the concentration range that produces flagellar reversals. Here, we demonstrate that high hydrostatic pressure can induce CW rotation even in the absence of CheY-P. The rotation of single flagellar motors in Escherichia coli cells with the cheY gene deleted was monitored at various pressures and temperatures. Application of >120 MPa pressure induced a reversal from CCW to CW at 20°C, although at that temperature, no motor rotated CW at ambient pressure (0.1 MPa). At lower temperatures, pressure-induced changes in direction were observed at pressures of <120 MPa. CW rotation increased with pressure in a sigmoidal fashion, as it does in response to increasing concentrations of CheY-P. Application of pressure generally promotes the formation of clusters of ordered water molecules on the surfaces of proteins. It is possible that hydration of the switch complex at high pressure induces structural changes similar to those caused by the binding of CheY-P.
Collapse
|
74
|
Abe-Yoshizumi R, Kobayashi S, Gohara M, Hayashi K, Kojima C, Kojima S, Sudo Y, Asami Y, Homma M. Expression, purification and biochemical characterization of the cytoplasmic loop of PomA, a stator component of the Na(+) driven flagellar motor. Biophysics (Nagoya-shi) 2013; 9:21-9. [PMID: 27493537 PMCID: PMC4629686 DOI: 10.2142/biophysics.9.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/08/2013] [Indexed: 12/30/2022] Open
Abstract
Flagellar motors embedded in bacterial membranes are molecular machines powered by specific ion flows. Each motor is composed of a stator and a rotor and the interactions of those components are believed to generate the torque. Na+ influx through the PomA/PomB stator complex of Vibrio alginolyticus is coupled to torque generation and is speculated to trigger structural changes in the cytoplasmic domain of PomA that interacts with a rotor protein in the C-ring, FliG, to drive the rotation. In this study, we tried to overproduce the cytoplasmic loop of PomA (PomA-Loop), but it was insoluble. Thus, we made a fusion protein with a small soluble tag (GB1) which allowed us to express and characterize the recombinant protein. The structure of the PomA-Loop seems to be very elongated or has a loose tertiary structure. When the PomA-Loop protein was produced in E. coli, a slight dominant effect was observed on motility. We conclude that the cytoplasmic loop alone retains a certain function.
Collapse
Affiliation(s)
- Rei Abe-Yoshizumi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shiori Kobayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mizuki Gohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kokoro Hayashi
- Laboratory of Biophysics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Chojiro Kojima
- Laboratory of Biophysics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yasuo Asami
- TA Instruments Japan, Inc., 5-2-4, Nishi-gotanda, Shinagawa-ku, Tokyo 141-0031, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
75
|
Ahn DR, Song H, Kim J, Lee S, Park S. The crystal structure of an activated Thermotoga maritima CheY with N-terminal region of FliM. Int J Biol Macromol 2012; 54:76-83. [PMID: 23237794 DOI: 10.1016/j.ijbiomac.2012.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
Abstract
In bacterial chemotaxis, the levels of phosphorylated CheY in association with FliM determine the sense of the flagella rotation, which in turn controls the bacterial swimming behavior. We report the 1.7Å resolution crystallographic structure of the Thermotoga maritima BeF(3)(-)-activated CheY in complex with the CheY-binding N-terminal region of FliM. Analysis of the structure in comparison to the previously reported Escherichia coli counterpart reveals that similar regions of H4-β5-H5 in CheY and the helix in FliM are used for the complex interfaces. Our structure also indicates that the correlated movement of Phe101 and Ser82 (F-S coupling) in T. maritima CheY upon phosphorylation and FliM binding, parallels that of Tyr106 and Thr87 (Y-T coupling) demonstrated in E. coli CheY. Furthermore, significant displacements of the β4-H4 loop in both CheYs impose a crucial role of this loop, which can be related to flagellar switch component binding or to propagating changes that is necessary during the CheY-mediated reversal of the motor.
Collapse
Affiliation(s)
- Dae-Ro Ahn
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | | | | | | | | |
Collapse
|
76
|
Microscopic analysis of bacterial motility at high pressure. Biophys J 2012; 102:1872-80. [PMID: 22768943 DOI: 10.1016/j.bpj.2012.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 12/13/2022] Open
Abstract
The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment.
Collapse
|
77
|
High efficiency motility of bacteria-driven liposome with raft domain binding method. Biomed Microdevices 2012; 14:1027-32. [DOI: 10.1007/s10544-012-9711-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
78
|
A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+. PLoS One 2012; 7:e46248. [PMID: 23049994 PMCID: PMC3457975 DOI: 10.1371/journal.pone.0046248] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
In bacteria, the sodium ion (Na(+)) cycle plays a critical role in negotiating the challenges of an extremely alkaline and sodium-rich environment. Alkaliphilic bacteria that grow optimally at high pH values use Na(+) for solute uptake and flagellar rotation because the proton (H(+)) motive force is insufficient for use at extremely alkaline pH. Only three types of electrically driven rotary motors exist in nature: the F-type ATPase, the V-type ATPase, and the bacterial flagellar motor. Until now, only H(+) and Na(+) have been reported as coupling ions for these motors. Here, we report that the alkaliphilic bacterium Bacillus alcalophilus Vedder 1934 can grow not only under a Na(+)-rich and potassium ion (K(+))-poor condition but also under the opposite condition in an extremely alkaline environment. In this organism, swimming performance depends on concentrations of Na(+), K(+) or Rb(+). In the absence of Na(+), swimming behavior is clearly K(+)- dependent. This pattern was confirmed in swimming assays of stator-less Bacillus subtilis and Escherichia coli mutants expressing MotPS from B. alcalophilus (BA-MotPS). Furthermore, a single mutation in BA-MotS was identified that converted the naturally bi-functional BA-MotPS to stators that cannot use K(+) or Rb(+). This is the first report that describes a flagellar motor that can use K(+) and Rb(+) as coupling ions. The finding will affect the understanding of the operating principles of flagellar motors and the molecular mechanisms of ion selectivity, the field of the evolution of environmental changes and stresses, and areas of nanotechnology.
Collapse
|
79
|
Bacterial motility measured by a miniature chamber for high-pressure microscopy. Int J Mol Sci 2012; 13:9225-9239. [PMID: 22942763 PMCID: PMC3430294 DOI: 10.3390/ijms13079225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 01/13/2023] Open
Abstract
Hydrostatic pressure is one of the physical stimuli that characterize the environment of living matter. Many microorganisms thrive under high pressure and may even physically or geochemically require this extreme environmental condition. In contrast, application of pressure is detrimental to most life on Earth; especially to living organisms under ambient pressure conditions. To study the mechanism of how living things adapt to high-pressure conditions, it is necessary to monitor directly the organism of interest under various pressure conditions. Here, we report a miniature chamber for high-pressure microscopy. The chamber was equipped with a built-in separator, in which water pressure was properly transduced to that of the sample solution. The apparatus developed could apply pressure up to 150 MPa, and enabled us to acquire bright-field and epifluorescence images at various pressures and temperatures. We demonstrated that the application of pressure acted directly and reversibly on the swimming motility of Escherichia coli cells. The present technique should be applicable to a wide range of dynamic biological processes that depend on applied pressures.
Collapse
|
80
|
Olsen JE, Hoegh-Andersen KH, Casadesús J, Thomsen LE. The importance of motility and chemotaxis for extra-animal survival of Salmonella enterica serovar Typhimurium and Dublin. J Appl Microbiol 2012; 113:560-8. [PMID: 22716502 DOI: 10.1111/j.1365-2672.2012.05363.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/27/2022]
Abstract
AIMS This study investigated the importance of flagella and motility of Salmonella enterica serovar Typhimurium and Dublin in models of extra-animal survival. METHODS AND RESULTS The study was performed using transposon mutants in flagella genes fliC and fljB and in chemotaxis genes cheA, cheB and cheR. Flagella and chemotaxis were found to be of minor importance for attachment to plant leaves, survival in liquid manure and interaction with the nematode C. elegans, while differences were observed between the fliC mutant and the wild-type strain of S. Dublin in interactions with amoebae. CONCLUSIONS The study shows that flagella and chemotaxis play a minor role in extra-animal survival of these two serovars of Salmonella under the conditions tested. SIGNIFICANCE AND IMPACT OF THE STUDY Extra-animal survival is important in the full infection cycle for zoonotic salmonellae. Such serovars are motile. Even though the current study was only based on the characterization of two serovars, it strongly suggests that motility and chemotaxis are of minor importance during the spread of Salmonella from one animal to the next through the external environment.
Collapse
Affiliation(s)
- J E Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
81
|
Park S, Crane BR. Structural insight into the low affinity between Thermotoga maritima CheA and CheB compared to their Escherichia coli/Salmonella typhimurium counterparts. Int J Biol Macromol 2011; 49:794-800. [PMID: 21816169 PMCID: PMC3204391 DOI: 10.1016/j.ijbiomac.2011.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 01/07/2023]
Abstract
CheA-mediated CheB phosphorylation and the subsequent CheB-mediated demethylation of the chemoreceptors are important steps required for the bacterial chemotactic adaptation response. Although Escherichia coli CheB has been reported to interact with CheA competitively against CheY, we have observed that Thermotoga maritima CheB has no detectable CheA-binding. By determining the CheY-like domain crystal structure of T. maritima CheB, and comparing against the T. maritima CheY and Salmonella typhimurium CheB structures, we propose that the two consecutive glutamates in the β4/α4 loop of T. maritima CheB that is absent in T. maritima CheY and in E. coli/S. typhimurium CheB may be one factor contributing to the low CheA affinity.
Collapse
Affiliation(s)
- SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea,To whom correspondence should be addressed: SangYoun Park, PhD, School of Systems Biomedical Science, College of Natural Sciences, Soongsil University, 511 Sangdo-Dong, Dongjak-Gu, Seoul 156-743, Korea, Phone: 82-2-820-0456, Fax: 82-2-824-4383,
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
82
|
Abstract
After a childhood in Germany and being a youth in Grand Forks, North Dakota, I went to Harvard University, then to graduate school in biochemistry at the University of Wisconsin. Then to Washington University and Stanford University for postdoctoral training in biochemistry and genetics. Then at the University of Wisconsin, as a professor in the Department of Biochemistry and the Department of Genetics, I initiated research on bacterial chemotaxis. Here, I review this research by me and by many, many others up to the present moment. During the past few years, I have been studying chemotaxis and related behavior in animals, namely in Drosophila fruit flies, and some of these results are presented here. My current thinking is described.
Collapse
Affiliation(s)
- Julius Adler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
83
|
A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:17171-6. [PMID: 21969567 DOI: 10.1073/pnas.1110111108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The direction of flagellar rotation is regulated by a rotor-mounted protein assembly, termed the "switch complex," formed from multiple copies of the proteins FliG, FliM, and FliN. The structures of major parts of these proteins are known, and the overall organization of proteins in the complex has been elucidated previously using a combination of protein-binding, mutational, and cross-linking approaches. In Escherichia coli, the switch from counterclockwise to clockwise rotation is triggered by the signaling protein phospho-CheY, which binds to the lower part of the switch complex and induces small movements of FliM and FliN subunits relative to each other. Direction switching also must produce movements in the upper part of the complex, particularly in the C-terminal domain of FliG (FliG(C)), which interacts with the stator to generate the torque for flagellar rotation. In the present study, protein movements in the middle and upper parts of the switch complex have been probed by means of targeted cross-linking and mutational analysis. Switching induces a tilting movement of the FliM domains that form the middle part of the switch and a consequent rotation of the affixed FliG(C) domains that reorients the stator interaction sites by about 90°. In a recently proposed hypothesis for the motor mechanism, such a reorientation of FliG(C) would reverse the direction of motor rotation.
Collapse
|
84
|
Naturally occurring motility-defective mutants of Salmonella enterica serovar Enteritidis isolated preferentially from nonhuman rather than human sources. Appl Environ Microbiol 2011; 77:7740-8. [PMID: 21926214 DOI: 10.1128/aem.05318-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonellosis represents a worldwide health problem because it is one of the major causes of food-borne disease. Although motility is postulated as an important Salmonella virulence attribute, there is little information about variation in motility in natural isolates. Here we report the identification of a point mutation (T551 → G) in motA, a gene essential for flagellar rotation, in several Salmonella enterica serovar Enteritidis field isolates. This mutation results in bacteria that can biosynthesize structurally normal but paralyzed flagella and are impaired in their capacity to invade human intestinal epithelial cells. Introduction of a wild-type copy of motA into one of these isolates restored both motility and cell invasiveness. The motA mutant triggered higher proinflammatory transcriptional responses than an aflagellate isolate in differentiated Caco-2 cells, suggesting that the paralyzed flagella are able to signal through pattern recognition receptors. A specific PCR was designed to screen for the T551 → G mutation in a collection of 266 S. Enteritidis field isolates from a nationwide epidemic, comprising 194 from humans and 72 from other sources. We found that 72 of the 266 (27%) isolates were nonmotile, including 24.7% (48/194) of human and 33.3% (24/72) of food isolates. Among nonmotile isolates, 15 carried the T551 → G mutation and, significantly, 13 were recovered from food, including 7 from eggs, but only 2 were from human sources. These results suggest that the presence of paralyzed flagella may impair the ability of S. Enteritidis to cause disease in the human host but does not prevent its ability to colonize chickens and infect eggs.
Collapse
|
85
|
Koike M, Nishioka N, Kojima S, Homma M. Characterization of the flagellar motor composed of functional GFP-fusion derivatives of FliG in the Na +-driven polar flagellum of Vibrio alginolyticus. Biophysics (Nagoya-shi) 2011; 7:59-67. [PMID: 27857593 PMCID: PMC5036772 DOI: 10.2142/biophysics.7.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/18/2011] [Indexed: 12/01/2022] Open
Abstract
The polar flagellum of Vibrio alginolyticus is driven by sodium ion flux via a stator complex, composed of PomA and PomB, across the cell membrane. The interaction between PomA and the rotor component FliG is believed to generate torque required for flagellar rotation. Previous research reported that a GFP-fused FliG retained function in the Vibrio flagellar motor. In this study, we found that N-terminal or C-terminal fusion of GFP has different effects on both torque generation and the switching frequency of the direction of flagellar motor rotation. We could detect the GFP-fused FliG in the basal-body (rotor) fraction although its association with the basal body was less stable than that of intact FliG. Furthermore, the fusion of GFP to the C-terminus of FliG, which is believed to be directly involved in torque generation, resulted in very slow motility and prohibited the directional change of motor rotation. On the other hand, the fusion of GFP to the N-terminus of FliG conferred almost the same swimming speed as intact FliG. These results are consistent with the premise that the C-terminal domain of FliG is directly involved in torque generation and the GFP fusions are useful to analyze the functions of various domains of FliG.
Collapse
Affiliation(s)
- Masafumi Koike
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Noriko Nishioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| |
Collapse
|
86
|
Abstract
The Na(+) -driven bacterial flagellar motor is a molecular machine powered by an electrochemical potential gradient of sodium ions across the cytoplasmic membrane. The marine bacterium Vibrio alginolyticus has a single polar flagellum that enables it to swim in liquid. The flagellar motor contains a basal body and a stator complexes, which are composed of several proteins. PomA, PomB, MotX, and MotY are thought to be essential components of the stator that are required to generate the torque of the rotation. Several mutations have been investigated to understand the characteristics and function of the ion channel in the stator and the mechanism of its assembly around the rotor to complete the motor. In this review, we summarize recent results of the Na(+) -driven motor in the polar flagellum of Vibrio.
Collapse
Affiliation(s)
- Na Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | | | | |
Collapse
|
87
|
Cho KH, Crane BR, Park S. An insight into the interaction mode between CheB and chemoreceptor from two crystal structures of CheB methylesterase catalytic domain. Biochem Biophys Res Commun 2011; 411:69-75. [PMID: 21722627 PMCID: PMC3158910 DOI: 10.1016/j.bbrc.2011.06.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/13/2011] [Indexed: 01/07/2023]
Abstract
We have determined 2.2 Å resolution crystal structure of Thermotoga maritima CheB methylesterase domain to provide insight into the interaction mode between CheB and chemoreceptors. T. maritima CheB methylesterase domain has identical topology of a modified doubly-wound α/β fold that was observed from the previously reported Salmonella typhimurium counterpart, but the analysis of the electrostatic potential surface near the catalytic triad indicated considerable charge distribution difference. As the CheB demethylation consensus sites of the chemoreceptors, the CheB substrate, are not uniquely conserved between T. maritima and S. typhimurium, such surfaces with differing electrostatic properties may reflect CheB regions that mediate protein-protein interaction. Via the computational docking of the two T. maritima and S. typhimurium CheB structures to the respective T. maritima and Escherichia coli chemoreceptors, we propose a CheB:chemoreceptor interaction mode.
Collapse
Affiliation(s)
- Kwang-Hwi Cho
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea
| |
Collapse
|
88
|
Oliveira R, de Morais ZM, Gonçales AP, Romero EC, Vasconcellos SA, Nascimento ALTO. Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen. PLoS One 2011; 6:e21962. [PMID: 21755014 PMCID: PMC3130794 DOI: 10.1371/journal.pone.0021962] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022] Open
Abstract
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K(D) of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.
Collapse
Affiliation(s)
- Rosane Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Zenaide Maria de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Amane Paldes Gonçales
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Silvio Arruda Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
89
|
Motaleb MA, Pitzer JE, Sultan SZ, Liu J. A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant. J Bacteriol 2011; 193:3324-31. [PMID: 21441522 PMCID: PMC3133274 DOI: 10.1128/jb.00202-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/14/2011] [Indexed: 12/27/2022] Open
Abstract
Motility and chemotaxis are essential components of pathogenesis for many infectious bacteria, including Borrelia burgdorferi, the causative agent of Lyme disease. Motility and chemotaxis genes comprise 5 to 6% of the genome of B. burgdorferi, yet the functions of most of those genes remain uncharacterized, mainly due to the paucity of a nonpolar gene inactivation system. In this communication, we describe the development of a novel gene inactivation methodology to target B. burgdorferi fliL, a putative periplasmic flagellar gene located in a large motility operon and transcribed by RNA polymerase containing σ(70). Although the morphology of nonpolar fliL mutant cells was indistinguishable from that of wild-type cells, the mutant exhibited a defective-motility phenotype. Cryo-electron tomography (cryo-ET) of intact organisms revealed that the periplasmic flagella in the fliL mutant were frequently tilted toward the cell pole instead of their normal orientation toward the cell body. These defects were corrected when the mutant was complemented in cis. Moreover, a comparative analysis of flagellar motors from the wild type and the mutant provides the first structural evidence that FliL is localized between the stator and rotor. Our results suggest that FliL is likely involved in coordinating or regulating the orientation of periplasmic flagella in B. burgdorferi.
Collapse
Affiliation(s)
- M. A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, North Carolina 27834
| | - Joshua E. Pitzer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, North Carolina 27834
| | - Syed Z. Sultan
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, North Carolina 27834
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 2.228, Houston, Texas 77030
| |
Collapse
|
90
|
Structure of the flagellar motor protein complex PomAB: implications for the torque-generating conformation. J Bacteriol 2011; 193:3863-70. [PMID: 21642461 DOI: 10.1128/jb.05021-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bacterial flagellar motor is driven by an ion flux through a channel called MotAB in Escherichia coli or Salmonella and PomAB in Vibrio alginolyticus. PomAB is composed of two transmembrane (TM) components, PomA and PomB, and converts a sodium ion flux to rotation of the flagellum. Its homolog, MotAB, utilizes protons instead of sodium ions. PomB/MotB has a peptidoglycan (PG)-binding motif in the periplasmic domain, allowing it to function as the stator by being anchored to the PG layer. To generate torque, PomAB/MotAB is thought to undergo a conformational change triggered by the ion flux and to interact directly with FliG, a component of the rotor. Here, we present the first three-dimensional structure of this torque-generating stator unit analyzed by electron microscopy. The structure of PomAB revealed two arm domains, which contain the PG-binding site, connected to a large base made of the TM and cytoplasmic domains. The arms lean downward to the membrane surface, likely representing a "plugged" conformation, which would prevent ions leaking through the channel. We propose a model for how PomAB units are placed around the flagellar basal body to function as torque generators.
Collapse
|
91
|
Erhardt M, Namba K, Hughes KT. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol 2010; 2:a000299. [PMID: 20926516 DOI: 10.1101/cshperspect.a000299] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The bacterial flagellum and the virulence-associated injectisome are complex, structurally related nanomachines that bacteria use for locomotion or the translocation of virulence factors into eukaryotic host cells. The assembly of both structures and the transfer of extracellular proteins is mediated by a unique, multicomponent transport apparatus, the type III secretion system. Here, we discuss the significant progress that has been made in recent years in the visualization and functional characterization of many components of the type III secretion system, the structure of the bacterial flagellum, and the injectisome complex.
Collapse
Affiliation(s)
- Marc Erhardt
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| | | | | |
Collapse
|
92
|
The flagellar protein FliL is essential for swimming in Rhodobacter sphaeroides. J Bacteriol 2010; 192:6230-9. [PMID: 20889747 DOI: 10.1128/jb.00655-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this work we characterize the function of the flagellar protein FliL in Rhodobacter sphaeroides. Our results show that FliL is essential for motility in this bacterium and that in its absence flagellar rotation is highly impaired. A green fluorescent protein (GFP)-FliL fusion forms polar and lateral fluorescent foci that show different spatial dynamics. The presence of these foci is dependent on the expression of the flagellar genes controlled by the master regulator FleQ, suggesting that additional components of the flagellar regulon are required for the proper localization of GFP-FliL. Eight independent pseudorevertants were isolated from the fliL mutant strain. In each of these strains a single nucleotide change in motB was identified. The eight mutations affected only three residues located on the periplasmic side of MotB. Swimming of the suppressor mutants was not affected by the presence of the wild-type fliL allele. Pulldown and yeast two-hybrid assays showed that that the periplasmic domain of FliL is able to interact with itself but not with the periplasmic domain of MotB. From these results we propose that FliL could participate in the coupling of MotB with the flagellar rotor in an indirect fashion.
Collapse
|
93
|
Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 2010; 403:546-61. [PMID: 20850455 DOI: 10.1016/j.jmb.2010.09.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 12/25/2022]
Abstract
High-resolution cryo electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member of the spirochetal family. High-resolution cryo-ET reconstructions provided detailed structures of the cell envelope, which is significantly different from that of Gram-negative bacteria. The 4-nm lipid bilayer of both outer membrane and cytoplasmic membrane resolved in 3D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High-resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located cone-shaped structure at both ends of the bacterium. Furthermore, 3D subvolume averages of periplasmic flagellar motors and flagellar filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Our findings provide the most detailed structural understanding of periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and to escape host immune responses.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, 6431 Fannin, MSB 2.228, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
94
|
The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio motor. J Bacteriol 2010; 192:5609-15. [PMID: 20729351 DOI: 10.1128/jb.00720-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Vibrio alginolyticus, the flagellar motor can rotate at a remarkably high speed, ca. three to four times faster than the Escherichia coli or Salmonella motor. Here, we found a Vibrio-specific protein, FlgT, in the purified flagellar basal body fraction. Defects of FlgT resulted in partial Fla⁻ and Mot⁻ phenotypes, suggesting that FlgT is involved in formation of the flagellar structure and generating flagellar rotation. Electron microscopic observation of the basal body of ΔflgT cells revealed a smaller LP ring structure compared to the wild type, and most of the T ring was lost. His₆-tagged FlgT could be coisolated with MotY, the T-ring component, suggesting that FlgT may interact with the T ring composed of MotX and MotY. From these lines of evidence, we conclude that FlgT associates with the basal body and is responsible to form an outer ring of the LP ring, named the H ring, which can be distinguished from the LP ring formed by FlgH and FlgI. Vibrio-specific structures, e.g., the T ring and H ring might contribute the more robust motor structure compared to that of E. coli and Salmonella.
Collapse
|
95
|
Morris DP, Roush ED, Thompson JW, Moseley MA, Murphy JW, McMurry JL. Kinetic characterization of Salmonella FliK-FlhB interactions demonstrates complexity of the Type III secretion substrate-specificity switch. Biochemistry 2010; 49:6386-93. [PMID: 20586476 PMCID: PMC2912450 DOI: 10.1021/bi100487p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The bacterial flagellum is a complex macromolecular machine consisting of more than 20 000 proteins, most of which must be exported from the cell via a dedicated Type III secretion apparatus. At a defined point in flagellar morphogenesis, hook completion is sensed and the apparatus switches substrate specificity type from rod and hook proteins to filament ones. How the switch works is a subject of intense interest. FliK and FlhB play central roles. In the present study, two optical biosensing methods were used to characterize FliK-FlhB interactions using wild-type and two variant FlhBs from mutants with severe flagellar structural defects. Binding was found to be complex with fast and slow association and dissociation components. Surprisingly, wild-type and variant FlhBs had similar kinetic profiles and apparent affinities, which ranged between 1 and 10.5 microM, suggesting that the specificity switch is more complex than presently understood. Other binding experiments provided evidence for a conformational change after binding. Liquid chromatography-mass spectrometry (LC-MS) and NMR experiments were performed to identify a cyclic intermediate product whose existence supports the mechanism of autocatalytic cleavage at FlhB residue N269. The present results show that while autocatalytic cleavage is necessary for proper substrate specificity switching, it does not result in an altered interaction with FliK, strongly suggesting the involvement of other proteins in the mechanism.
Collapse
Affiliation(s)
- Daniel P. Morris
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, GE Healthcare, Piscataway, NJ
| | - Eric D. Roush
- Institute for Genome Sciences and Policy, Durham, NC 27710
| | | | | | - James W. Murphy
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Jonathan L. McMurry
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, GA 30144
| |
Collapse
|
96
|
Darnton NC, Turner L, Rojevsky S, Berg HC. Dynamics of bacterial swarming. Biophys J 2010; 98:2082-90. [PMID: 20483315 PMCID: PMC2872219 DOI: 10.1016/j.bpj.2010.01.053] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/04/2010] [Accepted: 01/22/2010] [Indexed: 12/30/2022] Open
Abstract
When vegetative bacteria that can swim are grown in a rich medium on an agar surface, they become multinucleate, elongate, synthesize large numbers of flagella, produce wetting agents, and move across the surface in coordinated packs: they swarm. We examined the motion of swarming Escherichia coli, comparing the motion of individual cells to their motion during swimming. Swarming cells' speeds are comparable to bulk swimming speeds, but very broadly distributed. Their speeds and orientations are correlated over a short distance (several cell lengths), but this correlation is not isotropic. We observe the swirling that is conspicuous in many swarming systems, probably due to increasingly long-lived correlations among cells that associate into groups. The normal run-tumble behavior seen in swimming chemotaxis is largely suppressed, instead, cells are continually reoriented by random jostling by their neighbors, randomizing their directions in a few tenths of a second. At the edge of the swarm, cells often pause, then swim back toward the center of the swarm or along its edge. Local alignment among cells, a necessary condition of many flocking theories, is accomplished by cell body collisions and/or short-range hydrodynamic interactions.
Collapse
Affiliation(s)
| | | | | | - Howard C. Berg
- Rowland Institute at Harvard University, Cambridge, Massachusetts
| |
Collapse
|
97
|
Abstract
Many bacteria are motile by means of flagella, semi-rigid helical filaments rotated at the filament's base and energized by proton or sodium-ion gradients. Torque is created between the two major components of the flagellar motor: the rotating switch complex and the cell-wall-associated stators, which are arranged in a dynamic ring-like structure. Being motile provides a survival advantage to many bacteria, and thus the flagellar motor should work optimally under a wide range of environmental conditions. Recent studies have demonstrated that numerous species possess a single flagellar system but have two or more individual stator systems that contribute differentially to flagellar rotation. This review describes recent findings on rotor–stator interactions, on the role of different stators, and on how stator selection could be regulated. An emerging model suggests that bacterial flagellar motors are dynamic and can be tuned by stator swapping in response to different environmental conditions.
Collapse
Affiliation(s)
- Kai M. Thormann
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | - Anja Paulick
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| |
Collapse
|
98
|
Fujii T, Kato T, Namba K. Specific arrangement of alpha-helical coiled coils in the core domain of the bacterial flagellar hook for the universal joint function. Structure 2010; 17:1485-93. [PMID: 19913483 DOI: 10.1016/j.str.2009.08.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/24/2009] [Indexed: 11/24/2022]
Abstract
The bacterial flagellar hook is a short, highly curved tubular structure connecting the rotary motor to the filament acting as a helical propeller. The bending flexibility of the hook allows it to work as a universal joint. A partial atomic model of the hook revealed a sliding intersubunit domain interaction along the protofilament to produce bending flexibility. However, it remained unclear how the tightly packed inner core domains can still permit axial extension and compression. We report advances in cryoEM image analysis for high-resolution, high-throughput structural analysis and a density map of the hook that reveals most of the secondary structures, including the terminal alpha helices forming a coiled coil. The orientations and axial packing interactions of these two alpha helices are distinctly different from those of the filament, allowing them to have a room for axial compression and extension for bending flexibility without impairing the mechanical stability of the hook.
Collapse
Affiliation(s)
- Takashi Fujii
- Dynamic NanoMachine Project, ICORP, JST, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
99
|
Chen J, Neu J, Miyata M, Oster G. Motor-substrate interactions in mycoplasma motility explains non-Arrhenius temperature dependence. Biophys J 2010; 97:2930-8. [PMID: 19948122 DOI: 10.1016/j.bpj.2009.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/04/2009] [Accepted: 09/11/2009] [Indexed: 11/26/2022] Open
Abstract
Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by approximately 400 "leg" proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40 degrees C. This corresponds to an Arrhenius factor that decreases from approximately 45 k(B)T at 10 degrees C to approximately 10 k(B)T at 40 degrees C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.
Collapse
Affiliation(s)
- Jing Chen
- Biophysics Graduate Group, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
100
|
Erhardt M, Hirano T, Su Y, Paul K, Wee DH, Mizuno S, Aizawa SI, Hughes KT. The role of the FliK molecular ruler in hook-length control in Salmonella enterica. Mol Microbiol 2010; 75:1272-84. [PMID: 20132451 DOI: 10.1111/j.1365-2958.2010.07050.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A molecular ruler, FliK, controls the length of the flagellar hook. FliK measures hook length and catalyses the secretion-substrate specificity switch from rod-hook substrate specificity to late substrate secretion, which includes the filament subunits. Here, we show normal hook-length control and filament assembly in the complete absence of the C-ring thus refuting the previous 'cup' model for hook-length control. Mutants of C-ring components, which are reported to produce short hooks, show a reduced rate of hook-basal body assembly thereby allowing for a premature secretion-substrate specificity switch. Unlike fliK null mutants, hook-length control in an autocleavage-defective mutant of flhB, the protein responsible for the switch to late substrate secretion, is completely abolished. FliK deletion variants that retain the ability to measure hook length are secreted thus demonstrating that FliK directly measures rod-hook length during the secretion process. Finally, we present a unifying model accounting for all published data on hook-length control in which FliK acts as a molecular ruler that takes measurements of rod-hook length while being intermittently secreted during the assembly process of the hook-basal body complex.
Collapse
Affiliation(s)
- Marc Erhardt
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|