51
|
Kemayo Koumkoua P, Aisenbrey C, Salnikov E, Rifi O, Bechinger B. On the design of supramolecular assemblies made of peptides and lipid bilayers. J Pept Sci 2014; 20:526-36. [PMID: 24909405 DOI: 10.1002/psc.2656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 02/02/2023]
Abstract
Peptides confer interesting properties to materials, supramolecular assemblies and to lipid membranes and are used in analytical devices or within delivery vehicles. Their relative ease of production combined with a high degree of versatility make them attractive candidates to design new such products. Here, we review and demonstrate how CD- and solid-state NMR spectroscopic approaches can be used to follow the reconstitution of peptides into membranes and to describe some of their fundamental characteristics. Whereas CD spectroscopy is used to monitor secondary structure in different solvent systems and thereby aggregation properties of the highly hydrophobic domain of p24, a protein involved in vesicle trafficking, solid-state NMR spectroscopy was used to deduce structural information and the membrane topology of a variety of peptide sequences found in nature or designed. (15)N chemical shift solid-state NMR spectroscopy indicates that the hydrophobic domain of p24 as well as a designed sequence of 19 hydrophobic amino acid residues adopt transmembrane alignments in phosphatidylcholine membranes. In contrast, the amphipathic antimicrobial peptide magainin 2 and the designed sequence LK15 align parallel to the bilayer surface. Additional angular information is obtained from deuterium solid-state NMR spectra of peptide sites labelled with (2)H3-alanine, whereas (31)P and (2)H solid-state NMR spectra of the lipids furnish valuable information on the macroscopic order and phase properties of the lipid matrix. Using these approaches, peptides and reconstitution protocols can be elaborated in a rational manner, and the analysis of a great number of peptide sequences is reviewed. Finally, a number of polypeptides with membrane topologies that are sensitive to a variety of environmental conditions such as pH, lipid composition and peptide-to-lipid ratio will be presented.
Collapse
Affiliation(s)
- Patricia Kemayo Koumkoua
- Université de Strasbourg / CNRS, UMR7177, Institut de Chimie, 1, rue Blaise Pascal, 67070, Strasbourg, France
| | | | | | | | | |
Collapse
|
52
|
Acerra N, Kad NM, Griffith DA, Ott S, Crowther DC, Mason JM. Retro-inversal of Intracellular Selected β-Amyloid-Interacting Peptides: Implications for a Novel Alzheimer’s Disease Treatment. Biochemistry 2014; 53:2101-11. [DOI: 10.1021/bi5001257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Acerra
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Neil M. Kad
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Douglas A. Griffith
- Department
of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, U.K
| | - Stanislav Ott
- Department
of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, U.K
| | - Damian C. Crowther
- Department
of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, U.K
| | - Jody M. Mason
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| |
Collapse
|
53
|
Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, Qian Y. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice. Biomaterials 2013; 35:456-65. [PMID: 24099709 DOI: 10.1016/j.biomaterials.2013.09.063] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder with few treatments. The limitations imposed by the blood-brain barrier (BBB) and the non-selective distribution of drugs in the brain have hindered the effective treatment of AD and may result in severe side effects on the normal brains. We developed a dual-functional nanoparticle drug delivery system based on a PEGylated poly (lactic acid) (PLA) polymer. Two targeting peptides that were screened by phage display, TGN and QSH, were conjugated to the surface of the nanoparticles. TGN specifically targets ligands at the BBB, while QSH has good affinity with Aβ(1-42), which is the main component of amyloid plaque. Tests probing the bEnd.3 cell uptake and in vivo imaging were conducted to determine the best density of TGN on the nanoparticles' surfaces. The optimal amount of QSH was studied using a Thioflavin T (ThT) binding assay and surface plasmon resonance (SPR) experiments. The optimal maleimide/peptide molar ratio was 3 for both TGN and QSH on the surface of the nanoparticles (T3Q3-NP), and these nanoparticles achieved enhanced and precise targeted delivery to amyloid plaque in the brains of AD model mice. A MTT assay also validated the safety of this dual-targeted delivery system; little cytotoxicity was demonstrated with both bEnd.3 and PC 12 cells. In conclusion, the T3Q3-NP might be a valuable targeting system for AD diagnosis and therapy.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China; Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University, 201203, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
54
|
Vilches S, Vergara C, Nicolás O, Sanclimens G, Merino S, Varón S, Acosta GA, Albericio F, Royo M, Río JAD, Gavín R. Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein. PLoS One 2013; 8:e70881. [PMID: 23940658 PMCID: PMC3733940 DOI: 10.1371/journal.pone.0070881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022] Open
Abstract
The physiological functions of PrP(C) remain enigmatic, but the central domain, comprising highly conserved regions of the protein may play an important role. Indeed, a large number of studies indicate that synthetic peptides containing residues 106-126 (CR) located in the central domain (CD, 95-133) of PrP(C) are neurotoxic. The central domain comprises two chemically distinct subdomains, the charge cluster (CC, 95-110) and a hydrophobic region (HR, 112-133). The aim of the present study was to establish the individual cytotoxicity of CC, HR and CD. Our results show that only the CD peptide is neurotoxic. Biochemical, Transmission Electron Microscopy and Atomic Force Microscopy experiments demonstrated that the CD peptide is able to activate caspase-3 and disrupt the cell membrane, leading to cell death.
Collapse
Affiliation(s)
- Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Cristina Vergara
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Oriol Nicolás
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gloria Sanclimens
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
| | - Sandra Merino
- Department of Physicochemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Sonia Varón
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
| | - Gerardo A. Acosta
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
- Department of Organic Chemistry, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Miriam Royo
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - José A. Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
55
|
Acerra N, Kad NM, Mason JM. Combining intracellular selection with protein-fragment complementation to derive Aβ interacting peptides. Protein Eng Des Sel 2013; 26:463-70. [PMID: 23708321 PMCID: PMC3690830 DOI: 10.1093/protein/gzt021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aggregation of the β-amyloid (Aβ) peptide into toxic oligomers is considered the primary event in the pathogenesis of Alzheimer's disease. Previously generated peptides and mimetics designed to bind to amyloid fibrils have encountered problems in solubility, protease susceptibility and the population of small soluble toxic oligomers. We present a new method that opens the possibility of deriving new amyloid inhibitors. The intracellular protein-fragment complementation assay (PCA) approach uses a semi-rational design approach to generate peptides capable of binding to Aβ. Peptide libraries are based on Aβ regions responsible for instigating amyloidosis, with screening and selection occurring entirely inside Escherichia coli. Successfully selected peptides must therefore bind Aβ and recombine an essential enzyme while permitting bacterial cell survival. No assumptions are made regarding the mechanism of action for selected binders. Biophysical characterisation demonstrates that binding induces a noticeable reduction in amyloid. Therefore, this amyloid-PCA approach may offer a new pathway for the design of effective inhibitors against the formation of amyloid in general.
Collapse
Affiliation(s)
- Nicola Acerra
- The School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | | |
Collapse
|
56
|
Ryan TM, Caine J, Mertens HDT, Kirby N, Nigro J, Breheney K, Waddington LJ, Streltsov VA, Curtain C, Masters CL, Roberts BR. Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 2013; 1:e73. [PMID: 23678397 PMCID: PMC3646356 DOI: 10.7717/peerj.73] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/22/2013] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease is the leading cause of dementia in the elderly. Pathologically it is characterized by the presence of amyloid plaques and neuronal loss within the brain tissue of affected individuals. It is now widely hypothesised that fibrillar structures represent an inert structure. Biophysical and toxicity assays attempting to characterize the formation of both the fibrillar and the intermediate oligomeric structures of Aβ typically involves preparing samples which are largely monomeric; the most common method by which this is achieved is to use the fluorinated organic solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Recent evidence has suggested that this method is not 100% effective in producing an aggregate free solution. We show, using dynamic light scattering, size exclusion chromatography and small angle X-ray scattering that this is indeed the case, with HFIP pretreated Aβ peptide solutions displaying an increased proportion of oligomeric and aggregated material and an increased propensity to aggregate. Furthermore we show that an alternative technique, involving treatment with strong alkali results in a much more homogenous solution that is largely monomeric. These techniques for solubilising and controlling the oligomeric state of Aβ are valuable starting points for future biophysical and toxicity assays.
Collapse
Affiliation(s)
- Timothy M Ryan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, Victoria , Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Sedlák F, Šácha P, Blechová M, B&rnezinová A, Šafařík M, Šebestík J, Konvalinka J. Glutamate carboxypeptidase II does not process amyloid‐β peptide. FASEB J 2013; 27:2626-32. [DOI: 10.1096/fj.12-225094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- František Sedlák
- Gilead SciencesPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Center, IOCB, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Pavel Šácha
- Gilead SciencesPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Center, IOCB, Academy of Sciences of the Czech RepublicPragueCzech Republic
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Miroslava Blechová
- Gilead SciencesPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Center, IOCB, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Anna B&rnezinová
- Gilead SciencesPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Center, IOCB, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Martin Šafařík
- Gilead SciencesPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Center, IOCB, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Jaroslav Šebestík
- Gilead SciencesPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Center, IOCB, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Jan Konvalinka
- Gilead SciencesPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Center, IOCB, Academy of Sciences of the Czech RepublicPragueCzech Republic
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
58
|
Attanasio F, Convertino M, Magno A, Caflisch A, Corazza A, Haridas H, Esposito G, Cataldo S, Pignataro B, Milardi D, Rizzarelli E. Carnosine inhibits Aβ(42) aggregation by perturbing the H-bond network in and around the central hydrophobic cluster. Chembiochem 2013; 14:583-92. [PMID: 23440928 DOI: 10.1002/cbic.201200704] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Indexed: 02/06/2023]
Abstract
Aggregation of the amyloid-β peptide (Aβ) into fibrillar structures is a hallmark of Alzheimer's disease. Thus, preventing self-assembly of the Aβ peptide is an attractive therapeutic strategy. Here, we used experimental techniques and atomistic simulations to investigate the influence of carnosine, a dipeptide naturally occurring in the brain, on Aβ aggregation. Scanning force microscopy, circular dichroism and thioflavin T fluorescence experiments showed that carnosine does not modify the conformational features of Aβ42 but nonetheless inhibits amyloid growth. Molecular dynamics (MD) simulations indicated that carnosine interacts transiently with monomeric Aβ42 by salt bridges with charged side chains, and van der Waals contacts with residues in and around the central hydrophobic cluster ((17)LVFFA(21)). NMR experiments on the nonaggregative fragment Aβ12-28 did not evidence specific intermolecular interactions between the peptide and carnosine, in agreement with MD simulations. However, a close inspection of the spectra revealed that carnosine interferes with the local propensity of the peptide to form backbone hydrogen bonds close to the central hydrophobic cluster (residues E22, S26 and N27). Finally, MD simulations of aggregation-prone Aβ heptapeptide segments show that carnosine reduces the propensity to form intermolecular backbone hydrogen bonds in the region 18-24. Taken together, the experimental and simulation results (cumulative MD sampling of 0.2 ms) suggest that, despite the inability of carnosine to form stable contacts with Aβ, it might block the pathway toward toxic aggregates by perturbing the hydrogen bond network near residues with key roles in fibrillogenesis.
Collapse
Affiliation(s)
- Francesco Attanasio
- Istituto di Biostrutture e Bioimmagini-UOS CT, Consiglio Nazionale delle Ricerche, V.le A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Richman M, Wilk S, Chemerovski M, Wärmländer SKTS, Wahlström A, Gräslund A, Rahimipour S. In vitro and mechanistic studies of an antiamyloidogenic self-assembled cyclic D,L-α-peptide architecture. J Am Chem Soc 2013; 135:3474-84. [PMID: 23360549 DOI: 10.1021/ja310064v] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Misfolding of the Aβ protein and its subsequent aggregation into toxic oligomers are related to Alzheimer's disease. Although peptides of various sequences can self-assemble into amyloid structures, these structures share common three-dimensional features that may promote their cross-reaction. Given the significant similarities between amyloids and the architecture of self-assembled cyclic D,L-α-peptide, we hypothesized that the latter may bind and stabilize a nontoxic form of Aβ, thereby preventing its aggregation into toxic forms. By screening a focused library of six-residue cyclic D,L-α-peptides and optimizing the activity of a lead peptide, we found one cyclic D,L-α-peptide (CP-2) that interacts strongly with Aβ and inhibits its aggregation. In transmission electron microscopy, optimized thioflavin T and cell survival assays, CP-2 inhibits the formation of Aβ aggregates, entirely disassembles preformed aggregated and fibrillar Aβ, and protects rat pheochromocytoma PC12 cells from Aβ toxicity, without inducing any toxicity by itself. Using various immunoassays, circular dichroism spectroscopy, photoinduced cross-linking of unmodified proteins (PICUP) combined with SDS/PAGE, and NMR, we probed the mechanisms underlying CP-2's antiamyloidogenic activity. NMR spectroscopy indicates that CP-2 interacts with Aβ through its self-assembled conformation and induces weak secondary structure in Aβ. Upon coincubation, CP-2 changes the aggregation pathway of Aβ and alters its oligomer distribution by stabilizing small oligomers (1-3 mers). Our results support studies suggesting that toxic early oligomeric states of Aβ may be composed of antiparallel β-peptide structures and that the interaction of Aβ with CP-2 promotes formation of more benign parallel β-structures. Further studies will show whether these kinds of abiotic cyclic D,L-α-peptides are also beneficial as an intervention in related in vivo models.
Collapse
Affiliation(s)
- Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290, Israel
| | | | | | | | | | | | | |
Collapse
|
60
|
Attanasio F, De Bona P, Cataldo S, Sciacca MFM, Milardi D, Pignataro B, Pappalardo G. Copper(ii) and zinc(ii) dependent effects on Aβ42 aggregation: a CD, Th-T and SFM study. NEW J CHEM 2013. [DOI: 10.1039/c3nj40999f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
61
|
Amijee H, Bate C, Williams A, Virdee J, Jeggo R, Spanswick D, Scopes DIC, Treherne JM, Mazzitelli S, Chawner R, Eyers CE, Doig AJ. The N-methylated peptide SEN304 powerfully inhibits Aβ(1-42) toxicity by perturbing oligomer formation. Biochemistry 2012; 51:8338-52. [PMID: 23025847 DOI: 10.1021/bi300415v] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oligomeric forms of β-amyloid (Aβ) have potent neurotoxic activity and are the primary cause of neuronal injury and cell death in Alzheimer's disease (AD). Compounds that perturb oligomer formation or structure may therefore be therapeutic for AD. We previously reported that d-[(chGly)-(Tyr)-(chGly)-(chGly)-(mLeu)]-NH(2) (SEN304) is able to inhibit Aβ aggregation and toxicity, shown primarily by thioflavin T fluorescence and MTT (Kokkoni, N. et al. (2006) N-Methylated peptide inhibitors of β-amyloid aggregation and toxicity. Optimisation of inhibitor structure. Biochemistry 45, 9906-9918). Here we extensively characterize how SEN304 affects Aβ(1-42) aggregation and toxicity, using biophysical assays (thioflavin T, circular dichroism, SDS-PAGE, size exclusion chromatography, surface plasmon resonance, traveling wave ion mobility mass spectrometry, electron microscopy, ELISA), toxicity assays in cell culture (MTT and lactate dehydrogenase in human SH-SHY5Y cells, mouse neuronal cell death and synaptophysin) and long-term potentiation in a rat hippocampal brain slice. These data, with dose response curves, show that SEN304 is a powerful inhibitor of Aβ(1-42) toxicity, particularly effective at preventing Aβ inhibition of long-term potentiation. It can bind directly to Aβ(1-42), delay β-sheet formation and promote aggregation of toxic oligomers into a nontoxic form, with a different morphology that cannot bind thioflavin T. SEN304 appears to work by inducing aggregation, and hence removal, of Aβ oligomers. It is therefore a promising lead compound for Alzheimer's disease.
Collapse
Affiliation(s)
- Hozefa Amijee
- Senexis Limited, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Yusko EC, Prangkio P, Sept D, Rollings RC, Li J, Mayer M. Single-particle characterization of Aβ oligomers in solution. ACS NANO 2012; 6:5909-5919. [PMID: 22686709 PMCID: PMC3418869 DOI: 10.1021/nn300542q] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Determining the pathological role of amyloids in amyloid-associated diseases will require a method for characterizing the dynamic distributions in size and shape of amyloid oligomers with high resolution. Here, we explored the potential of resistive-pulse sensing through lipid bilayer-coated nanopores to measure the size of individual amyloid-β oligomers directly in solution and without chemical modification. This method classified individual amyloid-β aggregates as spherical oligomers, protofibrils, or mature fibers and made it possible to account for the large heterogeneity of amyloid-β aggregate sizes. The approach revealed the distribution of protofibrillar lengths (12- to 155 -mer) as well as the average cross-sectional area of protofibrils and fibers.
Collapse
Affiliation(s)
- Erik C. Yusko
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Panchika Prangkio
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan C. Rollings
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Jiali Li
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Michael Mayer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
63
|
Milton NGN, Harris JR. Fibril formation and toxicity of the non-amyloidogenic rat amylin peptide. Micron 2012; 44:246-53. [PMID: 22854213 DOI: 10.1016/j.micron.2012.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023]
Abstract
Full-length native rat amylin 1-37 has previously been widely shown to be unable to form fibrils and to lack the toxicity of the human amylin form leading to its use as a non-amyloidogenic control peptide. A recent study has suggested that rat amylin 1-37 forms amyloidogenic β-sheet structures in the presence of the human amylin form and suggested that this property could promote toxicity. Using TEM analysis we show here fibril formation by synthetic rat amylin 1-37 and 8-37 peptides when the lyophilized HPLC purified peptides are initially dissolved in 20 mM Tris-HCl. Dissolution of synthetic rat amylin 1-37 and 8-37 peptides in H(2)O or phosphate buffered saline failed to produce fibrils. Addition of 20 mM Tris-HCl to synthetic rat amylin 1-37 and 8-37 peptides initially dissolved in H(2)O also failed to induce fibril formation. The rat amylin fibrils have a uniform structure and bind Congo red suggesting that they are amyloid fibrils. The rat amylin fibrils also bind catalase, which could be inhibited by Amyloid-β 31-35 and a catalase amyloid-β binding domain-like peptide (R9). The rat amylin 1-37 and 8-37 fibrils are toxic in both human pancreatic islet and neuronal cell culture systems. The toxicity of rat amylin fibrils can be inhibited by an amylin receptor antagonist (AC187) and a caspase inhibitor (zVAD-fmk) in a similar manner to previous observations for human amylin toxicity. Chemically induced rat amylin fibril formation of uniform structured fibrils provides a potentially novel anti-amyloid drug discovery tool.
Collapse
Affiliation(s)
- Nathaniel G N Milton
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | | |
Collapse
|
64
|
Kukday SS, Manandhar SP, Ludley MC, Burriss ME, Alper BJ, Schmidt WK. Cell-permeable, small-molecule activators of the insulin-degrading enzyme. ACTA ACUST UNITED AC 2012; 17:1348-61. [PMID: 22740246 DOI: 10.1177/1087057112451921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insulin-degrading enzyme (IDE) cleaves numerous small peptides, including biologically active hormones and disease-related peptides. The propensity of IDE to degrade neurotoxic Aβ peptides marks IDE as a potential therapeutic target for Alzheimer disease. Using a synthetic reporter based on the yeast a-factor mating pheromone precursor, which is cleaved by multiple IDE orthologs, we identified seven small molecules that stimulate rat IDE activity in vitro. Half-maximal activation of IDE by the compounds is observed in vitro in the range of 43 to 198 µM. All compounds decrease the K(m) of IDE. Four compounds activate IDE in the presence of the competing substrate insulin, which disproportionately inhibits IDE activity. Two compounds stimulate rat IDE activity in a cell-based assay, indicating that they are cell permeable. The compounds demonstrate specificity for rat IDE since they do not enhance the activities of IDE orthologs, including human IDE, and they appear specific for a-factor-based reporters since they do not enhance rat IDE-mediated cleavage of Aβ-based reporters. Our results suggest that IDE activators function in the context of specific enzyme-substrate pairs, indicating that the choice of substrate must be considered in addition to target validation in IDE activator screens.
Collapse
|
65
|
Hu Y, Zheng H, Su B, Hernandez M, Kim JR. Modulation of beta-amyloid aggregation by engineering the sequence connecting beta-strand forming domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1069-79. [PMID: 22709576 DOI: 10.1016/j.bbapap.2012.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 11/15/2022]
Abstract
Aggregation of beta-amyloid (Aβ) into oligomers and fibrils is associated with the pathology of Alzheimer's disease. The major structural characteristics of Aβ fibrils include the presence of β sheet-loop-β sheet conformations. Several lines of study suggested a potentially important role of the Aβ loop forming sequence (referred to as the Aβ linker region) in Aβ aggregation. Effects of mutations in several charged residues within the Aβ linker region on aggregation have been extensively studied. However, little is known about oligomerization effects of sequence variation in other residues within the Aβ linker region. Moreover, modulation effects of the Aβ linker mutants on Aβ aggregation have yet to be characterized. Here, we created and characterized Aβ linker variants containing sequences preferentially found in specific β turn conformations. Our results indicate that a propensity to form oligomers may be changed by local sequence variation in the Aβ linker region without mutating the charged residues. Strikingly, one Aβ linker variant rapidly formed protofibrillar oligomers, which did not convert to fibrillar aggregates in contrast to Aβ aggregating to fibrils under similar incubation conditions. Moreover, our results suggest that molecular forces critical in oligomerization and fibrillization may differ at least for those involved in the linker region. When co-incubated with Aβ, some Aβ linker variants were found to induce accumulation of Aβ oligomers. Our results suggest that engineering of the Aβ linker region as described in this paper may represent a novel approach to control Aβ oligomerization and create Aβ oligomerization modulators.
Collapse
Affiliation(s)
- Yang Hu
- Othmer-Jacobs Department of Chemical and Biological Engineering, Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | | | | | | | | |
Collapse
|
66
|
Rastogi N, Mitra K, Kumar D, Roy R. Metal Ions as Cofactors for Aggregation of Therapeutic Peptide Salmon Calcitonin. Inorg Chem 2012; 51:5642-50. [DOI: 10.1021/ic202604v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Neeraj Rastogi
- Centre of Biomedical Magnetic
Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences
Campus, Lucknow 226014, India
| | - Kalyan Mitra
- E. M. Unit, Central Drug Research
Institute, CSIR, Lucknow 226001, India
| | - Dinesh Kumar
- Centre of Biomedical Magnetic
Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences
Campus, Lucknow 226014, India
| | - Raja Roy
- Centre of Biomedical Magnetic
Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences
Campus, Lucknow 226014, India
| |
Collapse
|
67
|
Steckmann T, Awan Z, Gerstman BS, Chapagain PP. Kinetics of peptide secondary structure conversion during amyloid β-protein fibrillogenesis. J Theor Biol 2012; 301:95-102. [DOI: 10.1016/j.jtbi.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
68
|
Buncherd H, Nessen MA, Nouse N, Stelder SK, Roseboom W, Dekker HL, Arents JC, Smeenk LE, Wanner MJ, van Maarseveen JH, Yang X, Lewis PJ, de Koning LJ, de Koster CG, de Jong L. Selective enrichment and identification of cross-linked peptides to study 3-D structures of protein complexes by mass spectrometry. J Proteomics 2012; 75:2205-15. [DOI: 10.1016/j.jprot.2012.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
|
69
|
de la Fuente E, Adura C, Kogan MJ, Bollo S. Carbon Nanotubes Electrochemistry Allows the In Situ Evaluation of the Effect of β-Sheet Breakers on the Aggregation Process of β-Amyloid. ELECTROANAL 2012. [DOI: 10.1002/elan.201100607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
70
|
Pachahara SK, Chaudhary N, Subbalakshmi C, Nagaraj R. Hexafluoroisopropanol induces self-assembly of β-amyloid peptides into highly ordered nanostructures. J Pept Sci 2012; 18:233-41. [DOI: 10.1002/psc.2391] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/02/2011] [Accepted: 12/01/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Sanjai Kumar Pachahara
- Council of Scientific and Industrial Research; Centre for Cellular and Molecular Biology; Uppal Road; Hyderabad; 500 007; India
| | - Nitin Chaudhary
- Council of Scientific and Industrial Research; Centre for Cellular and Molecular Biology; Uppal Road; Hyderabad; 500 007; India
| | - Chilukuri Subbalakshmi
- Council of Scientific and Industrial Research; Centre for Cellular and Molecular Biology; Uppal Road; Hyderabad; 500 007; India
| | - Ramakrishnan Nagaraj
- Council of Scientific and Industrial Research; Centre for Cellular and Molecular Biology; Uppal Road; Hyderabad; 500 007; India
| |
Collapse
|
71
|
Li H, Du Z, Lopes DHJ, Fradinger EA, Wang C, Bitan G. C-terminal tetrapeptides inhibit Aβ42-induced neurotoxicity primarily through specific interaction at the N-terminus of Aβ42. J Med Chem 2011; 54:8451-60. [PMID: 22087474 DOI: 10.1021/jm200982p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibition of amyloid β-protein (Aβ)-induced toxicity is a promising therapeutic strategy for Alzheimer's disease (AD). Previously, we reported that the C-terminal tetrapeptide Aβ(39-42) is a potent inhibitor of neurotoxicity caused by Aβ42, the form of Aβ most closely associated with AD. Here, initial structure-activity relationship studies identified key structural requirements, including chirality, side-chain structure, and a free N-terminus, which control Aβ(39-42) inhibitory activity. To elucidate the binding site(s) of Aβ(39-42) on Aβ42, we used intrinsic tyrosine (Y) fluorescence and solution-state NMR. The data suggest that Aβ(39-42) binds at several sites, of which the predominant one is located in the N-terminus of Aβ42, in agreement with recent modeling predictions. Thus, despite the small size of Aβ(39-42) and the hydrophobic, aliphatic nature of all four side-chains, the interaction of Aβ(39-42) with Aβ42 is controlled by specific intermolecular contacts requiring a combination of hydrophobic and electrostatic interactions and a particular stereochemistry.
Collapse
Affiliation(s)
- Huiyuan Li
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, University of California, Los Angeles, 635 Charles E. Young Drive South, Los Angeles, California 90095-7334, United States
| | | | | | | | | | | |
Collapse
|
72
|
Richman M, Wilk S, Skirtenko N, Perelman A, Rahimipour S. Surface-modified protein microspheres capture amyloid-β and inhibit its aggregation and toxicity. Chemistry 2011; 17:11171-7. [PMID: 21887833 DOI: 10.1002/chem.201101326] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Indexed: 12/20/2022]
Abstract
The biocompatible and biodegradable properties of protein microspheres and the recent advances in their preparation have generated considerable interest of utilizing these core-shell structures for drug delivery and diagnostic applications. However, effective targeting of protein microspheres to desirable cells or loci still remains a challenge. Here, we describe for the first time a facile one-pot sonochemical approach for covalent modification of protein microspheres made from serum albumin; the surface of which is covalently decorated with a short recognition peptide to target amyloid-β (Aβ) as the main pathogenic protein in Alzheimer's disease (AD). The microspheres were characterized for their morphology, size, and entrapment efficacy by electron microscopy, dynamic light scattering and confocal microscopy. Fluorescence-activated cell-sorting analysis and Thioflavin-T binding assay demonstrated that the conjugated microspheres bind with high affinity and selectivity to Aβ, sequester it from the medium and reduce its aggregation. Upon incubation with Aβ, the microspheres induced formation of amorphous aggregates on their surface with no apparent fibrillar structure. Moreover, the microspheres directly reduced the Aβ-induced toxicity toward neuron like PC12 cells. The conjugated microspheres are smaller than unmodified microspheres and remained stable throughout the incubation under physiological conditions.
Collapse
Affiliation(s)
- Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
73
|
Martin DJ, Ramirez-Alvarado M. Glycosaminoglycans promote fibril formation by amyloidogenic immunoglobulin light chains through a transient interaction. Biophys Chem 2011; 158:81-9. [PMID: 21640469 DOI: 10.1016/j.bpc.2011.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/02/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022]
Abstract
Amyloid formation occurs when a precursor protein misfolds and aggregates, forming a fibril nucleus that serves as a template for fibril growth. Glycosaminoglycans are highly charged polymers known to associate with tissue amyloid deposits that have been shown to accelerate amyloidogenesis in vitro. We studied two immunoglobulin light chain variable domains from light chain amyloidosis patients with 90% sequence identity, analyzing their fibril formation kinetics and binding properties with different glycosaminoglycan molecules. We find that the less amyloidogenic of the proteins shows a weak dependence on glycosaminoglycan size and charge, while the more amyloidogenic protein responds only minimally to changes in the glycosaminoglycan. These glycosaminoglycan effects on fibril formation do not depend on a stable interaction between the two species but still show characteristic traits of an interaction-dependent mechanism. We propose that transient, predominantly electrostatic interactions between glycosaminoglycans and the precursor proteins mediate the acceleration of fibril formation in vitro.
Collapse
Affiliation(s)
- Douglas J Martin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
74
|
Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, Rousseau F, Schymkowitz J. A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer's disease. Protein Eng Des Sel 2011; 24:743-50. [DOI: 10.1093/protein/gzr020] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
75
|
Grasso G. The use of mass spectrometry to study amyloid-β peptides. MASS SPECTROMETRY REVIEWS 2011; 30:347-365. [PMID: 21500241 DOI: 10.1002/mas.20281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 05/30/2023]
Abstract
Amyloid-β peptide (Aβ) varies in size from 39 to 43 amino acids and arises from sequential β- and γ-secretase processing of the amyloid precursor protein. Whereas the non-pathological role for Aβ is yet to be established, there is no disputing that Aβ is now widely regarded as central to the development of Alzheimer's disease (AD). The so named "amyloid cascade hypothesis" states that disease progression is the result of an increased Aβ burden in affected areas of the brain. To elucidate the Aβ role in AD, many analytical approaches have been proposed as suitable tools to investigate not only the total Aβ load but also many other issues that are considered crucial for AD, such as: (i) the aggregation state in which Aβ is present; (ii) its interaction with other species or metals; (iii) its ability to induce oxidative stress; and (iv) its degradative pathways. This review provides an insight into the use of mass spectrometry (MS) in the field of Aβ investigation aimed to assess its role in AD. In particular, the different MS-based approaches applied in vitro and in vivo that can provide detailed information on the above-mentioned issues are reviewed. Moreover, the advantages offered by the MS methods over all the other techniques are highlighted, together with the recent developments and uses of combined analytical approaches to detect and characterize Aβ.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Università di Catania, Viale Andrea Doria 6, Catania 95125, Italy.
| |
Collapse
|
76
|
Fändrich M, Schmidt M, Grigorieff N. Recent progress in understanding Alzheimer's β-amyloid structures. Trends Biochem Sci 2011; 36:338-45. [PMID: 21411326 DOI: 10.1016/j.tibs.2011.02.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/22/2023]
Abstract
The formation of amyloid fibrils, protofibrils and oligomers from the β-amyloid (Aβ) peptide represents a hallmark of Alzheimer's disease. Aβ-peptide-derived assemblies might be crucial for disease onset, but determining their atomic structures has proven to be a major challenge. Progress over the past 5 years has yielded substantial new data obtained with improved methodologies including electron cryo-microscopy and NMR. It is now possible to resolve the global fibril topology and the cross-β sheet organization within protofilaments, and to identify residues that are crucial for stabilizing secondary structural elements and peptide conformations within specific assemblies. These data have significantly enhanced our understanding of the mechanism of Aβ aggregation and have illuminated the possible relevance of specific conformers for neurodegenerative pathologies.
Collapse
Affiliation(s)
- Marcus Fändrich
- Max-Planck Research Unit for Enzymology of Protein Folding & Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | | | | |
Collapse
|
77
|
Llop-Tous I, Madurga S, Giralt E, Marzabal P, Torrent M, Ludevid MD. Relevant elements of a maize gamma-zein domain involved in protein body biogenesis. J Biol Chem 2010; 285:35633-44. [PMID: 20829359 PMCID: PMC2975188 DOI: 10.1074/jbc.m110.116285] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 09/08/2010] [Indexed: 11/06/2022] Open
Abstract
The N-terminal proline-rich domain of γ-zein (Zera) plays an important role in protein body (PB) formation not only in the original host (maize seeds) but in a broad spectrum of eukaryotic cells. However, the elements within the Zera sequence that are involved in the biogenesis of PBs have not been clearly identified. Here, we focused on amino acid sequence motifs that could be involved in Zera oligomerization, leading to PB-like structures in Nicotiana benthamiana leaves. By using fusions of Zera with fluorescent proteins, we found that the lack of the repeat region (PPPVHL)(8) of Zera resulted in the secretion of the fusion protein but that this repeat by itself did not form PBs. Although the repeat region containing eight units was the most efficient for Zera self-assembly, shorter repeats of 4-6 units still formed small multimers. Based on site-directed mutagenesis of Zera cysteine residues and analysis of multimer formation, we conclude that the two N-terminal Cys residues of Zera (Cys(7) and Cys(9)) are critical for oligomerization. Immunoelectron microscopy and confocal studies on PB development over time revealed that early, small, Zera-derived oligomers were sequestered in buds along the rough ER and that the mature size of the PBs could be attained by both cross-linking of preformed multimers and the incorporation of new chains of Zera fusions synthesized by active membrane-bound ribosomes. Based on these results and on the behavior of the Zera structure determined by molecular dynamics simulation studies, we propose a model of Zera-induced PB biogenesis.
Collapse
Affiliation(s)
- Immaculada Llop-Tous
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sergio Madurga
- the Departament de Química Física and IQTCUB, Universidad de Barcelona, Martí Franquès 1, 08028 Barcelona, Spain
| | - Ernest Giralt
- the Institut de Recerca Biomèdica, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain, and
| | | | - Margarita Torrent
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M. Dolors Ludevid
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
78
|
Sikkink LA, Ramirez-Alvarado M. Cytotoxicity of amyloidogenic immunoglobulin light chains in cell culture. Cell Death Dis 2010; 1:e98. [PMID: 21368874 PMCID: PMC3032327 DOI: 10.1038/cddis.2010.75] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Light-chain amyloidosis (AL) is a devastating protein-misfolding disease characterized by abnormal proliferation of plasma cells in the bone marrow that secrete monoclonal immunoglobulin light chains that misfold and form amyloid fibrils, thus causing organ failure and death. Numerous reports on different protein-misfolding diseases show that soluble oligomeric species populated by amyloidogenic proteins can be quite toxic to cells. However, it is not well established whether the soluble immunoglobulin light-chain species found in circulation in patients with AL are toxic to cells in target organs. We determined the cellular toxicity of two well-characterized light-chain variable domain proteins from cardiac AL patients and their corresponding germline protein, devoid of somatic mutations. Our results show that the soluble form of the AL proteins we characterized are toxic to cardiomyocytes, and that the species found in cell culture correspond, for the most part, to the species present in circulation in these patients.
Collapse
Affiliation(s)
- L A Sikkink
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
79
|
Chen J, Armstrong AH, Koehler AN, Hecht MH. Small molecule microarrays enable the discovery of compounds that bind the Alzheimer's Aβ peptide and reduce its cytotoxicity. J Am Chem Soc 2010; 132:17015-22. [PMID: 21062056 DOI: 10.1021/ja107552s] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amyloid-β (Aβ) aggregation pathway is a key target in efforts to discover therapeutics that prevent or delay the onset of Alzheimer's disease. Efforts at rational drug design, however, are hampered by uncertainties about the precise nature of the toxic aggregate. In contrast, high-throughput screening of compound libraries does not require a detailed understanding of the structure of the toxic species, and can provide an unbiased method for the discovery of small molecules that may lead to effective therapeutics. Here, we show that small molecule microarrays (SMMs) represent a particularly promising tool for identifying compounds that bind the Aβ peptide. Microarray slides with thousands of compounds immobilized on their surface were screened for binding to fluorescently labeled Aβ. Seventy-nine compounds were identified by the SMM screen, and then assayed for their ability to inhibit the Aβ-induced killing of PC12 cells. Further experiments focused on exploring the mechanism of rescue for one of these compounds: Electron microscopy and Congo red binding showed that the compound enhances fibril formation, and suggest that it may rescue cells by accelerating Aβ aggregation past an early toxic oligomer. These findings demonstrate that the SMM screen for binding to Aβ is effective at identifying compounds that reduce Aβ toxicity, and can reveal potential therapeutic leads without the biases inherent in methods that focus on inhibitors of aggregation.
Collapse
Affiliation(s)
- Jermont Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | | | | | | |
Collapse
|
80
|
Dahse K, Garvey M, Kovermann M, Vogel A, Balbach J, Fändrich M, Fahr A. DHPC strongly affects the structure and oligomerization propensity of Alzheimer's Aβ(1-40) peptide. J Mol Biol 2010; 403:643-59. [PMID: 20851128 DOI: 10.1016/j.jmb.2010.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/01/2010] [Accepted: 09/08/2010] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is thought to depend on the deleterious action of amyloid fibrils or oligomers derived from β-amyloid (Aβ) peptide. Out of various known Aβ alloforms, the 40-residue peptide Aβ(1-40) occurs at highest concentrations inside the brains of AD patients. Its aggregation properties critically depend on lipids, and it was thus proposed that lipids could play a major role in AD. To better understand their possible effects on the structure of Aβ and on the ability of this peptide to form potentially detrimental amyloid structures, we here analyze the interactions between Aβ(1-40) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). DHPC has served, due to its controlled properties, as a major model system for studying general lipid properties. Here, we show that DHPC concentrations of 8 mM or higher exert dramatic effects on the conformation of soluble Aβ(1-40) peptide and induce the formation of β-sheet structure at high levels. By contrast, we find that DHPC concentrations well below the critical micelle concentration present no discernible effect on the conformation of soluble Aβ, although they substantially affect the peptide's oligomerization and fibrillation kinetics. These data imply that subtle lipid-peptide interactions suffice in controlling the overall aggregation properties and drastically accelerate, or delay, the fibrillation kinetics of Aβ peptide in near-physiological buffer solutions.
Collapse
Affiliation(s)
- Kirsten Dahse
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
81
|
Martin DJ, Ramirez-Alvarado M. Comparison of amyloid fibril formation by two closely related immunoglobulin light chain variable domains. Amyloid 2010; 17:129-36. [PMID: 21077798 PMCID: PMC3018850 DOI: 10.3109/13506129.2010.530081] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Light chain amyloidosis (AL amyloidosis) is a haematological disorder in which a clonal population of B cells expands and secretes enormous amounts of the immunoglobulin light chain protein. These light chains misfold and aggregate into amyloid fibrils, leading to organ dysfunction and death. We have studied the in vitro fibril formation kinetics of two patient-derived immunoglobulin light chain variable domain proteins, designated AL-09 and AL-103, in response to changes in solution conditions. Both proteins are members of the κI O18:O8 germline and therefore are highly similar in sequence, but they presented with different clinical phenotypes. We find that AL-09 forms fibrils more readily and more rapidly than AL-103 in vitro, mirroring the clinical phenotypes of the patients and suggesting a possible connection between the fibril kinetics of the disease protein and the disease progression.
Collapse
Affiliation(s)
- Douglas J Martin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
82
|
Micelle-like architecture of the monomer ensemble of Alzheimer's amyloid-β peptide in aqueous solution and its implications for Aβ aggregation. J Mol Biol 2010; 403:148-165. [PMID: 20709081 DOI: 10.1016/j.jmb.2010.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 01/05/2023]
Abstract
Aggregation of amyloid-β (Aβ) peptide, a 39- to 43-residue fragment of the amyloid precursor protein, is associated with Alzheimer's disease, the most common form of dementia in the elderly population. Several experimental studies have tried to characterize the atomic details of amyloid fibrils, which are the final product of Aβ aggregation. Much less is known about species forming during the early stages of aggregation, in particular about the monomeric state of the Aβ peptide that may be viewed as the product of the very first step in the hypothesized amyloid cascade. Here, the equilibrium ensembles of monomeric Aβ alloforms Aβ(1-40) and Aβ(1-42) are investigated by Monte Carlo simulations using an atomistic force field and implicit solvent model that have been shown previously to correctly reproduce the ensemble properties of other intrinsically disordered polypeptides. Our simulation results indicate that at physiological temperatures, both alloforms of Aβ assume a largely collapsed globular structure. Conformations feature a fluid hydrophobic core formed, on average, by contacts both within and between the two segments comprising residues 12-21 and 24-40/42, respectively. Furthermore, the 11 N-terminal residues are completely unstructured, and all charged side chains, in particular those of Glu22 and Asp23, remain exposed to solvent. Taken together, these observations indicate a micelle-like† architecture at the monomer level whose implications for oligomerization, as well as fibril formation and elongation, are discussed. We establish quantitatively the intrinsic disorder of Aβ and find the propensity to form regular secondary structure to be low but sequence specific. In the presence of a global and unspecific bias for backbone conformations to populate the β-basin, the β-sheet propensity along the sequence is consistent with the arrangement of the monomer within the fibril, as derived from solid-state NMR data. These observations indicate that the primary sequence partially encodes fibril structure, but that fibril elongation must be thought of as a templated assembly step.
Collapse
|
83
|
Gregori M, Cassina V, Brogioli D, Salerno D, De Kimpe L, Scheper W, Masserini M, Mantegazza F. Stability of Aβ (1-42) peptide fibrils as consequence of environmental modifications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1613-23. [DOI: 10.1007/s00249-010-0619-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/15/2010] [Accepted: 07/14/2010] [Indexed: 01/05/2023]
|
84
|
Bacsa B, Bosze S, Kappe CO. Direct solid-phase synthesis of the beta-amyloid (1-42) peptide using controlled microwave heating. J Org Chem 2010; 75:2103-6. [PMID: 20180552 DOI: 10.1021/jo100136r] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Standard linear Fmoc/t-Bu solid-phase synthesis of the 42-mer beta-amyloid (1-42) peptide was achieved under controlled microwave conditions at 86 degrees C using inexpensive DIC/HOBt as coupling reagent on ChemMatrix resin. In order to avoid racemization of the sensitive amino acids, the coupling of the three His residues in the difficult peptide sequence was performed at room temperature. The desired peptide was obtained within 15 h overall processing time in high yield and purity (78% crude yield).
Collapse
Affiliation(s)
- Bernadett Bacsa
- Christian Doppler Laboratory for Microwave Chemistry and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | |
Collapse
|
85
|
Jan A, Hartley DM, Lashuel HA. Preparation and characterization of toxic Abeta aggregates for structural and functional studies in Alzheimer's disease research. Nat Protoc 2010; 5:1186-209. [PMID: 20539293 DOI: 10.1038/nprot.2010.72] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The amyloid cascade hypothesis, supported by strong evidence from genetics, pathology and studies using animal models, implicates amyloid-beta (Abeta) oligomerization and fibrillogenesis as central causative events in the pathogenesis of Alzheimer's disease (AD). Today, significant efforts in academia, biotechnology and the pharmaceutical industry are devoted to identifying the mechanisms by which the process of Abeta aggregation contributes to neurodegeneration in AD and to the identity of the toxic Abeta species. In this paper, we describe methods and detailed protocols for reproducibly preparing Abeta aggregates of defined size distribution and morphology, including monomers, protofibrils and fibrils, using size exclusion chromatography. In addition, we describe detailed biophysical procedures for elucidating the structural features, aggregation kinetics and toxic properties of the different Abeta aggregation states, with special emphasis on protofibrillar intermediates. The information provided by this approach allows for consistent correlation between the properties of the aggregates and their toxicity toward primary neurons and/or cell lines. A better understanding of the molecular and structural basis of Abeta aggregation and toxicity is crucial for the development of effective strategies aimed at prevention and/or treatment of AD. Furthermore, the identification of specific aggregation states, which correlate with neurodegeneration in AD, could lead to the development of diagnostic tools to detect and monitor disease progression. The procedures described can be performed in as little as 1 day, or may take longer, depending on the exact toxicity assays used.
Collapse
Affiliation(s)
- Asad Jan
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
86
|
Arginine Metabolising Enzymes as Therapeutic Tools for Alzheimer’s Disease: Peptidyl Arginine Deiminase Catalyses Fibrillogenesis of β-amyloid Peptides. Mol Neurobiol 2010; 41:149-58. [DOI: 10.1007/s12035-010-8112-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
87
|
Picou R, Moses JP, Wellman AD, Kheterpal I, Gilman SD. Analysis of monomeric Aβ (1–40) peptide by capillary electrophoresis. Analyst 2010; 135:1631-5. [DOI: 10.1039/c0an00080a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
88
|
Finder VH, Vodopivec I, Nitsch RM, Glockshuber R. The recombinant amyloid-beta peptide Abeta1-42 aggregates faster and is more neurotoxic than synthetic Abeta1-42. J Mol Biol 2009; 396:9-18. [PMID: 20026079 DOI: 10.1016/j.jmb.2009.12.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/03/2009] [Accepted: 12/10/2009] [Indexed: 12/14/2022]
Abstract
Aggregation of the amyloid-beta (Abeta) peptide is considered a central event in the pathogenesis of Alzheimer's disease (AD). In order to bypass methodological bias related to a variety of impurities commonly present in typical preparations of synthetic Abeta, we developed a simple, generally applicable method for recombinant production of human Abeta and Abeta variants in Escherichia coli that provides milligram quantities of Abeta in very high purity and yield. Amyloid fibril formation in vitro by human Abeta1-42, the key amyloidogenic Abeta species in AD, was completed threefold faster with recombinant Abeta1-42 compared to synthetic preparations. In addition, recombinant Abeta1-42 was significantly more toxic to cultured rat primary cortical neurons, and it was more toxic in vivo, as shown by strongly increased induction of abnormal phosphorylation of tau and tau aggregation into neurofibrillary tangles in brains of P301L tau transgenic mice. We conclude that even small amounts of impurities in synthetic Abeta-including a significant fraction of racemized peptides that cannot be avoided due to the technical limitations of peptide synthesis--prevent or slow Abeta incorporation into the regular quaternary structure of growing beta-amyloid fibrils. The results validate the use of recombinant Abeta1-42 for both in vitro and in vivo studies addressing the mechanisms underlying Abeta aggregation and its related biological consequences for the pathophysiology, therapy, and prevention of AD.
Collapse
Affiliation(s)
- Verena H Finder
- Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
89
|
Campiglia P, Scrima M, Grimaldi M, Cioffi G, Bertamino A, Sala M, Aquino C, Gomez-Monterrey I, Grieco P, Novellino E, D'Ursi AM. A new series of 1,3-dihidro-imidazo[1,5-c]thiazole-5,7-dione derivatives: synthesis and interaction with Abeta(25-35) amyloid peptide. Chem Biol Drug Des 2009; 74:224-33. [PMID: 19703024 DOI: 10.1111/j.1747-0285.2009.00853.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Deposition of senile plaques composed of fibrillar aggregates of Abeta-amyloid peptide is a characteristic hallmark of Alzheimer's disease. A widely employed approach in the study of anti-Alzheimer agents involves the identification of substances able to prevent amyloid aggregation, or to disaggregate the amyloid fibrils through a direct structural interaction with the soluble or aggregated forms of the peptide. Here, we report the synthesis of a set of 1,3-dihydro-3,6-disubstituted-imidazo[1,5-c]thiazole-5,7-dione derivatives supporting different alkyl, aryl and alkylamine side chains. The ability of these compounds to interact with the Abeta(25-35) peptide was evaluated using circular dichroism, nuclear magnetic resonance and thioflavin fluorescence spectroscopy. A molecular model for Abeta(25-35)-ligand interactions was calculated by molecular docking procedures. Our data show that the ability of the synthesized compounds to modify the structural behaviour of Abeta(25-35) varies as a function of the overall structural features of the ligands rather contributions from specific individual substituents.
Collapse
Affiliation(s)
- Pietro Campiglia
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, 84084 Fisciano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Milton NG, Harris JR. Polymorphism of amyloid-β fibrils and its effects on human erythrocyte catalase binding. Micron 2009; 40:800-10. [DOI: 10.1016/j.micron.2009.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 11/28/2022]
|
91
|
Dykstra AB, Chen M, Cook KD. Complementary peptide sequence coverage using alternative enzymes for on-line digestion with a triaxial electrospray probe. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1983-1987. [PMID: 19748285 DOI: 10.1016/j.jasms.2009.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 05/28/2023]
Abstract
Using alternative enzymes for on-line digestion with a triaxial electrospray probe extends sequence coverage. This is the first report of utilization of our triaxial probe for on-line analysis with enzymes other than pepsin, suggesting potential for broader application. The probe allows access to processes occurring on a timescale and/or involving substrate conformations complementary to those for conventional (off-line) digestion. Some of the features observed in application to Abeta fibrils are suggestive of unique reactive intermediates during dissolution. Data obtained with enzyme mixtures suggest synergistic effects.
Collapse
Affiliation(s)
- Andrew B Dykstra
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | | | | |
Collapse
|
92
|
Ding H, Wong PT, Lee EL, Gafni A, Steel DG. Determination of the oligomer size of amyloidogenic protein beta-amyloid(1-40) by single-molecule spectroscopy. Biophys J 2009; 97:912-21. [PMID: 19651050 DOI: 10.1016/j.bpj.2009.05.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/02/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022] Open
Abstract
Amyloid diseases are traditionally characterized by the appearance of inter- and intracellular fibrillar protein deposits, termed amyloid. Historically, these deposits have been thought to be the etiology of the disease. However, recent evidence suggests that small oligomers of the amyloidogenic protein/peptide are the origin of neurotoxicity. Although the importance of identifying the toxic oligomeric species is widely recognized, such identification is challenging because these oligomers are metastable, occur at low concentration, and are characterized by a high degree of heterogeneity. In this work, a fluorescently labeled beta-amyloid(1-40) is used as a model amyloidogenic peptide to test the effectiveness of what we believe is a novel approach based on single-molecule spectroscopy. We find that by directly counting the photobleaching steps in the fluorescence, we can determine the number of subunits in individual beta-amyloid(1-40) oligomers, which allows us to easily distinguish among different species in the mixtures. The results are further analyzed by comparison with Monte Carlo simulations to show that the variability seen in the size of photobleaching steps can be explained by assuming random dipole orientations for the chromophores in a given oligomer. In addition, by accounting for bias in the oligomer size distribution due to the need to subtract background noise, we can make the results more quantitative. Although the oligomer size determined in this work is limited to only small species, our single-molecule results are in good quantitative agreement with high-performance liquid chromatography gel filtration data and demonstrate that single-molecule spectroscopy can provide useful insights into the issues of heterogeneity and ultimately cellular toxicity in the study of amyloid diseases.
Collapse
Affiliation(s)
- Hao Ding
- Biophysics Research Division, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
93
|
TANIGUCHI A. Development of Click Peptide: Stimuli-responsive Precursor Producing Alzheimer's Disease-related Amyloid β Peptide. YAKUGAKU ZASSHI 2009; 129:1227-32. [DOI: 10.1248/yakushi.129.1227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
94
|
Maji SK, Ogorzalek Loo RR, Inayathullah M, Spring SM, Vollers SS, Condron MM, Bitan G, Loo JA, Teplow DB. Amino acid position-specific contributions to amyloid beta-protein oligomerization. J Biol Chem 2009; 284:23580-91. [PMID: 19567875 PMCID: PMC2749133 DOI: 10.1074/jbc.m109.038133] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Indexed: 12/21/2022] Open
Abstract
Understanding the structural and assembly dynamics of the amyloid beta-protein (Abeta) has direct relevance to the development of therapeutic agents for Alzheimer disease. To elucidate these dynamics, we combined scanning amino acid substitution with a method for quantitative determination of the Abeta oligomer frequency distribution, photo-induced cross-linking of unmodified proteins (PICUP), to perform "scanning PICUP." Tyr, a reactive group in PICUP, was substituted at position 1, 10, 20, 30, or 40 (for Abeta40) or 42 (for Abeta42). The effects of these substitutions were probed using circular dichroism spectroscopy, thioflavin T binding, electron microscopy, PICUP, and mass spectrometry. All peptides displayed a random coil --> alpha/beta --> beta transition, but substitution-dependent alterations in assembly kinetics and conformer complexity were observed. Tyr(1)-substituted homologues of Abeta40 and Abeta42 assembled the slowest and yielded unusual patterns of oligomer bands in gel electrophoresis experiments, suggesting oligomer compaction had occurred. Consistent with this suggestion was the observation of relatively narrow [Tyr(1)]Abeta40 fibrils. Substitution of Abeta40 at the C terminus decreased the population conformational complexity and substantially extended the highest order of oligomers observed. This latter effect was observed in both Abeta40 and Abeta42 as the Tyr substitution position number increased. The ability of a single substitution (Tyr(1)) to alter Abeta assembly kinetics and the oligomer frequency distribution suggests that the N terminus is not a benign peptide segment, but rather that Abeta conformational dynamics and assembly are affected significantly by the competition between the N and C termini to form a stable complex with the central hydrophobic cluster.
Collapse
Affiliation(s)
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine
- Molecular Biology Institute
| | | | | | | | | | - Gal Bitan
- From the Department of Neurology and
- Molecular Biology Institute
- Brain Research Institute, and
| | - Joseph A. Loo
- Department of Biological Chemistry, David Geffen School of Medicine
- Molecular Biology Institute
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - David B. Teplow
- From the Department of Neurology and
- Molecular Biology Institute
- Brain Research Institute, and
| |
Collapse
|
95
|
Wang H, Kakizawa T, Taniguchi A, Mizuguchi T, Kimura T, Kiso Y. Synthesis of amyloid β peptide 1–42 (E22Δ) click peptide: pH-triggered in situ production of its native form. Bioorg Med Chem 2009; 17:4881-7. [DOI: 10.1016/j.bmc.2009.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/05/2009] [Accepted: 06/11/2009] [Indexed: 02/04/2023]
|
96
|
Molenaar AJ, Harris DP, Rajan GH, Pearson ML, Callaghan MR, Sommer L, Farr VC, Oden KE, Miles MC, Petrova RS, Good LL, Singh K, McLaren RD, Prosser CG, Kim KS, Wieliczko RJ, Dines MH, Johannessen KM, Grigor MR, Davis SR, Stelwagen K. The acute-phase protein serum amyloid A3 is expressed in the bovine mammary gland and plays a role in host defence. Biomarkers 2009; 14:26-37. [PMID: 19283521 DOI: 10.1080/13547500902730714] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The serum amyloid A protein is one of the major reactants in the acute-phase response. Using representational difference analysis comparing RNA from normal and involuting quarters of a dairy cow mammary gland, we found an mRNA encoding the SAA3 protein (M-SAA3). The M-SAA3 mRNA was localized to restricted populations of bovine mammary epithelial cells (MECs). It was expressed at a moderate level in late pregnancy, at a low level through lactation, was induced early in milk stasis, and expressed at high levels in most MECs during mid to late involution and inflammation/mastitis. The mature M-SAA3 peptide was expressed in Escherichia coli, antibodies made, and shown to have antibacterial activity against E. coli, Streptococcus uberis and Pseudomonas aeruginosa. These results suggest that the mammary SAA3 may have a role in protection of the mammary gland during remodelling and infection and possibly in the neonate gastrointestinal tract.
Collapse
Affiliation(s)
- Adrian J Molenaar
- Dairy Science and Technology, Ruakura Research Centre, Hamilton, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Taniguchi A, Sohma Y, Hirayama Y, Mukai H, Kimura T, Hayashi Y, Matsuzaki K, Kiso Y. "Click peptide": pH-triggered in situ production and aggregation of monomer Abeta1-42. Chembiochem 2009; 10:710-5. [PMID: 19222037 DOI: 10.1002/cbic.200800765] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The intense and uncontrollable self-assembling nature of amyloid beta peptide (Abeta) 1-42 is known to cause difficulties in preparing monomeric Abeta1-42; this results in irreproducible or discrepant study outcomes. Herein, we report novel features of a pH click peptide of Abeta1-42 that was designed to overcome these problems. The click peptide is a water-soluble precursor peptide of Abeta1-42 with an O-acyl isopeptide structure between the Gly25-Ser26 sequence. The click peptide adopts and retains a monomeric, random coil state under acidic conditions. Upon change to neutral pH (pH click), the click peptide converts to Abeta1-42 promptly (t(1/2) approximately 10 s) and quantitatively through an O-to-N intramolecular acyl migration. As a result of this quick and irreversible conversion, monomer Abeta1-42 with a random coil structure is produced in situ. Moreover, the oligomerization, amyloid fibril formation and conformational changes of the produced Abeta1-42 can be observed over time. This click peptide strategy should provide a reliable experimental system to investigate the pathological role of Abeta1-42 in Alzheimer's disease.
Collapse
Affiliation(s)
- Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
De Bona P, Laura Giuffrida M, Caraci F, Copani A, Pignataro B, Attanasio F, Cataldo S, Pappalardo G, Rizzarelli E. Design and synthesis of new trehalose-conjugated pentapeptides as inhibitors of Aβ(1-42) fibrillogenesis and toxicity. J Pept Sci 2009; 15:220-8. [DOI: 10.1002/psc.1109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
99
|
Manzoni C, Colombo L, Messa M, Cagnotto A, Cantù L, Del Favero E, Salmona M. Overcoming synthetic Abeta peptide aging: a new approach to an age-old problem. Amyloid 2009; 16:71-80. [PMID: 20536398 DOI: 10.1080/13506120902879848] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Investigations of amyloidogenic diseases use synthetic peptides for cell-free and in vitro studies. However, amyloidogenic peptides often show intrinsic variability that markedly affects the reproducibility of experiments. Proof of physicochemical and biological variability with different batches of amyloidogenic peptides have been reported in literature. Here, we show that differences can be observed even within the same batch of Abeta1-42 peptide after storing lyophilised samples at -20 degrees C. This change (referred to as 'peptide aging') was reproduced with Abeta1-40 peptide samples by using a series of lyophilisation cycles, showing that lyophilisation, rather than preserving the physicochemical and biological features of Abeta peptides, introduces wide variability. To counteract synthetic peptide aging, we set up a procedure involving the sequential use of trifluoroacetic acid, formic acid and sodium hydroxide solutions that disaggregate preformed seeds and enriched Abeta peptide solutions into monomers and low-molecular-weight oligomers. This procedure enabled us to obtain reproducible physicochemical and biological features of Abeta peptides, irrespective of their age.
Collapse
Affiliation(s)
- Claudia Manzoni
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
100
|
Ovine colostrum nanopeptide affects amyloid beta aggregation. FEBS Lett 2008; 583:190-6. [PMID: 19084010 DOI: 10.1016/j.febslet.2008.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/05/2008] [Accepted: 11/27/2008] [Indexed: 11/23/2022]
Abstract
A colostral proline-rich polypeptide complex (PRP) consisting of over 30 peptides shows beneficial effects in Alzheimer's disease (AD) patients when administered in the form of sublinqual tablets called Colostrinin. The aim of the present studies was to investigate whether nanopeptide fragment of PRP (NP) - one of the PRP complex components can affect aggregation of amyloid beta (Abeta1-42). The effect of NP on Abeta aggregation was studied using Thioflavin T (ThT) binding, atomic force microscopy, and analyzing circular dichroism spectra. Results presented suggest that NP can directly interact with amyloid beta, inhibit its aggregation and disrupt existing aggregates acting as a beta sheet breaker and reduce toxicity induced by aggregated forms of Abeta.
Collapse
|