51
|
Liver Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
52
|
Chen ML, Lee KD, Huang HC, Tsai YL, Wu YC, Kuo TM, Hu CP, Chang C. HNF-4α determines hepatic differentiation of human mesenchymal stem cells from bone marrow. World J Gastroenterol 2010; 16:5092-103. [PMID: 20976847 PMCID: PMC2965287 DOI: 10.3748/wjg.v16.i40.5092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs).
METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either reverse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods.
RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF-4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes.
CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications.
Collapse
|
53
|
Activation of PPARα by bezafibrate negatively affects de novo synthesis of sphingolipids in regenerating rat liver. Prostaglandins Other Lipid Mediat 2010; 93:120-5. [PMID: 20851774 DOI: 10.1016/j.prostaglandins.2010.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/21/2010] [Accepted: 09/02/2010] [Indexed: 11/21/2022]
Abstract
Serine palmitoyltransferase (SPT) is a key enzyme in de novo sphingolipid biosynthesis. SPT activity in liver is up-regulated by pro-inflammatory cytokines, which play an important role in initiation of liver regeneration after partial hepatectomy (PH). The aim of the study was to investigate the impact of a high-fat diet or PPARα activation by bezafibrate on the activity and protein expression of SPT in rat liver after PH. The animals were divided into three groups: those fed a standard chow (SD), those fed a high-fat diet (HFD), and those treated with bezafibrate (BF). It has been found that the expression and activity of SPT increased in regenerating liver. This was accompanied by the elevation of plasma NEFA concentration. Moreover, in both diet groups, the content of sphinganine increased. Bezafibrate decreased protein expression of SPT at the 4th and 12th hour, and inhibited SPT activity at the 4th hour after PH. Both, the plasma NEFA concentration and sphinganine content decreased in the groups treated with bezafibrate. We conclude that partial hepatectomy stimulates de novo sphingolipid synthesis. Activation of PPARα by bezafibrate negatively affects this process, presumably by decreasing the availability of plasma-borne fatty acids.
Collapse
|
54
|
Sugiyama Y, Koike T, Shiojiri N. Developmental changes of cell adhesion molecule expression in the fetal mouse liver. Anat Rec (Hoboken) 2010; 293:1698-710. [PMID: 20687112 DOI: 10.1002/ar.21204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 03/08/2010] [Accepted: 04/08/2010] [Indexed: 01/11/2023]
Abstract
Developmental changes of cell adhesion molecule expression, especially in nonparenchymal cells, have hardly ever been analyzed in the murine liver. The present study was undertaken to immunohistochemically examine the expression of NCAM, ICAM, VCAM, and N-cadherin during mouse liver development and in fetal liver cell cultures. NCAM was transiently expressed in mesenchymal cells of the septum transversum and sinusoidal cells in liver development. In vitro studies demonstrated that desmin-positive stellate cells expressed this cell adhesion molecule. NCAM expression in periportal biliary epithelial cells and connective tissue cells also coincided well with bile duct remodeling processes in the perinatal periods. Expression of ICAM and VCAM was transiently restricted to hepatoblasts, hepatocytes and hemopoietic cells in fetal stages. N-cadherin was expressed not only in hepatoblasts and hepatocytes, but also in nonparenchymal cells such as endothelial cells, stellate cells and connective tissue cells, however the expression was weak. These results suggest that each cell adhesion molecule may play an important role during development in hepatic histogenesis, including hepatoblast/hepatocyte-stellate cell interactions, hemopoiesis, and bile duct morphogenesis.
Collapse
Affiliation(s)
- Yoshinori Sugiyama
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka City, Japan
| | | | | |
Collapse
|
55
|
Lue J, Lin G, Ning H, Xiong A, Lin CS, Glenn JS. Transdifferentiation of adipose-derived stem cells into hepatocytes: a new approach. Liver Int 2010; 30:913-22. [PMID: 20353420 DOI: 10.1111/j.1478-3231.2010.02231.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Several studies have demonstrated techniques in differentiating human adipose-derived stem cells (hADSCs) into hepatocytes. Unfortunately, transdifferentiation is inefficient, and the function of these induced hepatocyte-like cells (which we termed 'iHeps') is low compared with that of real hepatocytes. AIMS We aimed to identify transcriptional deficiencies in iHeps that are critical to hepatocyte development, which may provide insights into improving the efficiency of transdifferentiation. METHODS hADSCs were differentiated into iHeps, and iHeps were assayed for hepatocyte-like activity. iHeps were then screened for expression of several growth factors, receptors and transcription factors (TFs) critical to liver development using reverse transcription-polymerase chain reaction (RT-PCR). Deficient TFs were transduced into hADSCs and hepatocyte function was reassessed after hepatic differentiation. RESULTS Differentiation of hADSCs into iHeps resulted in the upregulation of hepatic proteins. However, the levels of expression of hepatocyte-specific proteins in these iHeps were well below those of Huh 7.5 hepatoma cells, used in comparison. Five developmental TFs were notably absent on the RT-PCR screen. Lentiviral transduction of these TFs into hADSCs followed by culture in hepatocyte induction medium resulted in increased albumin expression compared with untransduced hADSCs treated in a parallel fashion. CONCLUSIONS These five missing TFs are known to regulate hepatocyte differentiation and some are required to establish the competence of the foregut endoderm. Presumably due to their mesenchymal lineage, hADSCs do not express these endodermal TFs and are not fully competent to respond to critical developmental signals. Supplementation of these TFs may induce competency and enhance the differentiation of hADSCs into hepatocytes.
Collapse
Affiliation(s)
- James Lue
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol 2010; 2010:984248. [PMID: 20169172 PMCID: PMC2821627 DOI: 10.1155/2010/984248] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 11/12/2009] [Indexed: 02/06/2023] Open
Abstract
The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.
Collapse
|
57
|
Lemaigre F. Markers and signaling factors for stem cell differentiation to hepatocytes: lessons from developmental studies. Methods Mol Biol 2010; 640:157-66. [PMID: 20645051 DOI: 10.1007/978-1-60761-688-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liver transplantation is the preferred option to treat a number of hepatic diseases in adults and children, but the number of patients on the waiting list is exceeding the number of available livers for transplantation. Hepatocytes differentiated in vitro from stem cells are a promising and renewable source of tissue for transplantation. The principles guiding programmed differentiation of stem cells to hepatocytes are largely based on knowledge gained from studies on embryonic development of the liver. How key findings in developmental biology are translated into cell culture protocols driving stepwise differentiation of hepatocytes is illustrated in this chapter.
Collapse
Affiliation(s)
- Frédéric Lemaigre
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
58
|
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871-90. [PMID: 19945376 DOI: 10.1016/j.cell.2009.11.007] [Citation(s) in RCA: 7613] [Impact Index Per Article: 475.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
Collapse
|
59
|
Locke JE, Shamblott MJ, Cameron AM. Stem cells and the liver: clinical applications in transplantation. Adv Surg 2009; 43:35-51. [PMID: 19845168 DOI: 10.1016/j.yasu.2009.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ESLD affects millions of Americans, and HCV is a worldwide pandemic. Unfortunately, the ability to study liver disease and novel therapeutics experimentally in the laboratory is limited by an ongoing lack of small animal models. The development of rodents with livers chimeric for human hepatocytes may improve this situation. The authors' efforts currently use an immunodeficient or exogenously immunosuppressed animal with subsequent liver injury provided by chemical or surgical means. Cell transplantation with either human hepatocytes or human stem cells results in engraftment and subsequent "humanization" of an animal liver. Study of these animal models may lead to innovative approaches to the management of ESLD in both children and adults.
Collapse
Affiliation(s)
- Jayme E Locke
- Division of Transplantation, Department of Surgery, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Ross Research Building, Room 765, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
60
|
Coencapsulation of Hepatocytes With Bone Marrow Mesenchymal Stem Cells Improves Hepatocyte-Specific Functions. Transplantation 2009; 88:1178-85. [DOI: 10.1097/tp.0b013e3181bc288b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
61
|
Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009; 137:62-79. [PMID: 19328801 DOI: 10.1053/j.gastro.2009.03.035] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 12/12/2022]
Abstract
The study of liver development has significantly contributed to developmental concepts about morphogenesis and differentiation of other organs. Knowledge of the mechanisms that regulate hepatic epithelial cell differentiation has been essential in creating efficient cell culture protocols for programmed differentiation of stem cells to hepatocytes as well as developing cell transplantation therapies. Such knowledge also provides a basis for the understanding of human congenital diseases. Importantly, much of our understanding of organ development has arisen from analyses of patients with liver deficiencies. We review how the liver develops in the embryo and discuss the concepts that operate during this process. We focus on the mechanisms that control the differentiation and organization of the hepatocytes and cholangiocytes and refer to other reviews for the development of nonepithelial tissue in the liver. Much progress in the characterization of liver development has been the result of genetic studies of human diseases; gaining a better understanding of these mechanisms could lead to new therapeutic approaches for patients with liver disorders.
Collapse
|
62
|
Chen YR, Sekine K, Nakamura K, Yanai H, Tanaka M, Miyajima A. Y-box binding protein-1 down-regulates expression of carbamoyl phosphate synthetase-I by suppressing CCAAT enhancer-binding protein-alpha function in mice. Gastroenterology 2009; 137:330-40. [PMID: 19272383 DOI: 10.1053/j.gastro.2009.02.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 02/09/2009] [Accepted: 02/17/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Carbamoyl phosphate synthetase-I (CPS1) is a key enzyme in the urea cycle and patients with defects in the function or expression of CPS1 suffer from hyperammonemia. CPS1 is expressed in the liver at neonatal and adult stages in a CCAAT enhancer-binding protein-alpha (C/EBPalpha)-dependent manner. Despite expression of C/EBPalpha, CPS1 is not expressed in fetal liver, indicating an additional factor is involved in the regulation of CPS1 expression. The aim of this study was to elucidate the mechanism of CPS1 expression. METHODS Microarray was performed to find Y-box binding protein-1 (YB-1) that was expressed in mouse fetal liver. The role of YB-1 in CPS1 expression was investigated by overexpression of YB-1 in mouse fetal liver culture and luciferase reporter assays using the CPS1 promoter. Chromatin immunoprecipitation assay was used to examine recruitment of YB-1 to the CPS1 promoter in vivo. RESULTS Expression of YB-1 and CPS1 was inversely correlated in vivo, and YB-1 inhibited CPS1 expression and ammonia clearance in fetal liver culture. Although YB-1 was not expressed in adult liver, acute liver injury up-regulated YB-1 and down-regulated CPS1, accompanying an increase of the serum ammonia level. YB-1 inhibited C/EBPalpha-induced transcription from the CPS1 promoter via the Y-box near the C/EBPalpha-binding site. Chromatin immunoprecipitation assays demonstrated that YB-1 was recruited to the CPS1 promoter in fetal and injured adult liver, but not in normal adult liver. CONCLUSIONS YB-1 is a key regulator of ammonia detoxification by negatively regulating CPS1 expression via suppression of C/EBPalpha function.
Collapse
Affiliation(s)
- Yen-Rong Chen
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
63
|
Vollmer S, Kappler V, Kaczor J, Flügel D, Rolvering C, Kato N, Kietzmann T, Behrmann I, Haan C. Hypoxia-inducible factor 1alpha is up-regulated by oncostatin M and participates in oncostatin M signaling. Hepatology 2009; 50:253-60. [PMID: 19441100 DOI: 10.1002/hep.22928] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED The interleukin-6-type cytokine oncostatin M (OSM) acts via the Janus kinase/signal transducer and activator of transcription pathway as well as via activation of mitogen-activated protein kinases and is known to critically regulate processes such as liver development and regeneration, hematopoiesis, and angiogenesis, which are also determined by hypoxia with the hypoxia-inducible factor 1alpha (HIF1alpha) as a key component. Here we show that treatment of hepatocytes and hepatoma cells with OSM leads to an increased protein level of HIF1alpha under normoxic and hypoxic conditions. Furthermore, the OSM-dependent HIF1alpha increase is mediated via Janus kinase/signal transducer and activator of transcription 3 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 pathways. OSM-mediated HIF1alpha up-regulation did not result from an increase in HIF1alpha protein stability but from increased transcription from the HIF1alpha gene. In addition, we show that the OSM-induced HIF1alpha gene transcription and the resulting enhanced HIF1alpha protein levels are important for the OSM-dependent vascular endothelial growth factor and plasminogen activator inhibitor 1 gene induction associated with several diseases. CONCLUSION HIF1alpha levels increase significantly after treatment of hepatocytes and hepatoma cells with OSM, and HIF1alpha contributes to OSM downstream signaling events, pointing to a cross-talk between cytokine and hypoxia signaling in processes such as liver development and regeneration.
Collapse
Affiliation(s)
- Stefan Vollmer
- Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Hirose Y, Itoh T, Miyajima A. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Exp Cell Res 2009; 315:2648-57. [PMID: 19559697 DOI: 10.1016/j.yexcr.2009.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/11/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023]
Abstract
Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk(+) hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk(+) hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk(+) hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.
Collapse
Affiliation(s)
- Yoshikazu Hirose
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
65
|
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009; 119:1438-49. [PMID: 19487820 DOI: 10.1172/jci38019] [Citation(s) in RCA: 1051] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review the EMT events that build the embryo and further discuss two prototypical processes governed by EMT in amniotes: gastrulation and neural crest formation. Cells undergo EMT to migrate and colonize distant territories. Not surprisingly, this is also the mechanism used by cancer cells to disperse throughout the body.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | | | | | | | | |
Collapse
|
66
|
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009. [PMID: 19487820 DOI: 10.1172/jci38019.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review the EMT events that build the embryo and further discuss two prototypical processes governed by EMT in amniotes: gastrulation and neural crest formation. Cells undergo EMT to migrate and colonize distant territories. Not surprisingly, this is also the mechanism used by cancer cells to disperse throughout the body.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | | | | | | | | |
Collapse
|
67
|
Van Hul NKM, Abarca-Quinones J, Sempoux C, Horsmans Y, Leclercq IA. Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology 2009; 49:1625-35. [PMID: 19296469 DOI: 10.1002/hep.22820] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED In chronic liver injury, liver progenitor cells (LPCs) proliferate in the periportal area, migrate inside the lobule, and undergo further differentiation. This process is associated with extracellular matrix (ECM) remodeling. We analyzed LPC expansion and matrix accumulation in a choline-deficient, ethionine-supplemented (CDE) model of LPC proliferation. After day 3, CDE induced collagen deposits in the periportal area. Expansion of LPCs as assessed by increased number of cytokeratin 19 (CK19)-positive cells was first observed at day 7, while ECM accumulated 10 times more than in controls. Thereafter, LPCs and ECM increased in parallel. Furthermore, ECM not only accumulates prior to the increase in number of LPCs, but is also found in front of LPCs along the porto-venous gradient of lobular invasion. Double immunostaining revealed that LPCs are embedded in ECM at all times. Moreover, LPCs infiltrating the liver parenchyma are chaperoned by alpha-smooth muscle actin (alpha-SMA)-positive cells. Gene expression analyses confirmed these observations. The expression of CK19, alpha-fetoprotein, E-cadherin, and CD49f messenger RNA (mRNA), largely overexpressed by LPCs, significantly increased between day 7 and day 10. By contrast, at day 3 there was a rapid burst in the expression of components of the ECM, collagen I and laminin, as well as in alpha-SMA and connective tissue growth factor expression. CONCLUSION Our data demonstrate that, in a CDE model, ECM deposition and activation of matrix-producing cells occurred as an initial phase, prior to LPC expansion, and in front of LPCs along the porto-venous gradient of lobular invasion. Those observations may reveal a fundamental role for the established hepatic microenvironment or niche during the process of activation and differentiation of liver progenitor cells.
Collapse
Affiliation(s)
- Noémi K M Van Hul
- Laboratory of Gastroenterology, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
68
|
Gu J, Shi X, Zhang Y, Chu X, Hang H, Ding Y. Establishment of a three-dimensional co-culture system by porcine hepatocytes and bone marrow mesenchymal stem cells in vitro. Hepatol Res 2009; 39:398-407. [PMID: 19207578 DOI: 10.1111/j.1872-034x.2008.00472.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM The application of porcine hepatocytes in liver support systems has been hampered by the short-term survival. Co-cultivation of hepatocytes with non-parenchymal cells may be beneficial for optimizing cell functions via heterotypic interactions. In this study, we present a new cultivation system of porcine hepatocytes and mesenchymal stem cells (MSCs) in a randomly distributed co-culture manner. METHODS Mononuclear cells were isolated from bone marrow aspirate of swines (n = 3) by density gradient centrifugation. MSCs were characterized by flow cytometry with CD29, CD44, CD45 and CD90, respectively. Then freshly isolated hepatocytes were simultaneously inoculated with MSCs in a hepatocyte dominant manner. The morphological and functional changes of heterotypic interactions were characterized. RESULTS Ninety percent MSCs of passage 3 were positive for CD29, CD44 and CD90, but negative for CD45. A rapid attachment and self-organization of three-dimensional hepatocyte aggregates were encouraged. The cell ultrastructure indicating heterotypic junctions remained similar to that of hepatocytes in vivo. Fluorescence microscopy further verified that MSCs served as a feeder layer for hepatocyte aggregates. Hepatocyte performance levels such as albumin secretion, urea synthesis and CYP3A1 induction were all significantly enhanced in co-culture group compared with hepatocyte homo-culture (P < 0.05). The best hepatic function levels were achieved on day 2 and moderately decreased in the following co-culture days. Moreover, the cell cycle of hepatocytes manifested the same trend in parallel to the enhancement of hepatocyte functionality. CONCLUSIONS A three-dimensional co-culture system by porcine hepatocytes and bone marrow MSCs was for the first time established in vitro. Enhanced liver-specific functions make such a co-culture system a promising tool for tissue engineering, cell biology, and bioartificial liver devices.
Collapse
Affiliation(s)
- Jinyang Gu
- Department of Hepatobiliary Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
69
|
Netzer M, Millonig G, Osl M, Pfeifer B, Praun S, Villinger J, Vogel W, Baumgartner C. A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry. Bioinformatics 2009; 25:941-7. [PMID: 19223453 DOI: 10.1093/bioinformatics/btp093] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Alcoholic fatty liver disease (AFLD) and non-AFLD (NAFLD) can progress to severe liver diseases such as steatohepatitis, cirrhosis and cancer. Thus, the detection of early liver disease is essential; however, minimal invasive diagnostic methods in clinical hepatology still lack specificity. RESULTS Ion molecule reaction mass spectrometry (IMR-MS) was applied to a total of 126 human breath gas samples comprising 91 cases (AFLD, NAFLD and cirrhosis) and 35 healthy controls. A new feature selection modality termed Stacked Feature Ranking (SFR) was developed to identify potential liver disease marker candidates in breath gas samples, relying on the combination of different entropy- and correlation-based feature ranking methods including statistical hypothesis testing using a two-level architecture with a suggestion and a decision layer. We benchmarked SFR against four single feature selection methods, a wrapper and a recently described ensemble method, indicating a significantly higher discriminatory ability of up to 10-15% for the SFR selected gas compounds expressed by the area under the ROC curve (AUC) of 0.85-0.95. Using this approach, we were able to identify unexpected breath gas marker candidates in liver disease of high predictive value. A literature study further supports top-ranked markers to be associated with liver disease. We propose SFR as a powerful tool for biomarker search in breath gas and other biological samples using mass spectrometry. AVAILABILITY The algorithm SFR and IMR-MS datasets are available under http://biomed.umit.at/page.cfm?pageid=526.
Collapse
Affiliation(s)
- M Netzer
- Research Group for Clinical Bioinformatics, Institute of Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology (UMIT), Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Kester MHA, Toussaint MJM, Punt CA, Matondo R, Aarnio AM, Darras VM, Everts ME, de Bruin A, Visser TJ. Large induction of type III deiodinase expression after partial hepatectomy in the regenerating mouse and rat liver. Endocrinology 2009; 150:540-5. [PMID: 18787028 DOI: 10.1210/en.2008-0344] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The deiodinase types 1 (D1) and 2 (D2) catalyze the activation of T4 to T3, whereas type 3 deiodinase (D3) catalyzes the inactivation of T3 and T4. D3 plays a key role in controlling thyroid hormone bioavailability. It is highly expressed during fetal development, but also in other processes with increased cell proliferation, e.g. in vascular tumors. Because tissue regeneration is dependent on cellular proliferation and is associated with activation of fetal genes, we evaluated deiodinase activities and mRNA expression in rat and mouse liver, as well as the local and systemic thyroid hormone status after partial hepatectomy (PH). We observed that in rats, D3 activity was increased 10-fold at 20 h and 3-fold at 48 h after PH; D3 mRNA expression was increased 3-fold at 20 h. The increase in D3 expression was associated with maximum 2- to 3-fold decreases of serum and liver T3 and T4 levels at 20 to 24 h after PH. In mice, D3 activity was increased 5-fold at 12 h, 8-fold at 24 h, 40-fold at 36 h, 15-fold at 48 h, and 7-fold at 72 h after PH. In correlation with this, D3 mRNA was highest (6-fold increase), and serum T3 and T4 were lowest at 36 h. Furthermore, as a measure for cell proliferation, 5-bromo-2'-deoxyuridine incorporation peaked at 20-24 h after PH in rats and at 36 h in mice. No significant effect on D1 activity or mRNA expression was found after PH. D2 activity was always undetectable. In conclusion, we found a large induction of hepatic D3 expression after PH that was correlated with an increased cellular proliferation and decreased serum and liver T3 and T4 levels. Our data suggest that D3 is important in the modulation of thyroid hormone levels in the regenerating liver, in which a decrease in cellular T3 permits an increase in proliferation.
Collapse
Affiliation(s)
- Monique H A Kester
- Department of Internal Medicine, Erasmus Medical Center, Room Ee 502, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Khurana S, Mukhopadhyay A. Hematopoietic progenitors from early murine fetal liver possess hepatic differentiation potential. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1818-27. [PMID: 18988804 DOI: 10.2353/ajpath.2008.080411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipotential hepatoblasts differentiate into hepatocytes and cholangiocytes during liver development. It is believed that hepatoblasts originate from endodermal tissue. Here, we provide evidence for the presence of hepatic progenitor cells in the hematopoietic compartment at an early stage of liver development. Flow cytometric analysis showed that at early stages of liver development, approximately 13% of CD45(+) cells express Delta-like protein-1, a marker of hepatoblasts. Furthermore, reverse transcriptase-PCR data suggest that many hepatic genes are expressed in these cells. Cell culture experiments confirmed the hepatic differentiation potential of these cells with the loss of the CD45 marker. We observed that both hematopoietic activity in Delta-like protein-1(+) cells and hepatic activity in CD45(+) cells were high at embryonic day 10.5 and declined thereafter. Clonal analysis revealed that the hematopoietic fraction of fetal liver cells at embryonic day 10.5 gave rise to both hepatic and hematopoietic colonies. The above results suggest a common source of these two functionally distinct cell lineages. In utero transplantation experiments confirmed these results, as green fluorescent protein-expressing CD45(+) cells at the same stage of development yielded functional hepatocytes and hematopoietic reconstitution. Since these cells were unable to differentiate into cytokeratin-19-expressing cholangiocytes, we distinguished them from hepatoblasts. This preliminary study provides hope to correct many liver diseases during prenatal development via transplantation of fetal liver hematopoietic cells.
Collapse
Affiliation(s)
- Satish Khurana
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
72
|
Inoue K, Kourin A, Watanabe T, Yamada M, Yasuda H, Yoshiba M. Plasma exchange in combination with online-hemodiafiltration as a promising method for purifying the blood of fulminant hepatitis patients. Hepatol Res 2008; 38 Suppl 1:S46-51. [PMID: 19125952 DOI: 10.1111/j.1872-034x.2008.00426.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fulminant hepatitis is an intractable disease caused by various etiological agents. Artificial liver support (ALS) is a symptomatic treatment used to control serious symptoms, such as bleeding tendency, hepatic coma, and brain edema. METHODS The present study involved four patients with fulminant hepatitis who were admitted to Showa University Fujigaoka Hospital between January 2007 and June 2007. All four patients were subacute type disease of indeterminate etiology. The four patients were placed on an ALS system that comprised plasma exchange and online hemodiafiltration. The effect of the ALS on various symptoms of fulminant hepatitis was evaluated, and the levels of glutamine in the patients' plasma samples and the discarded buffer were assayed using automatic analyser. RESULTS Three of the four patients regained full consciousness and survived. The remaining patient died despite recovering from hepatic coma with ALS. The plasma glutamine levels were significantly reduced by artificial liver support. The estimated distribution volume of removed Gln ranged from 30 L to 60 L. CONCLUSIONS Plasma exchange in combination with online hemodiafiltration is a promising and effective method for purifying the blood of patients with fulminant hepatitis.
Collapse
Affiliation(s)
- Kazuaki Inoue
- Division of Gastroenterology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
73
|
De Maria C, Grassini D, Vozzi F, Vinci B, Landi A, Ahluwalia A, Vozzi G. HEMET: mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2008; 92:121-134. [PMID: 18640740 DOI: 10.1016/j.cmpb.2008.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 05/23/2008] [Accepted: 06/07/2008] [Indexed: 05/26/2023]
Abstract
Many computer studies and models have been developed in order to simulate cell biochemical pathways. The difficulty of integrating all the biochemical reactions that occur in a cell in a single model is the main reason for the poor results in the prediction and simulation of cell behaviour under different chemical and physical stimuli. In this paper we have translated biochemical reactions into differential equations for the development of modular model of metabolism of a hepatocyte cultured in static and standard conditions (in a plastic multiwell placed in an incubator at 37 degrees C with 5% of CO(2)). Using biochemical equations and energetic considerations a set of non-linear differential equations has been derived and implemented in Simulink. This set of equations mimics some of the principal metabolic pathways of biomolecules present in the culture medium. The software platform developed is subdivided into separate modules, each one describing a different metabolic pathway; they constitute a library which can be used for developing new modules and models to project, predict and validate cell behaviour in vitro.
Collapse
Affiliation(s)
- C De Maria
- Interdepartmental Research Center "E. Piaggio", Faculty of Engineering, University of Pisa, Via Diotisalvi 2, 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
74
|
Generation of humanized animal livers using embryoid body-derived stem cell transplant. Ann Surg 2008; 248:487-93. [PMID: 18791369 DOI: 10.1097/sla.0b013e318185e821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Animal organs engineered to be chimeric for human cells could contribute significantly to the field of transplantation, including studies of human-specific diseases such as hepatitis-C, as treatment for in-born errors of metabolism, and for development of a renewable source of transplantable organs via modified xenotransplantation. We sought to use human embryoid body-derived stem cells (EBDs) to populate livers in animals for applications in transplant surgery. METHODS SCID mice and rats underwent liver injury with carbon tetrachloride exposure or partial hepatectomy. Animals received intrasplenic injection of fluorescently labeled human stem cells. Spleen and liver were assessed at 2, 7, 15, and 30 days after transplant for the presence of EBDs and markers of human hepatocyte differentiation. RESULTS EBDs migrate to and engraft in animal liver after splenic injection under conditions of hepatic injury. EBDs are detectable at 2 days and are in abundance at 1 week after transplant. EBDs persist in rodent liver long term (>1 month), and once engrafted differentiate into functional human hepatocytes as assessed by production of human alpha-feto-protein (AFP) and human albumin. CONCLUSIONS We developed a novel animal model in which hepatic injury and stem cell transplantation lead to the generation of humanized animal organs. We are currently using our model to study recurrent hepatitis-C after liver transplantation, and as an alternative to whole organ transplantation for treatment of in-born errors of metabolism.
Collapse
|
75
|
Fujii T, Zen Y, Harada K, Niwa H, Masuda S, Kaizaki Y, Watanabe K, Kawashima A, Nakanuma Y. Participation of liver cancer stem/progenitor cells in tumorigenesis of scirrhous hepatocellular carcinoma—human and cell culture study. Hum Pathol 2008; 39:1185-96. [DOI: 10.1016/j.humpath.2007.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 12/11/2022]
|
76
|
Barth H, Robinet E, Liang TJ, Baumert TF. Mouse models for the study of HCV infection and virus-host interactions. J Hepatol 2008; 49:134-42. [PMID: 18457898 PMCID: PMC2529177 DOI: 10.1016/j.jhep.2008.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease including steatosis, cirrhosis and hepatocellular carcinoma. The development of transgenic mice expressing HCV proteins and the successful repopulation of SCID/Alb-uPA mice with human hepatocytes provides an important tool for unraveling virus-host interactions in vivo. Several of these mouse models exhibit aspects of HCV-related liver disease. Thus, these in vivo models play an important role to further understand the pathogenesis of HCV infection and to evaluate the pre-clinical safety and efficacy of new antiviral compounds against HCV. This review summarizes the most important mouse models currently used to study HCV pathogenesis and infection. Finally, the perspective of these models for future HCV research as well as the design of novel small animal models is discussed.
Collapse
Affiliation(s)
- Heidi Barth
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Eric Robinet
- Inserm Unit 748, 3 rue Koeberlé, F-67000 Strasbourg, France,Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Thomas F. Baumert
- Inserm Unit 748, 3 rue Koeberlé, F-67000 Strasbourg, France,Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France,Service d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Strasbourg, Nouvel Hôpital Civil, 1 place de l’hôpital, F-67000 Strasbourg, France,Corresponding authors. Tel.: +1 301 402 5113; fax: +1 301 402 0491 (H. Barth); tel.: +33 3 90 24 37 02; fax: +33 3 90 24 37 23 (T.F. Baumert).
| |
Collapse
|
77
|
Liu Q, Ma K, Song Y, Zhou N, He Z. Two-year follow-up of splenic radiofrequency ablation in patients with cirrhotic hypersplenism: does increased hepatic arterial flow induce liver regeneration? Surgery 2008; 143:509-18. [PMID: 18374048 DOI: 10.1016/j.surg.2007.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 11/01/2007] [Accepted: 11/15/2007] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatocyte hypoxia may be a mechanism determining abnormal tissue oxygenation and dysfunction of the cirrhotic liver. Since the introduction of radiofrequency ablation (RFA) for patients with cirrhotic hypersplenism, we observed a phenomenon of visible hepatic regeneration. This study aims to investigate the potential mechanism of RFA-induced liver regeneration, and the 2-year outcomes of splenic RFA. METHODS Forty patients who underwent splenic RFA for cirrhotic hypersplenism were followed for 24 months. Before and after RFA procedures, portal hemodynamics and liver and spleen volumes were measured by Doppler ultrasonography and computed tomography volumetry. Liver function tests and blood counts were also determined. RESULTS The splenic and portal venous flows decreased, but hepatic arterial flow (HAF) increased dramatically after the RFA procedure. Liver volumes at 3 month post-RFA increased compared to the baseline volumes (872 +/- 107 vs. 821 +/- 99 cm(3), P = .031). A correlation was found between maximum absolute values of liver volumes (triangle upliver volumes) and that of HAF (triangle upHAF) in Child-Pugh class A/B patients (r = 0.60; P < .001). Leukocyte and platelet counts, as well as liver function, improved substantially during the 2-year follow-up. Patients with > or = 40% of spleen volume ablated had better improvement of thrombocytopenia. No death or severe complications occurred. CONCLUSIONS RFA for cirrhotic hypersplenism is safe and efficacious. The increase in HAF as a result of splenic RFA may improve liver function and induce liver regeneration in cirrhotics, but further studies are necessary to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Quanda Liu
- Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China.
| | | | | | | | | |
Collapse
|
78
|
Dor Y, Stanger BZ. Regeneration in liver and pancreas: time to cut the umbilical cord? ACTA ACUST UNITED AC 2007; 2007:pe66. [PMID: 18042940 DOI: 10.1126/stke.4142007pe66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Organisms that are capable of robust tissue regeneration, including the urodele amphibians, use mechanisms that recapitulate embryonic development to regrow organs. Although mammals are not so adept at regeneration, several adult tissues exhibit partial or complete regrowth after injury. An ability to influence growth in mammalian tissues has become more imperative with the emergence of "regenerative medicine" as a discipline. For this field to fulfill its promise of providing functional tissues for clinical use, a more detailed picture will be required of how adult human tissues maintain mass during normal homeostasis and after injury. Studies of developing and regenerating liver and pancreas now suggest that mammals use distinct programs to regulate tissue growth during embryogenesis and adulthood.
Collapse
Affiliation(s)
- Yuval Dor
- Department of Cellular Biochemistry and Human Genetics, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|