51
|
Yang Y, Zhang H, Usharani D, Bu W, Im S, Tarasev M, Rwere F, Pearl NM, Meagher J, Sun C, Stuckey J, Shaik S, Waskell L. Structural and functional characterization of a cytochrome P450 2B4 F429H mutant with an axial thiolate-histidine hydrogen bond. Biochemistry 2014; 53:5080-91. [PMID: 25029089 PMCID: PMC4131899 DOI: 10.1021/bi5003794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/15/2014] [Indexed: 02/02/2023]
Abstract
The structural basis of the regulation of microsomal cytochrome P450 (P450) activity was investigated by mutating the highly conserved heme binding motif residue, Phe429, on the proximal side of cytochrome P450 2B4 to a histidine. Spectroscopic, pre-steady-state and steady-state kinetic, thermodynamic, theoretical, and structural studies of the mutant demonstrate that formation of an H-bond between His429 and the unbonded electron pair of the Cys436 axial thiolate significantly alters the properties of the enzyme. The mutant lost >90% of its activity; its redox potential was increased by 87 mV, and the half-life of the oxyferrous mutant was increased ∼37-fold. Single-crystal electronic absorption and resonance Raman spectroscopy demonstrated that the mutant was reduced by a small dose of X-ray photons. The structure revealed that the δN atom of His429 forms an H-bond with the axial Cys436 thiolate whereas the εN atom forms an H-bond with the solvent and the side chain of Gln357. The amide of Gly438 forms the only other H-bond to the tetrahedral thiolate. Theoretical quantification of the histidine-thiolate interaction demonstrates a significant electron withdrawing effect on the heme iron. Comparisons of structures of class I-IV P450s demonstrate that either a phenylalanine or tryptophan is often found at the location corresponding to Phe429. Depending on the structure of the distal pocket heme, the residue at this location may or may not regulate the thermodynamic properties of the P450. Regardless, this residue appears to protect the thiolate from solvent, oxidation, protonations, and other deleterious reactions.
Collapse
Affiliation(s)
- Yuting Yang
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Haoming Zhang
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Dandamudi Usharani
- Institute
of Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Weishu Bu
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Sangchoul Im
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Michael Tarasev
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Freeborn Rwere
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Naw May Pearl
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Jennifer Meagher
- Life
Science Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Cuthbert Sun
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Jeanne Stuckey
- Life
Science Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Sason Shaik
- Institute
of Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lucy Waskell
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| |
Collapse
|
52
|
Clotrimazole as a potent agent for treating the oomycete fish pathogen Saprolegnia parasitica through inhibition of sterol 14α-demethylase (CYP51). Appl Environ Microbiol 2014; 80:6154-66. [PMID: 25085484 DOI: 10.1128/aem.01195-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 μM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 μM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 μg ml(-1)). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 μg ml(-1)) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 μg ml(-1)). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 μM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 μg ml(-1)) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities.
Collapse
|
53
|
Schmitz D, Zapp J, Bernhardt R. Steroid conversion with CYP106A2 - production of pharmaceutically interesting DHEA metabolites. Microb Cell Fact 2014; 13:81. [PMID: 24903845 PMCID: PMC4080778 DOI: 10.1186/1475-2859-13-81] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/13/2014] [Indexed: 12/13/2022] Open
Abstract
Background Steroids are lipophilic compounds with a gonane skeleton and play an important role in higher organisms. Due to different functionalizations - mainly hydroxylations - at the steroid molecule, they vary highly in their mode of action. The pharmaceutical industry is, therefore, interested in hydroxysteroids as therapeutic agents. The insertion of hydroxyl groups into a steroid core, however, is hardly accomplishable by classical chemical means; that is because microbial steroid hydroxylations are investigated and applied since decades. CYP106A2 is a cytochrome P450 monooxygenase from Bacillus megaterium ATCC 13368, which was first described in the late 1970s and which is capable to hydroxylate a variety of 3-oxo-delta4 steroids at position 15beta. CYP106A2 is a soluble protein, easy to express and to purify in high amounts, which makes this enzyme an interesting target for biotechnological purposes. Results In this work a focused steroid library was screened in vitro for new CYP106A2 substrates using a reconstituted enzyme assay. Five new substrates were identified, including dehydroepiandrosterone and pregnenolone. NMR-spectroscopy revealed that both steroids are mainly hydroxylated at position 7beta. In order to establish a biotechnological system for the preparative scale production of 7beta-hydroxylated dehydroepiandrosterone, whole-cell conversions with growing and resting cells of B. megaterium ATCC1336 the native host of CYP1062 and also with resting cells of a recombinant B. megaterium MS941 strain overexpressing CYP106A2 have been conducted and conversion rates of 400 muM/h (115 mg/l/h) were obtained. Using the B. megaterium MS941 overexpression strain, the selectivity of the reaction was improved from 0.7 to 0.9 for 7beta-OH-DHEA. Conclusions In this work we describe CYP106A2 for the first time as a regio-selective hydroxylase for 3-hydroxy-delta5 steroids. DHEA was shown to be converted to 7beta-OH-DHEA which is a highly interesting human metabolite, supposed to act as neuroprotective, anti-inflammatory and immune-modulatory agent. Optimization of the whole-cell system using different B. megaterium strains lead to a conversion of DHEA with B. megaterium showing high selectivity and conversion rates and displaying a volumetric yield of 103 mg/l/h 7beta-OH-DHEA.
Collapse
Affiliation(s)
| | | | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2 2, Saarbruecken 66123, Germany.
| |
Collapse
|
54
|
Gorinova N, Nedkovska M, Atanassov A. Cytochrome P450 Monooxygenases as a Tool for Metabolizing of Herbicides in Plants. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
55
|
Brändén G, Sjögren T, Schnecke V, Xue Y. Structure-based ligand design to overcome CYP inhibition in drug discovery projects. Drug Discov Today 2014; 19:905-11. [PMID: 24642031 DOI: 10.1016/j.drudis.2014.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (CYP) enzymes are key players in xenobiotic metabolism, and inhibition of CYPs can therefore result in unwanted drug-drug interactions. Within drug discovery, CYP inhibition can cause delays in the progression of candidate drugs, or even premature closure of projects. During the past decade, a massive effort in the pharmaceutical industry and academic research has produced a wealth of structural information in the CYP field. In this short review, we will describe how structure-based approaches can be used in the pharmaceutical industry to work away from CYP inhibition, with a focus on the opportunities and challenges. We will show two examples from our own work where structural information on CYP2C9 and CYP3A4 inhibitor complexes have been successfully exploited in ongoing drug discovery projects.
Collapse
Affiliation(s)
- Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg S-405 30, Sweden.
| | - Tove Sjögren
- Discovery Sciences, AstraZeneca R&D Mölndal, Mölndal S-431 83, Sweden
| | - Volker Schnecke
- CVMD iMed, AstraZeneca R&D Mölndal, Mölndal S-431 83, Sweden
| | - Yafeng Xue
- Discovery Sciences, AstraZeneca R&D Mölndal, Mölndal S-431 83, Sweden
| |
Collapse
|
56
|
Regio- and stereospecific hydroxylation of various steroids at the 16α position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3. Appl Environ Microbiol 2013; 80:1371-9. [PMID: 24334658 DOI: 10.1128/aem.03504-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 monooxygenases (P450s), which constitute a superfamily of heme-containing proteins, catalyze the direct oxidation of a variety of compounds in a regio- and stereospecific manner; therefore, they are promising catalysts for use in the oxyfunctionalization of chemicals. In the course of our comprehensive substrate screening for all 27 putative P450s encoded by the Streptomyces griseus genome, we found that Escherichia coli cells producing an S. griseus P450 (CYP154C3), which was fused C terminally with the P450 reductase domain (RED) of a self-sufficient P450 from Rhodococcus sp., could transform various steroids (testosterone, progesterone, Δ(4)-androstene-3,17-dione, adrenosterone, 1,4-androstadiene-3,17-dione, dehydroepiandrosterone, 4-pregnane-3,11,20-trione, and deoxycorticosterone) into their 16α-hydroxy derivatives as determined by nuclear magnetic resonance and high-resolution mass spectrometry analyses. The purified CYP154C3, which was not fused with RED, also catalyzed the regio- and stereospecific hydroxylation of these steroids at the same position with the aid of ferredoxin and ferredoxin reductase from spinach. The apparent equilibrium dissociation constant (Kd) values of the binding between CYP154C3 and these steroids were less than 8 μM as determined by the heme spectral change, indicating that CYP154C3 strongly binds to these steroids. Furthermore, kinetic parameters of the CYP154C3-catalyzed hydroxylation of Δ(4)-androstene-3,17-dione were determined (Km, 31.9 ± 9.1 μM; kcat, 181 ± 4.5 s(-1)). We concluded that CYP154C3 is a steroid D-ring 16α-specific hydroxylase which has considerable potential for industrial applications. This is the first detailed enzymatic characterization of a P450 enzyme that has a steroid D-ring 16α-specific hydroxylation activity.
Collapse
|
57
|
Rydberg P, Jørgensen FS, Olsen L. Use of density functional theory in drug metabolism studies. Expert Opin Drug Metab Toxicol 2013; 10:215-27. [PMID: 24295134 DOI: 10.1517/17425255.2014.864278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The cytochrome P450 enzymes (CYPs) metabolize many drug compounds. They catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be generated. Density functional theory (DFT) has, over the past decade, been shown to be a powerful tool to rationalize and predict the possible metabolites generated by the CYPs as well as other drug-metabolizing enzymes. AREAS COVERED We review applications of DFT on reactions performed by the CYPs and other drug-metabolizing enzymes able to perform oxidation reactions, with an emphasis on predicting which metabolites are produced. We also cover calculations of binding energies for complexes in which the ligands interact directly with the heme iron atom. EXPERT OPINION DFT is a useful tool for prediction of the site of metabolism. The use of small models of the enzymes work surprisingly well for most CYP isoforms. This is probably due to the fact that the binding of the substrates is not the major determinant. When binding of the substrate plays a significant role, the well-known issue of determining the free energy of binding is the challenge. How approaches taking the protein environment into account, like docking, MD and QM/MM, can be used are discussed.
Collapse
Affiliation(s)
- Patrik Rydberg
- University of Copenhagen, Department of Drug Design and Pharmacology , Denmark
| | | | | |
Collapse
|
58
|
Gavira C, Höfer R, Lesot A, Lambert F, Zucca J, Werck-Reichhart D. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metab Eng 2013; 18:25-35. [PMID: 23518241 DOI: 10.1016/j.ymben.2013.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/09/2013] [Accepted: 02/20/2013] [Indexed: 01/05/2023]
Abstract
Natural nootkatone is a high value ingredient for the flavor and fragrance industry because of its grapefruit flavor/odor, low sensorial threshold and low availability. Valencene conversion into nootkatol and nootkatone is known to be catalyzed by cytochrome P450 enzymes from both prokaryotic and eukaryotic organisms, but so far development of a viable bioconversion process using either native microorganisms or recombinant enzymes was not successful. Using an in silico gene-mining approach, we selected 4 potential candidate P450 enzymes from higher plants and identified two of them that selectively converted (+)-valencene into β-nootkatol with high efficiency when tested using recombinant yeast microsomes in vitro. Recombinant yeast expressing CYP71D51v2 from tobacco and a P450 reductase from arabidopsis was used for optimization of a bioconversion process. Bioconversion assays led to production of β-nootkatol and nootkatone, but with low yields that decreased upon increase of the substrate concentration. The reasons for this low bioconversion efficiency were further investigated and several factors potentially hampering industry-compatible valencene bioconversion were identified. One is the toxicity of the products for yeast at concentrations exceeding 100 mg L⁻¹. The second is the accumulation of β-nootkatol in yeast endomembranes. The third is the inhibition of the CYP71D51v2 hydroxylation reaction by the products. Furthermore, we observed that the formation of nootkatone from β-nootkatol is not P450-dependent but catalyzed by a yeast component. Based on these data, we propose new strategies for implementation of a viable P450-based bioconversion process.
Collapse
Affiliation(s)
- Carole Gavira
- Institute of Plant Molecular Biology of CNRS UPR2357, University of Strasbourg, 28 Rue Goethe, F-67083 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
59
|
Hoobler EK, Rai G, Warrilow AGS, Perry SC, Smyrniotis CJ, Jadhav A, Simeonov A, Parker JE, Kelly DE, Maloney DJ, Kelly SL, Holman TR. Discovery of a novel dual fungal CYP51/human 5-lipoxygenase inhibitor: implications for anti-fungal therapy. PLoS One 2013; 8:e65928. [PMID: 23826084 PMCID: PMC3691235 DOI: 10.1371/journal.pone.0065928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/02/2013] [Indexed: 12/26/2022] Open
Abstract
We report the discovery of a novel dual inhibitor targeting fungal sterol 14α-demethylase (CYP51 or Erg11) and human 5-lipoxygenase (5-LOX) with improved potency against 5-LOX due to its reduction of the iron center by its phenylenediamine core. A series of potent 5-LOX inhibitors containing a phenylenediamine core, were synthesized that exhibit nanomolar potency and >30-fold selectivity against the LOX paralogs, platelet-type 12-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity against ovine cyclooxygenase-1 and human cyclooxygnease-2. The phenylenediamine core was then translated into the structure of ketoconazole, a highly effective anti-fungal medication for seborrheic dermatitis, to generate a novel compound, ketaminazole. Ketaminazole was found to be a potent dual inhibitor against human 5-LOX (IC50 = 700 nM) and CYP51 (IC50 = 43 nM) in vitro. It was tested in whole blood and found to down-regulate LTB4 synthesis, displaying 45% inhibition at 10 µM. In addition, ketaminazole selectively inhibited yeast CYP51 relative to human CYP51 by 17-fold, which is greater selectivity than that of ketoconazole and could confer a therapeutic advantage. This novel dual anti-fungal/anti-inflammatory inhibitor could potentially have therapeutic uses against fungal infections that have an anti-inflammatory component.
Collapse
Affiliation(s)
- Eric K. Hoobler
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Andrew G. S. Warrilow
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Steven C. Perry
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher J. Smyrniotis
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Josie E. Parker
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Diane E. Kelly
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - David J. Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
- * E-mail: (DJM); (SLK); (TRH)
| | - S. L. Kelly
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
- * E-mail: (DJM); (SLK); (TRH)
| | - Theodore R. Holman
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (DJM); (SLK); (TRH)
| |
Collapse
|
60
|
Cheesman MJ, Traylor MJ, Hilton ME, Richards KE, Taylor MC, Daborn PJ, Russell RJ, Gillam EMJ, Oakeshott JG. Soluble and membrane-bound Drosophila melanogaster CYP6G1 expressed in Escherichia coli: purification, activity, and binding properties toward multiple pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:455-465. [PMID: 23470655 DOI: 10.1016/j.ibmb.2013.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
Cytochrome P450 CYP6G1 has been implicated in the resistance of Drosophila melanogaster to numerous pesticides. While in vivo and in vitro studies have provided insight to the diverse functions of this enzyme, direct studies on the isolated CYP6G1 enzyme have not been possible due to the need for a source of recombinant enzyme. In the current study, the Cyp6g1 gene was isolated from D. melanogaster and re-engineered for heterologous expression in Escherichia coli. Approximately 460 nmol L⁻¹ of P450 holoenzyme were obtained in 500 mL cultures. The recombinant enzyme was located predominantly within the bacterial cytosol. A two-step purification protocol using Ni-chelate affinity chromatography followed by removal of detergent on a hydroxyapatite column produced essentially homogenous enzyme from both soluble and membrane fractions. Recombinant CYP6G1 exhibited p-nitroanisole O-dealkylation activity but was not active against eleven other typical P450 marker substrates. Substrate-induced binding spectra and IC₅₀ values for inhibition of p-nitroanisole O-dealkylation were obtained for a wide selection of pesticides, namely DDT, imidacloprid, chlorfenvinphos, malathion, endosulfan, dieldrin, dicyclanil, lufenuron and carbaryl, supporting previous in vivo and in vitro studies on Drosophila that have suggested that the enzyme is involved in multi-pesticide resistance in insects.
Collapse
Affiliation(s)
- Matthew J Cheesman
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Janocha S, Zapp J, Hutter M, Kleser M, Bohlmann J, Bernhardt R. Resin Acid Conversion with CYP105A1: An Enzyme with Potential for the Production of Pharmaceutically Relevant Diterpenoids. Chembiochem 2013; 14:467-73. [DOI: 10.1002/cbic.201200729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Indexed: 11/08/2022]
|
62
|
Leach AG. Tactics to Avoid Inhibition of Cytochrome P450s. TOPICS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1007/7355_2013_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
63
|
Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens. Antimicrob Agents Chemother 2012; 57:1352-60. [PMID: 23274672 DOI: 10.1128/aac.02067-12] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (K(s), 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [K(d)s], 42 to 131 nM) but bound fluconazole (K(d), ~30,500 nM) and voriconazole (K(d), ~2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (K(d)s, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (K(d)s, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (K(d), ~40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC(50)) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC(50), ~150 μM) and did not significantly inhibit Δ60HsCYP51.
Collapse
|
64
|
Prothioconazole and prothioconazole-desthio activities against Candida albicans sterol 14-α-demethylase. Appl Environ Microbiol 2012; 79:1639-45. [PMID: 23275516 DOI: 10.1128/aem.03246-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prothioconazole is a new triazolinthione fungicide used in agriculture. We have used Candida albicans CYP51 (CaCYP51) to investigate the in vitro activity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment of C. albicans cells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We then compared the inhibitor binding properties of prothioconazole, prothioconazole-desthio, and voriconazole with CaCYP51. We observed that prothioconazole-desthio and voriconazole bind noncompetitively to CaCYP51 in the expected manner of azole antifungals (with type II inhibitors binding to heme as the sixth ligand), while prothioconazole binds competitively and does not exhibit classic inhibitor binding spectra. Inhibition of CaCYP51 activity in a cell-free assay demonstrated that prothioconazole-desthio is active, whereas prothioconazole does not inhibit CYP51 activity. Extracts from C. albicans grown in the presence of prothioconazole were found to contain prothioconazole-desthio. We conclude that the antifungal action of prothioconazole can be attributed to prothioconazole-desthio.
Collapse
|
65
|
Use of Alkylaminoethylglycine for Testing Fluconazole Activity in Sabouraud Dextrose. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
66
|
Choi JY, Kim CH, Jeon TJ, Kim BS, Yi CH, Woo KS, Seo YB, Han SJ, Kim KM, Yi DI, Lee M, Kim DG, Kim JY, Lee KC, Choi TH, An G, Ryu YH. Effective MicroPET imaging of brain 5-HT1Areceptors in rats with [18F]MeFWAY by suppression of radioligand defluorination. Synapse 2012; 66:1015-23. [DOI: 10.1002/syn.21607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/21/2012] [Indexed: 11/11/2022]
|
67
|
Johnston JB, Singh AA, Clary AA, Chen CK, Hayes PY, Chow S, De Voss JJ, Ortiz de Montellano PR. Substrate analog studies of the ω-regiospecificity of Mycobacterium tuberculosis cholesterol metabolizing cytochrome P450 enzymes CYP124A1, CYP125A1 and CYP142A1. Bioorg Med Chem 2012; 20:4064-81. [PMID: 22647881 DOI: 10.1016/j.bmc.2012.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
We report the synthesis and evaluation of a series of cholesterol side-chain analogs as mechanistic probes of three important Mycobacterium tuberculosis cytochrome P450 enzymes that selectively oxidize the ω-position of the methyl-branched cholesterol side-chain. To probe the structural requirements for the thermodynamically disfavored ω-regiospecificity we compared the binding of these substrate analogs to each P450, determined the turnover rates, and characterized the enzymatic products. The results are discussed in the context of the structure-activity relationships of the enzymes and how their active sites enforce ω-oxidation.
Collapse
Affiliation(s)
- Jonathan B Johnston
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94158-2517, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
S279 point mutations in Candida albicans Sterol 14-α demethylase (CYP51) reduce in vitro inhibition by fluconazole. Antimicrob Agents Chemother 2012; 56:2099-107. [PMID: 22252802 DOI: 10.1128/aac.05389-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of S279F and S279Y point mutations in Candida albicans CYP51 (CaCYP51) on protein activity and on substrate (lanosterol) and azole antifungal binding were investigated. Both S279F and S279Y mutants bound lanosterol with 2-fold increased affinities (K(s), 7.1 and 8.0 μM, respectively) compared to the wild-type CaCYP51 protein (K(s), 13.5 μM). The S279F and S279Y mutants and the wild-type CaCYP51 protein bound fluconazole, voriconazole, and itraconazole tightly, producing typical type II binding spectra. However, the S279F and S279Y mutants had 4- to 5-fold lower affinities for fluconazole, 3.5-fold lower affinities for voriconazole, and 3.5- to 4-fold lower affinities for itraconazole than the wild-type CaCYP51 protein. The S279F and S279Y mutants gave 2.3- and 2.8-fold higher 50% inhibitory concentrations (IC₅₀s) for fluconazole in a CYP51 reconstitution assay than the wild-type protein did. The increased fluconazole resistance conferred by the S279F and S279Y point mutations appeared to be mediated through a combination of a higher affinity for substrate and a lower affinity for fluconazole. In addition, lanosterol displaced fluconazole from the S279F and S279Y mutants but not from the wild-type protein. Molecular modeling of the wild-type protein indicated that the oxygen atom of S507 interacts with the second triazole ring of fluconazole, assisting in orientating fluconazole so that a more favorable binding conformation to heme is achieved. In contrast, in the two S279 mutant proteins, this S507-fluconazole interaction is absent, providing an explanation for the higher K(d) values observed.
Collapse
|
69
|
Dahal UP, Joswig-Jones C, Jones JP. Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogues by cytochrome P450 3A4. J Med Chem 2011; 55:280-90. [PMID: 22087535 DOI: 10.1021/jm201207h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation, and aromatic hydroxylation. The results demonstrated that type II binding QCA analogues were metabolically less stable (2- to 12-fold) at subsaturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation > benzylic hydroxylation> O-demethylation > aromatic hydroxylation. Finally, for the QCA analogues with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine), indicating that electronegativity of the nitrogen can change regioselectivity in CYP metabolism.
Collapse
Affiliation(s)
- Upendra P Dahal
- Department of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | | | | |
Collapse
|
70
|
Roberts AG, Yang J, Halpert JR, Nelson SD, Thummel KT, Atkins WM. The structural basis for homotropic and heterotropic cooperativity of midazolam metabolism by human cytochrome P450 3A4. Biochemistry 2011; 50:10804-18. [PMID: 21992114 DOI: 10.1021/bi200924t] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 3A4 (CYP3A4) metabolizes a significant portion of clinically relevant drugs and often exhibits complex steady-state kinetics that can involve homotropic and heterotropic cooperativity between bound ligands. In previous studies, the hydroxylation of the sedative midazolam (MDZ) exhibited homotropic cooperativity via a decrease in the ratio of 1'-OH-MDZ to 4-OH-MDZ at higher drug concentrations. In this study, MDZ exhibited heterotropic cooperativity with the antiepileptic drug carbamazepine (CBZ) with characteristic decreases in the 1'-OH-MDZ to 4-OH-MDZ ratios. To unravel the structural basis of MDZ cooperativity, we probed MDZ and CBZ bound to CYP3A4 using longitudinal T(1) nuclear magnetic resonance (NMR) relaxation and molecular docking with AutoDock 4.2. The distances calculated from longitudinal T(1) NMR relaxation were used during simulated annealing to constrain the molecules to the substrate-free X-ray crystal structure of CYP3A4. These simulations revealed that either two MDZ molecules or an MDZ molecule and a CBZ molecule assume a stacked configuration within the CYP3A4 active site. In either case, the proton at position 4 of the MDZ molecule was closer to the heme than the protons of the 1'-CH(3) group. In contrast, molecular docking of a single molecule of MDZ revealed that the molecule was preferentially oriented with the 1'-CH(3) position closer to the heme than position 4. This study provides the first detailed molecular analysis of heterotropic and homotropic cooperativity of a human cytochrome P450 from an NMR-based model. Cooperativity of ligand binding through direct interaction between stacked molecules may represent a common motif for homotropic and heterotropic cooperativity.
Collapse
Affiliation(s)
- Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, United States.
| | | | | | | | | | | |
Collapse
|
71
|
An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae. Antimicrob Agents Chemother 2011; 56:391-402. [PMID: 22037849 DOI: 10.1128/aac.05227-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.
Collapse
|
72
|
A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-β-boswellic acid (KBA) based on a recombinant cytochrome P450 system. Appl Microbiol Biotechnol 2011; 93:1135-46. [DOI: 10.1007/s00253-011-3467-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/17/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
|
73
|
Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS One 2011; 6:e20973. [PMID: 21738598 PMCID: PMC3124474 DOI: 10.1371/journal.pone.0020973] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/17/2011] [Indexed: 11/19/2022] Open
Abstract
A structural rationale for recent emergence of azole (imidazole and triazole) resistance associated with CYP51 mutations in the wheat pathogen Mycosphaerella graminicola is presented, attained by homology modelling of the wild type protein and 13 variant proteins. The novel molecular models of M. graminicola CYP51 are based on multiple homologues, individually identified for each variant, rather than using a single structural scaffold, providing a robust structure-function rationale for the binding of azoles, including important fungal specific regions for which no structural information is available. The wild type binding pocket reveals specific residues in close proximity to the bound azole molecules that are subject to alteration in the variants. This implicates azole ligands as important agents exerting selection on specific regions bordering the pocket, that become the focus of genetic mutation events, leading to reduced sensitivity to that group of related compounds. Collectively, the models account for several observed functional effects of specific alterations, including loss of triadimenol sensitivity in the Y137F variant, lower sensitivity to tebuconazole of I381V variants and increased resistance to prochloraz of V136A variants. Deletion of Y459 and G460, which brings about removal of that entire section of beta turn from the vicinity of the binding pocket, confers resistance to tebuconazole and epoxiconazole, but sensitivity to prochloraz in variants carrying a combination of A379G I381V ΔY459/G460. Measurements of binding pocket volume proved useful in assessment of scope for general resistance to azoles by virtue of their accommodation without bonding interaction, particularly when combined with analysis of change in positions of key amino acids. It is possible to predict the likely binding orientation of an azole molecule in any of the variant CYPs, providing potential for an in silico screening system and reliable predictive approach to assess the probability of particular variants exhibiting resistance to particular azole fungicides.
Collapse
|
74
|
Li Z, Rupasinghe SG, Schuler MA, Nair SK. Crystal structure of a phenol-coupling P450 monooxygenase involved in teicoplanin biosynthesis. Proteins 2011; 79:1728-38. [PMID: 21445994 PMCID: PMC3103887 DOI: 10.1002/prot.22996] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/20/2010] [Accepted: 12/27/2010] [Indexed: 11/06/2022]
Abstract
The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram-positive pathogens. Teicoplanin is distinguished from the vancomycin-type glycopeptide antibiotics, by the presence of an additional cross-link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol-coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2-Å resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron-bound water molecule. Sequence comparisons with other phenol-coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross-linking mechanisms that occur during glycopeptide antibiotics biosynthesis.
Collapse
Affiliation(s)
- Zhi Li
- Department of Biochemistry, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Sanjeewa G. Rupasinghe
- Department of Cell and Developmental Biology, 1201 W. Gregory Dr., 161 Edward R. Madigan Laboratory, Urbana, IL 61801, USA
- Department of Plant Biology, 1201 W. Gregory Dr., 161 Edward R. Madigan Laboratory, Urbana, IL 61801, USA
| | - Mary A. Schuler
- Department of Biochemistry, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Department of Cell and Developmental Biology, 1201 W. Gregory Dr., 161 Edward R. Madigan Laboratory, Urbana, IL 61801, USA
- Department of Plant Biology, 1201 W. Gregory Dr., 161 Edward R. Madigan Laboratory, Urbana, IL 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
75
|
Leach AG, Kidley NJ. Quantitatively Interpreted Enhanced Inhibition of Cytochrome P450s by Heteroaromatic Rings Containing Nitrogen. J Chem Inf Model 2011; 51:1048-63. [DOI: 10.1021/ci2000506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew G. Leach
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom
| | - Nathan J. Kidley
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom
| |
Collapse
|
76
|
Vasaitis TS, Bruno RD, Njar VCO. CYP17 inhibitors for prostate cancer therapy. J Steroid Biochem Mol Biol 2011; 125:23-31. [PMID: 21092758 PMCID: PMC3047603 DOI: 10.1016/j.jsbmb.2010.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 10/26/2010] [Accepted: 11/05/2010] [Indexed: 02/02/2023]
Abstract
Prostate cancer (PC) is now the second most prevalent cause of death in men in the USA and Europe. At present, the major treatment options include surgical or medical castration. These strategies cause ablation of the production of testosterone (T), dihydrotestosterone (DHT) and related androgens by the testes. However, because these procedures do not affect adrenal, prostate and other tissues' androgen production, they are often combined with androgen receptor antagonists to block their action. Indeed, recent studies have unequivocally established that in castration-resistant prostate cancer (CRPC) many androgen-regulated genes become re-expressed and tissue androgen levels increase despite low serum levels. Clearly, inhibition of the key enzyme which catalyzes the biosynthesis of androgens from pregnane precursors, 17α-hydroxy/17,20-lyase (hereafter referred to as CYP17) could prevent androgen production from all sources. Thus, total ablation of androgen production by potent CYP17 inhibitors may provide effective treatment of prostate cancer patients. This review highlights the role of androgen biosynthesis in the progression of prostate cancer and the impact of CYP17 inhibitors, such as ketoconazole, abiraterone acetate, VN/124-1 (TOK-001) and TAK-700 in the clinic and in clinical development. Article from the special issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Tadas S. Vasaitis
- Department of Medicine, University of Maryland School of Medicine; Baltimore, MD; and Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | | | - Vincent C. O. Njar
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy; Thomas Jefferson University, 130 South 9 Street, Philadelphia 19107, PA, USA
- Kimmel Cancer Center, Thomas Jefferson University, 130 South 9 Street, Philadelphia 19107, PA, USA
| |
Collapse
|
77
|
Pearson J, Dahal UP, Rock D, Peng CC, Schenk JO, Joswig-Jones C, Jones JP. The kinetic mechanism for cytochrome P450 metabolism of type II binding compounds: evidence supporting direct reduction. Arch Biochem Biophys 2011; 511:69-79. [PMID: 21530484 DOI: 10.1016/j.abb.2011.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/17/2022]
Abstract
The metabolic stability of a drug is an important property that should be optimized during drug design and development. Nitrogen incorporation is hypothesized to increase the stability by coordination of nitrogen to the heme iron of cytochrome P450, a binding mode that is referred to as type II binding. However, we noticed that the type II binding compound 1 has less metabolic stability at sub-saturating conditions than a closely related type I binding compound 3. Three kinetic models will be presented for type II binder metabolism; (1) Dead-end type II binding, (2) a rapid equilibrium between type I and II binding modes before reduction, and (3) a direct reduction of the type II coordinated heme. Data will be presented on reduction rates of iron, the off rates of substrate (using surface plasmon resonance) and the catalytic rate constants. These data argue against the dead-end, and rapid equilibrium models, leaving the direct reduction kinetic mechanism for metabolism of the type II binding compound 1.
Collapse
Affiliation(s)
- Joshua Pearson
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, WA 98119, United States
| | | | | | | | | | | | | |
Collapse
|
78
|
Lombard M, Salard I, Sari MA, Mansuy D, Buisson D. A new cytochrome P450 belonging to the 107L subfamily is responsible for the efficient hydroxylation of the drug terfenadine by Streptomyces platensis. Arch Biochem Biophys 2011; 508:54-63. [DOI: 10.1016/j.abb.2011.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 11/26/2022]
|
79
|
Roberts AG, Sjögren SEA, Fomina N, Vu KT, Almutairi A, Halpert JR. NMR-derived models of amidopyrine and its metabolites in complexes with rabbit cytochrome P450 2B4 reveal a structural mechanism of sequential N-dealkylation. Biochemistry 2011; 50:2123-34. [PMID: 21375273 DOI: 10.1021/bi101797v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To understand the molecular basis of sequential N-dealkylation by cytochrome P450 2B enzymes, we studied the binding of amidopyrine (AP) as well as the metabolites of this reaction, desmethylamidopyrine (DMAP) and aminoantipyrine (AAP), using the X-ray crystal structure of rabbit P450 2B4 and two nuclear magnetic resonance (NMR) techniques: saturation transfer difference (STD) spectroscopy and longitudinal (T(1)) relaxation NMR. Results of STD NMR of AP and its metabolites bound to P450 2B4 were similar, suggesting that they occupy similar niches within the enzyme's active site. The model-dependent relaxation rates (R(M)) determined from T(1) relaxation NMR of AP and DMAP suggest that the N-linked methyl is closest to the heme. To determine the orientation(s) of AP and its metabolites within the P450 2B4 active site, we used distances calculated from the relaxation rates to constrain the metabolites to the X-ray crystal structure of P450 2B4. Simulated annealing of the complex revealed that the metabolites do indeed occupy similar hydrophobic pockets within the active site, while the N-linked methyls are free to rotate between two binding modes. From these bound structures, a model of N-demethylation in which the N-linked methyl functional groups rotate between catalytic and noncatalytic positions was developed. This study is the first to provide a structural model of a drug and its metabolites complexed to a cytochrome P450 based on NMR and to provide a structural mechanism for how a drug can undergo sequential oxidations without unbinding. The rotation of the amide functional group might represent a common structural mechanism for N-dealkylation reactions for other drugs such as the local anesthetic lidocaine.
Collapse
Affiliation(s)
- Arthur G Roberts
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, #0703, La Jolla, California 92093-0703, United States.
| | | | | | | | | | | |
Collapse
|
80
|
Bleif S, Hannemann F, Lisurek M, von Kries JP, Zapp J, Dietzen M, Antes I, Bernhardt R. Identification of CYP106A2 as a Regioselective Allylic Bacterial Diterpene Hydroxylase. Chembiochem 2011; 12:576-82. [DOI: 10.1002/cbic.201000404] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Indexed: 11/06/2022]
|
81
|
Maurelli S, Chiesa M, Giamello E, Di Nardo G, V. Ferrero VE, Gilardi G, Van Doorslaer S. Direct spectroscopic evidence for binding of anastrozole to the iron heme of human aromatase. Peering into the mechanism of aromatase inhibition. Chem Commun (Camb) 2011; 47:10737-9. [DOI: 10.1039/c1cc13872c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
82
|
Mechanism of binding of prothioconazole to Mycosphaerella graminicola CYP51 differs from that of other azole antifungals. Appl Environ Microbiol 2010; 77:1460-5. [PMID: 21169436 DOI: 10.1128/aem.01332-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prothioconazole is one of the most important commercially available demethylase inhibitors (DMIs) used to treat Mycosphaerella graminicola infection of wheat, but specific information regarding its mode of action is not available in the scientific literature. Treatment of wild-type M. graminicola (strain IPO323) with 5 μg of epoxiconazole, tebuconazole, triadimenol, or prothioconazole ml(-1) resulted in inhibition of M. graminicola CYP51 (MgCYP51), as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol in azole-treated cells. Successful expression of MgCYP51 in Escherichia coli enabled us to conduct spectrophotometric assays using purified 62-kDa MgCYP51 protein. Antifungal-binding studies revealed that epoxiconazole, tebuconazole, and triadimenol all bound tightly to MgCYP51, producing strong type II difference spectra (peak at 423 to 429 nm and trough at 406 to 409 nm) indicative of the formation of classical low-spin sixth-ligand complexes. Interaction of prothioconazole with MgCYP51 exhibited a novel spectrum with a peak and trough observed at 410 nm and 428 nm, respectively, indicating a different mechanism of inhibition. Prothioconazole bound to MgCYP51 with 840-fold less affinity than epoxiconazole and, unlike epoxiconazole, tebuconazole, and triadimenol, which are noncompetitive inhibitors, prothioconazole was found to be a competitive inhibitor of substrate binding. This represents the first study to validate the effect of prothioconazole on the sterol composition of M. graminicola and the first on the successful heterologous expression of active MgCYP51 protein. The binding affinity studies documented here provide novel insights into the interaction of MgCYP51 with DMIs, especially for the new triazolinethione derivative prothioconazole.
Collapse
|
83
|
Structural and functional insights into CYP2C8.3: A genetic polymorph of cytochrome P450 2C8. Sci China Chem 2010. [DOI: 10.1007/s11426-010-4087-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
84
|
Sevrioukova IF, Poulos TL. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc Natl Acad Sci U S A 2010; 107:18422-7. [PMID: 20937904 PMCID: PMC2973003 DOI: 10.1073/pnas.1010693107] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ritonavir is a HIV protease inhibitor routinely prescribed to HIV patients that also potently inactivates cytochrome P4503A4 (CYP3A4), the major human drug-metabolizing enzyme. By inhibiting CYP3A4, ritonavir increases plasma concentrations of other anti-HIV drugs oxidized by CYP3A4 thereby improving clinical efficacy. Despite the importance and wide use of ritonavir in anti-HIV therapy, the precise mechanism of CYP3A4 inhibition remains unclear. The available data are inconsistent and suggest that ritonavir acts as a mechanism-based, competitive or mixed competitive-noncompetitive CYP3A4 inactivator. To resolve this controversy and gain functional and structural insights into the mechanism of CYP3A4 inhibition, we investigated the ritonavir binding reaction by kinetic and equilibrium analysis, elucidated how the drug affects redox properties of the hemoprotein, and determined the 2.0 Å X-ray structure of the CYP3A4-ritonavir complex. Our results show that ritonavir is a type II ligand that perfectly fits into the CYP3A4 active site cavity and irreversibly binds to the heme iron via the thiazole nitrogen, which decreases the redox potential of the protein and precludes its reduction with the redox partner, cytochrome P450 reductase.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA.
| | | |
Collapse
|
85
|
Roberts AG, Cheesman MJ, Primak A, Bowman MK, Atkins WM, Rettie AE. Intramolecular heme ligation of the cytochrome P450 2C9 R108H mutant demonstrates pronounced conformational flexibility of the B-C loop region: implications for substrate binding. Biochemistry 2010; 49:8700-8. [PMID: 20815369 DOI: 10.1021/bi100911q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A previous study [Dickmann, L., et al. (2004) Mol. Pharmacol. 65, 842-850] revealed some unusual properties of the R108H mutant of cytochrome P450 2C9 (CYP2C9), including elevated thermostability relative to that of CYP2C9, as well as a UV-visible absorbance spectrum that was indicative of nitrogenous ligation to the heme iron. In our study, size-exclusion chromatography and UV-visible absorbance spectroscopy of CYP2C9 R108H monomers demonstrated that nitrogen ligation is indeed intramolecular. Pulsed electron paramagnetic resonance of CYP2C9 R108H monomers showed that a histidine is most likely bound to the heme as previously hypothesized. An energy-minimized model of the R108H mutant maintained a CYP fold, despite substantial movement of several loop regions of the mutant, and, therefore, represents an extreme example of a closed conformation of the enzyme. Molecular dynamics (MD) simulations of CYP2C9 were performed to study the range of energetically accessible CYP2C9 conformations. These in silico studies showed that the B-C loop region of CYP2C9 moves away from the heme to a position resembling the putative open conformation described for rabbit CYP2B4. A model involving the movement of the B-C loop region and R108 between the open and closed conformations of CYP2C9 is presented, which helps to explain the enzyme's ability to regio- and stereospecifically metabolize some ligands while allosterically activating others.
Collapse
Affiliation(s)
- Arthur G Roberts
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Jiang H, Zhong F, Sun L, Feng W, Huang ZX, Tan X. Structural and functional insights into polymorphic enzymes of cytochrome P450 2C8. Amino Acids 2010; 40:1195-204. [DOI: 10.1007/s00726-010-0743-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/01/2010] [Indexed: 11/27/2022]
|
87
|
Johnston JB, Ouellet H, Ortiz de Montellano PR. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem 2010; 285:36352-60. [PMID: 20843794 DOI: 10.1074/jbc.m110.161117] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One challenge to the development of new antitubercular drugs is the existence of multiple virulent strains that differ genetically. We and others have recently demonstrated that CYP125A1 is a steroid C(26)-monooxygenase that plays a key role in cholesterol catabolism in Mycobacterium tuberculosis CDC1551 but, unexpectedly, not in the M. tuberculosis H37Rv strain. This discrepancy suggests that the H37Rv strain possesses compensatory activities. Here, we examined the roles in cholesterol metabolism of two other cytochrome P450 enzymes, CYP124A1 and CYP142A1. In vitro analysis, including comparisons of the binding affinities and catalytic efficiencies, demonstrated that CYP142A1, but not CYP124A1, can support the growth of H37Rv cells on cholesterol in the absence of cyp125A1. All three enzymes can oxidize the sterol side chain to the carboxylic acid state by sequential oxidation to the alcohol, aldehyde, and acid. Interestingly, CYP125A1 generates oxidized sterols of the (25S)-26-hydroxy configuration, whereas the opposite 25R stereochemistry is obtained with CYP124A1 and CYP142A1. Western blot analysis indicated that CYP124A1 was not detectably expressed in either the H37Rv or CDC1551 strains, whereas CYP142A1 was found in H37Rv but not CDC1551. Genetic complementation of CDC1551 Δcyp125A1 cells with the cyp124A1 or cyp142A1 genes revealed that the latter can fully rescue the growth defect on cholesterol, whereas cells overexpressing CYP124A1 grow poorly and accumulate cholest-4-en-3-one. Our data clearly establish a functional redundancy in the essential C(26)-monooxygenase activity of M. tuberculosis and validate CYP125A1 and CYP142A1 as possible drug targets.
Collapse
Affiliation(s)
- Jonathan B Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | | | |
Collapse
|
88
|
Thornton LE, Rupasinghe SG, Peng H, Schuler MA, Neff MM. Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids. PLANT MOLECULAR BIOLOGY 2010; 74:167-81. [PMID: 20669042 DOI: 10.1007/s11103-010-9663-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 07/06/2010] [Indexed: 05/20/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are a diverse family of proteins that have specialized roles in secondary metabolism and in normal cell development. Two P450s in particular, CYP734A1 and CYP72C1, have been identified as brassinosteroid-inactivating enzymes important for steroid-mediated signal transduction in Arabidopsis thaliana. Genetic analyses have demonstrated that these P450s modulate growth throughout plant development. While members of the CYP734A subfamily inactivate brassinosteroids through C-26 hydroxylation, the biochemical activity of CYP72C1 is unknown. Because CYP734A1 and CYP72C1 in Arabidopsis diverge more than brassinosteroid inactivating P450s in other plants, this study examines the structure and biochemistry of each enzyme. Three-dimensional models were generated to examine the substrate binding site structures and determine how they might affect the function of each P450. These models have indicated that the active site of CYP72C1 does not contain several conserved amino acids typically needed for substrate hydroxylation. Heterologous expression of these P450s followed by substrate binding analyses have indicated that CYP734A1 binds active brassinosteroids, brassinolide and castasterone, as well as their upstream precursors whereas CYP72C1 binds precursors more effectively. Seedling growth assays have demonstrated that the genetic state of CYP734A1, but not CYP72C1, affected responsiveness to high levels of exogenous brassinolide supporting our observations that CYP72C1 acts on brassinolide precursors. Although there may be some overlap in their physiological function, the distinct biochemical functions of these proteins in Arabidopsis has significant potential to fine-tune the levels of different brassinosteroid hormones throughout plant growth and development.
Collapse
Affiliation(s)
- Leeann E Thornton
- Department of Biology, The College of New Jersey, Ewing, 08628, USA.
| | | | | | | | | |
Collapse
|
89
|
Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B. Antimicrob Agents Chemother 2010; 54:4225-34. [PMID: 20660663 DOI: 10.1128/aac.00316-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aspergillus fumigatus sterol 14-α demethylase (CYP51) isoenzymes A (AF51A) and B (AF51B) were expressed in Escherichia coli and purified. The dithionite-reduced CO-P450 complex for AF51A was unstable, rapidly denaturing to inactive P420, in marked contrast to AF51B, where the CO-P450 complex was stable. Type I substrate binding spectra were obtained with purified AF51B using lanosterol (K(s), 8.6 μM) and eburicol (K(s), 22.6 μM). Membrane suspensions of AF51A bound to both lanosterol (K(s), 3.1 μM) and eburicol (K(s), 4.1 μM). The binding of azoles, with the exception of fluconazole, to AF51B was tight, with the K(d) (dissociation constant) values for clotrimazole, itraconazole, posaconazole, and voriconazole being 0.21, 0.06, 0.12, and 0.42 μM, respectively, in comparison with a K(d) value of 4 μM for fluconazole. Characteristic type II azole binding spectra were obtained with AF51B, whereas an additional trough and a blue-shifted spectral peak were present in AF51A binding spectra for all azoles except clotrimazole. This suggests two distinct azole binding conformations within the heme prosthetic group of AF51A. All five azoles bound relatively weakly to AF51A, with K(d) values ranging from 1 μM for itraconazole to 11.9 μM for fluconazole. The azole binding properties of purified AF51A and AF51B suggest an explanation for the intrinsic azole (fluconazole) resistance observed in Aspergillus fumigatus.
Collapse
|
90
|
Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51). Antimicrob Agents Chemother 2010; 54:4235-45. [PMID: 20625155 DOI: 10.1128/aac.00587-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purified Candida albicans sterol 14-α demethylase (CaCYP51) bound the CYP51 substrates lanosterol and eburicol, producing type I binding spectra with K(s) values of 11 and 25 μM, respectively, and a K(m) value of 6 μM for lanosterol. Azole binding to CaCYP51 was "tight" with both the type II spectral intensity (ΔA(max)) and the azole concentration required to obtain a half-ΔA(max) being proportional to the CaCYP51 concentration. Tight binding of fluconazole and itraconazole was confirmed by 50% inhibitory concentration determinations from CYP51 reconstitution assays. CaCYP51 had similar affinities for clotrimazole, econazole, itraconazole, ketoconazole, miconazole, and voriconazole, with K(d) values of 10 to 26 μM under oxidative conditions, compared with 47 μM for fluconazole. The affinities of CaCYP51 for fluconazole and itraconazole appeared to be 4- and 2-fold lower based on CO displacement studies than those when using direct ligand binding under oxidative conditions. Econazole and miconazole were most readily displaced by carbon monoxide, followed by clotrimazole, ketoconazole, and fluconazole, and then voriconazole (7.8 pmol min(-1)), but itraconzole could not be displaced by carbon monoxide. This work reports in depth the characterization of the azole binding properties of wild-type C. albicans CYP51, including that of voriconazole, and will contribute to effective screening of new therapeutic azole antifungal agents. Preliminary comparative studies with the I471T CaCYP51 protein suggested that fluconazole resistance conferred by this mutation was through a combination of increased turnover, increased affinity for substrate, and a reduced affinity for fluconazole in the presence of substrate, allowing the enzyme to remain functionally active, albeit at reduced velocity, at higher fluconazole concentrations.
Collapse
|
91
|
Bořek-Dohalská L, Stiborová M. Cytochrome P450 3A activities and their modulation by α-naphthoflavone in vitro are dictated by the efficiencies of model experimental systems. ACTA ACUST UNITED AC 2010. [DOI: 10.1135/cccc2009525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The knowledge on efficiencies of different in vitro systems containing cytochromes P450 (CYP) of a 3A subfamily is crucial to screen potential substrates of these CYPs. We evaluated and compared efficiencies of several in vitro CYP3A enzymatic systems to oxidize the model substrates, α-NF and testosterone, under the standardized experimental conditions. Five CYP3A systems were tested: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (SupersomesTM), (iv) membranes isolated from Escherichia coli, containing recombinant human CYP3A4, NADPH:CYP reductase and cytochrome b5, and (v) human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. All systems oxidize testosterone to its 6β-hydroxylated metabolite and α-NF to trans-7,8-dihydrodiol and 5,6-epoxide. The most efficient systems oxidizing both compounds were CYP3A4-SupersomesTM containing cytochrome b5, followed by human hepatic microsomes. This finding suggests these systems to be suitable for general evaluating a variety of compounds as potential substrates of CYP3A4. The lowest efficiencies to oxidize α-NF and testosterone were found for CYP3A4 expressed in membranes of E. coli, and for reconstituted CYP3A4 or CYP3A6. Utilizing the tested enzymatic systems, we also explain here the discrepancies, which showed previously the controversial effects of α-NF on CYP3A-mediated reactions. We demonstrate that inhibition or stimulation of the CYP3A-mediated testosterone hydroxylation by α-NF is dictated by efficiencies of individual enzymatic systems to oxidize the CYP3A substrates.
Collapse
|
92
|
BARATTA MT, ZAYA MJ, WHITE JA, LOCUSON CW. Canine CYP2B11 metabolizes and is inhibited by anesthetic agents often co-administered in dogs. J Vet Pharmacol Ther 2010; 33:50-5. [DOI: 10.1111/j.1365-2885.2009.01101.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
93
|
Sun L, Wang ZH, Ni FY, Tan XS, Huang ZX. The Role of Ile476 in the Structural Stability and Substrate Binding of Human Cytochrome P450 2C8. Protein J 2009; 29:32-43. [DOI: 10.1007/s10930-009-9218-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
94
|
Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2009; 106:20687-92. [PMID: 19933331 PMCID: PMC2791619 DOI: 10.1073/pnas.0907398106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) produces a variety of methyl-branched lipids that serve important functions, including modulating the immune response during pathogenesis and contributing to a robust cell wall that is impermeable to many chemical agents. Here, we report characterization of Mtb CYP124 (Rv2266) that includes demonstration of preferential oxidation of methyl-branched lipids. Spectrophotometric titrations and analysis of reaction products indicate that CYP124 tightly binds and hydroxylates these substrates at the chemically disfavored omega-position. We also report X-ray crystal structures of the ligand-free and phytanic acid-bound protein at a resolution of 1.5 A and 2.1 A, respectively, which provide structural insights into a cytochrome P450 with predominant omega-hydroxylase activity. The structures of ligand-free and substrate-bound CYP124 reveal several differences induced by substrate binding, including reorganization of the I helix and closure of the active site by elements of the F, G, and D helices that bind the substrate and exclude solvent from the hydrophobic active site cavity. The observed regiospecific catalytic activity suggests roles of CYP124 in the physiological oxidation of relevant Mtb methyl-branched lipids. The enzymatic specificity and structures reported here provide a scaffold for the design and testing of specific inhibitors of CYP124.
Collapse
Affiliation(s)
- Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | - Petrea M. Kells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | | |
Collapse
|
95
|
Rosłoniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 2009; 74:1031-43. [PMID: 19843222 DOI: 10.1111/j.1365-2958.2009.06915.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cyp125 gene of Rhodococcus jostii RHA1 was previously found to be highly upregulated during growth on cholesterol and the orthologue in Mycobacterium tuberculosis (rv3545c) has been implicated in pathogenesis. Here we show that cyp125 is essential for R. jostii RHA1 to grow on 3-hydroxysterols such as cholesterol, but not on 3-oxo sterol derivatives, and that CYP125 performs an obligate first step in cholesterol degradation. The involvement of cyp125 in sterol side-chain degradation was confirmed by disrupting the homologous gene in Rhodococcus rhodochrous RG32, a strain that selectively degrades the cholesterol side-chain. The RG32 Omega cyp125 mutant failed to transform the side-chain of cholesterol, but degraded that of 5-cholestene-26-oic acid-3beta-ol, a cholesterol catabolite. Spectral analysis revealed that while purified ferric CYP125(RHA1) was < 10% in the low-spin state, cholesterol (K(D)(app) = 0.20 +/- 0.08 microM), 5 alpha-cholestanol (K(D)(app) = 0.15 +/- 0.03 microM) and 4-cholestene-3-one (K(D)(app) = 0.20 +/- 0.03 microM) further reduced the low spin character of the haem iron consistent with substrate binding. Our data indicate that CYP125 is involved in steroid C26-carboxylic acid formation, catalysing the oxidation of C26 either to the corresponding carboxylic acid or to an intermediate state.
Collapse
Affiliation(s)
- Kamila Z Rosłoniec
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Shimada T, Tanaka K, Takenaka S, Foroozesh MK, Murayama N, Yamazaki H, Guengerich FP, Komori M. Reverse type I binding spectra of human cytochrome P450 1B1 induced by flavonoid, stilbene, pyrene, naphthalene, phenanthrene, and biphenyl derivatives that inhibit catalytic activity: a structure-function relationship study. Chem Res Toxicol 2009; 22:1325-33. [PMID: 19563207 DOI: 10.1021/tx900127s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fifty-one chemicals including derivatives of 16 flavonoids, three stilbenes, six pyrenes, seven naphthalenes, seven phenanthrenes, 10 biphenyls, 17beta-estradiol, and estrone were examined for their abilities to induce reverse type I binding spectra with human cytochrome P450 (P450) 1B1 and to inhibit 7-ethoxyresorufin O-deethylation (EROD) activities catalyzed by P450 1B1. Forty-nine chemicals showed reverse type I spectra with P450 1B1, and we found that 3,5,7-trihydroxyflavone, 3',4'-dimethoxy-5,7-dihydroxyflavone, 4'-methoxy-5,7-dihydroxyflavone, alpha- and beta-naphthoflavones, 2,4,3',5'-tetramethoxystilbene, pyrene, and several acetylenic pyrenes and phenanthrenes were strong inducers of the spectra and also potent inhibitors of EROD activities catalyzed by P450 1B1. The spectral dissociation constant (K(s)) and the magnitude of the binding (DeltaA(max)/K(s)) of 49 chemicals were correlated with the inhibition potencies of EROD activities by these chemicals [correlation coefficients (r) of 0.72 and 0.74, respectively]. The K(s) and DeltaA(max)/K(s) values were more correlated with IC(50) values when compared in a group of derivatives of flavonoids, stilbenes, and estrogens (r = 0.81 and 0.88, respectively) or a group of derivatives of pyrenes, naphthalenes, phenanthrenes, and biphenyls (r = 0.88 and 0.91, respectively). Among 14 flavonoids examined, 3,5,7-trihydroxyflavone and 4'-methoxy- and 3',4'-dimethoxy-5,7-dihydroxyflavone were more active than flavone in interacting with P450 1B1, but the respective 7,8-dihydroxyflavones were less active. Pyrene itself was highly active in interacting with P450 1B1, but its binding was slightly decreased when substituted with acetylenic groups. In contrast, substitution of naphthalene with methyl and ethyl propargyl ethers led to more interaction with P450 1B1 than with naphthalene itself. Similarly, substitution on phenanthrene or biphenyl with acetylenic groups and propargyl ethers increased affinities to P450 1B1. These results suggest that the reverse type I binding of chemicals to P450 1B1 may determine how they interact with and inhibit the catalytic activity of the enzyme. Substitutions on the compounds with various acetylenic groups and propargyl ethers cause an increase or decrease of their affinities to P450 1B1, depending on the parent compound used.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Science, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, USA.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Ning D, Wang H, Zhuang Y. Induction of functional cytochrome P450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium. Biodegradation 2009; 21:297-308. [DOI: 10.1007/s10532-009-9301-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 09/15/2009] [Indexed: 11/28/2022]
|
98
|
Veinlichova A, Jancova P, Siller M, Anzenbacher P, Kuca K, Jun D, Fusek J, Anzenbacherova E. Effect of acetylcholinesterase oxime-type reactivators K-48 and HI-6 on human liver microsomal cytochromes P450 invitro. Chem Biol Interact 2009; 180:449-53. [DOI: 10.1016/j.cbi.2009.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/21/2023]
|
99
|
Prior JE, Shokati T, Christians U, Gill RT. Identification and characterization of a bacterial cytochrome P450 for the metabolism of diclofenac. Appl Microbiol Biotechnol 2009; 85:625-33. [PMID: 19636551 DOI: 10.1007/s00253-009-2135-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
The bacterium Actinoplanes sp. ATCC 53771 is known to perform drug metabolism of several xenobiotics similarly to humans. We identified a cytochrome P450 enzyme from this strain, CYP107E4, and expressed it in Escherichia coli using the pET101 vector. The purified enzyme showed the characteristic reduced-CO difference spectra with a peak at 450 nm, indicating the protein is produced in the active form with proper heme incorporation. The CYP107E4 enzyme was found to bind the drug diclofenac. Using redox enzymes from spinach, the reconstituted system is able to produce hydroxylated metabolites of diclofenac. Production of the human 4'-hydroxydiclofenac metabolite by CYP107E4 was confirmed, and a second hydroxylated metabolite was also produced.
Collapse
Affiliation(s)
- Jamie E Prior
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
100
|
Ouellet H, Johnston JB, Ortiz de Montellano PR. The Mycobacterium tuberculosis cytochrome P450 system. Arch Biochem Biophys 2009; 493:82-95. [PMID: 19635450 DOI: 10.1016/j.abb.2009.07.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 11/25/2022]
Abstract
Tuberculosis remains a leading cause of human mortality. The emergence of strains of Mycobacterium tuberculosis, the causative agent, that are resistant to the major frontline antitubercular drugs increases the urgency for the development of new therapeutic agents. Sequencing of the M. tuberculosis genome revealed the existence of 20 cytochrome P450 enzymes, some of which are potential candidates for drug targeting. The recent burst of studies reporting microarray-based gene essentiality and transcriptome analyses under in vitro, ex vivo and in vivo conditions highlight the importance of selected P450 isoforms for M. tuberculosis viability and pathogenicity. Current knowledge of the structural and biochemical properties of the M. tuberculosis P450 enzymes and their putative redox partners is reviewed, with an emphasis on findings related to their physiological function(s) as well as their potential as drug targets.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA 94158-2517, USA
| | | | | |
Collapse
|