51
|
Guo C, Liu S, Dong P, Zhao D, Wang C, Tao Z, Sun MZ. Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway. Sci Rep 2015; 5:18215. [PMID: 26655928 PMCID: PMC4677388 DOI: 10.1038/srep18215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Previously, we characterized the biological properties of Akbu-LAAO, a novel L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom (SV). Current work investigated its in vitro anti-tumor activity and underlying mechanism on HepG2 cells. Akbu-LAAO inhibited HepG2 growth time and dose-dependently with an IC50 of ~38.82 μg/mL. It could induce the apoptosis of HepG2 cells. Akbu-LAAO exhibited cytotoxicity by inhibiting growth and inducing apoptosis of HepG2 as it showed no effect on its cell cycle. The inhibition of Akbu-LAAO to HepG2 growth partially relied on enzymatic-released H2O2 as catalase only partially antagonized this effect. cDNA microarray results indicated TGF-β signaling pathway was linked to the cytotoxicity of Akbu-LAAO on HepG2. TGF-β pathway related molecules CYR61, p53, GDF15, TOB1, BTG2, BMP2, BMP6, SMAD9, JUN, JUNB, LOX, CCND1, CDK6, GADD45A, CDKN1A were deregulated in HepG2 following Akbu-LAAO stimulation. The presence of catalase only slightly restored the mRNA changes induced by Akbu-LAAO for differentially expressed genes. Meanwhile, LDN-193189, a TGF-β pathway inhibitor reduced Akbu-LAAO cytotoxicity on HepG2. Collectively, we reported, for the first time, SV-LAAO showed anti-tumor cell activity via TGF-β pathway. It provides new insight of SV-LAAO exhibiting anti-tumor effect via a novel signaling pathway.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Panpan Dong
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China.,Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Dongting Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China.,Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Chengyi Wang
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China.,Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Zhiwei Tao
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China.,Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|
52
|
Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2. Cell Tissue Res 2015; 364:443-51. [DOI: 10.1007/s00441-015-2328-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/06/2015] [Indexed: 12/26/2022]
|
53
|
Lin W, Ezura Y, Izu Y, Aryal A.C S, Kawasaki M, Na Mahasarakham Chantida P, Moriyama K, Noda M. Profilin Expression Is Regulated by Bone Morphogenetic Protein (BMP) in Osteoblastic Cells. J Cell Biochem 2015; 117:621-8. [DOI: 10.1002/jcb.25310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Wanting Lin
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
- Department of Maxillofacial Orthognathics; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Tokyo Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Smriti Aryal A.C
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | | | - Keiji Moriyama
- Department of Maxillofacial Orthognathics; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Tokyo Japan
| | - Masaki Noda
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
54
|
Guo WT, Dong DL. Bone morphogenetic protein-4: a novel therapeutic target for pathological cardiac hypertrophy/heart failure. Heart Fail Rev 2015; 19:781-8. [PMID: 24736806 DOI: 10.1007/s10741-014-9429-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein-4 (BMP4) is a member of the bone morphogenetic protein family which plays a key role in the bone formation and embryonic development. In addition to these predominate and well-studied effects, the growing evidences highlight BMP4 as an important factor in cardiovascular diseases, such as hypertension, pulmonary hypertension and valve disease. Our recent works demonstrated that BMP4 mediated cardiac hypertrophy, apoptosis, fibrosis and ion channel remodeling in pathological cardiac hypertrophy. In this review, we discussed the role of BMP4 in pathological cardiac hypertrophy, as well as the recent advances about BMP4 in cardiovascular diseases closely related to pathological cardiac hypertrophy/heart failure. We put forward that BMP4 is a novel therapeutic target for pathological cardiac hypertrophy/heart failure.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | | |
Collapse
|
55
|
Li Y, Fan L, Hu J, Zhang L, Liao L, Liu S, Wu D, Yang P, Shen L, Chen J, Jin Y. MiR-26a Rescues Bone Regeneration Deficiency of Mesenchymal Stem Cells Derived From Osteoporotic Mice. Mol Ther 2015; 23:1349-1357. [PMID: 26050992 DOI: 10.1038/mt.2015.101] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 05/27/2015] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis, caused by a relative increase of bone resorption over bone formation, is characterized by decreased bone mass and bone strength, resulting in an increased incidence of bone fractures, which often leads to further disability and early mortality in the elderly due to impaired bone healing ability. The majority of therapeutics currently used in clinics for the treatment of osteoporosis are antiresorptive agents that exert their clinical effect by decreasing the rate of bone resorption. However, strategies solely aimed at antiresorption have limited therapeutic efficacy in restoring bone remodeling balance and enhancing osteoporotic fracture healing. Here, we report that miR-26a plays a critical role in modulating bone formation during osteoporosis. We found that miR-26a treatment could effectively improve the osteogenic differentiation capability of mesenchymal stem cells isolated from littermate-derived ovariectomized osteoporotic mice both in vitro and in vivo. MiR-26a exerts its effect by directly targeting Tob1, the negative regulator of BMP/Smad signaling pathway by binding to the 3'-untranslated region and thus repressing Tob1 protein expression. Our findings indicate that miR-26a may be a promising therapeutic candidate to enhance bone formation in treatment of osteoporosis and to promote bone regeneration in osteoporotic fracture healing.
Collapse
Affiliation(s)
- Yan Li
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Longkun Fan
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral and Maxillofacial Surgery, Cangzhou Center Hospital, Hebei, P.R. China
| | - Jiang Hu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Leilei Zhang
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Li Liao
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Shiyu Liu
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Dan Wu
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Ping Yang
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Lijuan Shen
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Jihua Chen
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China.
| | - Yan Jin
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China.
| |
Collapse
|
56
|
Chen Y, Wang C, Wu J, Li L. BTG/Tob family members Tob1 and Tob2 inhibit proliferation of mouse embryonic stem cells via Id3 mRNA degradation. Biochem Biophys Res Commun 2015; 462:208-14. [PMID: 25951976 DOI: 10.1016/j.bbrc.2015.04.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 02/06/2023]
Abstract
The mammalian BTG/Tob family is a group of proteins with anti-proliferative ability, and there are six members including BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2. Among them, Tob subfamily members, specifically Tob1/Tob and Tob2, have the most extensive C-terminal regions. As previously reported, overexpression of BTG/Tob proteins is associated with the inhibition of G1 to S-phase cell cycle progression and decreased cell proliferation in a variety of cell types. Tob subfamily proteins have similar anti-proliferative effects on cell cycle progression in cultured tumor cells. An important unresolved question is whether or not they have function in rapidly proliferating cells, such as embryonic stem cells (ESCs). Tob1 and Tob2 were expressed ubiquitously in mouse ESCs (mESCs), suggesting a possible role in early embryonic development and mESCs. To address the above question and explore the possible functions of the Tob subfamily in ESCs, we established ESCs from different genotypic knockout inner cell mass (ICM). We found that Tob1(-/-), Tob2(-/-), and Tob1/2 double knockout (DKO, Tob1(-/-) & Tob2(-/-)) ESCs grew faster than wild type (WT) ESCs without losing pluripotency, and we provide a possible mechanistic explanation for these observations: Tob1 and Tob2 inhibit the cell cycle via degradation of Id3 mRNA, which is a set of directly targeted genes of BMP4 signaling in mESCs that play critical roles in the maintenance of ESC properties. Together, our data suggest that BTG/Tob family protein Tob1 and Tob2 regulation cell proliferation does not compromise the basic properties of mESCs.
Collapse
Affiliation(s)
- Yuanfan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Chenchen Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Jenny Wu
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Lingsong Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China.
| |
Collapse
|
57
|
Ma WH, Liu YJ, Wang W, Zhang YZ. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication. ACTA ACUST UNITED AC 2015; 48:299-307. [PMID: 25714881 PMCID: PMC4418359 DOI: 10.1590/1414-431x20144226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023]
Abstract
Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between
the nervous system and “osteo-neuromediators” that control bone remodeling. The
purpose of this study was to evaluate the effect of interactions between
neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We
also investigated the effects of neuropeptides and hBMP2 on gap junction
intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y
(NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after
treatment, cell viability was measured by the MTT assay. In addition, cellular
alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric
assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC
were determined by laser scanning confocal microscopy. The viability of cells treated
with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but
was inversely associated with the concentration of the treatments. ALP activity and
osteocalcin were both reduced in osteoblasts exposed to the combination of
neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the
neuropeptides and hBMP2. These results suggest that osteoblast activity is increased
by neuropeptides and hBMP2 through increased GJIC. Identification of the
GJIC-mediated signal transduction capable of modulating the cellular activities of
bone cells represents a novel approach to studying the biology of skeletal
innervation.
Collapse
Affiliation(s)
- W H Ma
- The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province, China
| | - Y J Liu
- The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province, China
| | - W Wang
- The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province, China
| | - Y Z Zhang
- The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province, China
| |
Collapse
|
58
|
Mano H, Nakatani S, Kimira Y, Mano M, Sekiguchi Y, Im RH, Shimizu J, Wada M. Age-related decrease of IF5/BTG4 in oral and respiratory cavities in mice. Biosci Biotechnol Biochem 2015; 79:960-8. [PMID: 25660503 DOI: 10.1080/09168451.2015.1008976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An IF5 cDNA was isolated by expression cloning from a mouse oocyte cDNA library. It encoded a protein of 250 amino acids, and the region of it encoding amino acids 1-137 showed 86.8% alignment with the anti-proliferative domain of BTG/TOB family genes. This gene is also termed BTG4 or PC3B. Transiently expressed IF5/BTG4 induced alkaline phosphatase activity in human embryonic kidney (HEK293T) and 2T3 cells. IF5/BTG4 mRNA was detected by reverse transcription polymerase chain reaction in pharynx, larynx, trachea, oviduct, ovary, caput epididymis, and testis, but not in lung, intestine, or liver. Immunohistochemistry showed the IF5/BTG4 protein to be present in epithelial cells of the tongue, palate, pharynx, internal nose, and trachea. Both protein and mRNA levels of IF5/BTG4 were reduced by aging when comparing 4-week-old mice with 48-week-old mice. Our findings suggest that IF5/BTG4 may be an aging-related gene in epithelial cells.
Collapse
Affiliation(s)
- Hiroshi Mano
- a Faculty of Pharmaceutical Sciences , Josai University , Sakado , Japan
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Fujie A, Funayama A, Miyauchi Y, Sato Y, Kobayashi T, Kanagawa H, Katsuyama E, Hao W, Tando T, Watanabe R, Morita M, Miyamoto K, Kanaji A, Morioka H, Matsumoto M, Toyama Y, Miyamoto T. Bcl6 promotes osteoblastogenesis through Stat1 inhibition. Biochem Biophys Res Commun 2015; 457:451-6. [DOI: 10.1016/j.bbrc.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 01/06/2015] [Indexed: 11/17/2022]
|
60
|
Hata A, Kang H. Functions of the bone morphogenetic protein signaling pathway through microRNAs (review). Int J Mol Med 2015; 35:563-8. [PMID: 25571950 PMCID: PMC6904101 DOI: 10.3892/ijmm.2015.2060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) have emerged as key regulators of gene expression in essential cellular processes, such as cell growth, differentiation and development. Recent findings have established that the levels of miRNAs are modulated by cell signaling mechanisms, including the bone morphogenetic protein (BMP) signaling pathway. The BMP signaling pathway controls diverse cellular activities by modulating the levels of miRNAs, indicating the complexity of gene regulation by the BMP signaling pathway. The tight regulation of the levels of miRNAs is critical for maintaining normal physiological conditions, and dysregulated miRNA levels contribute to the development of diseases. In the present review, we discuss different insights (provided over the past decade) into the regulation of miRNAs governed by the BMP signaling pathway and the implications of this regulation on the understanding of the cellular differentiation of vascular smooth muscle cells (VSMCs), osteoblasts and neuronal cells.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| |
Collapse
|
61
|
Horasawa N, Yamashita T, Uehara S, Udagawa N. High-performance scaffolds on titanium surfaces: osteoblast differentiation and mineralization promoted by a globular fibrinogen layer through cell-autonomous BMP signaling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 46:86-96. [PMID: 25491963 DOI: 10.1016/j.msec.2014.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/09/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
Titanium has been widely used as a dental implant material. However, it takes several months for the implant body to bind with the jawbone. To develop new bioactive modification on titanium surfaces to achieve full osseointegration expeditiously, we used fibrinogen and fibronectin as bioactive scaffolds on the titanium plate, which are common extracellular matrix (ECM) proteins. We analyzed the features of the surface of ECM-modified titanium plates by atomic force microscopy and Fourier transform infrared spectrophotometry. We also evaluated the effect of ECM modification on promoting the differentiation and mineralization of osteoblasts on these surfaces. Fibrinogen had excellent adsorption on titanium surfaces even at low concentrations, due to the binding ability of fibrinogen via its RGD motif. The surface was composed of a fibrinogen monolayer, in which the ratio of β-sheets was decreased. Osteoblast proliferation on ECM-modified titanium surface was significantly promoted compared with titanium alone. Calcification on the modified surface was also accelerated. These ECM-promoting effects correlated with increased expression of bone morphogenetic proteins (BMPs) by the osteoblasts themselves and were inhibited by Noggin, a BMP inhibitor. These results suggest that the fibrinogen monolayer-modified titanium surface is recognized as bioactive scaffolds and promotes bone formation, resulting in the acceleration of osseointegration.
Collapse
Affiliation(s)
- Noriko Horasawa
- Department of Dental Materials, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781, Japan.
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
62
|
Su YH, Cai HB, Ye ZY, Tan WS. BMP-7 improved proliferation and hematopoietic reconstitution potential of ex vivo expanded cord blood-derived CD34(+) cells. Hum Cell 2014; 28:14-21. [PMID: 25192984 DOI: 10.1007/s13577-014-0098-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/15/2014] [Indexed: 01/19/2023]
Abstract
Due to limited availability, ex vivo expansion is essential for clinical applications of hematopoietic stem cells (HSCs). Bone morphogenetic proteins (BMPs) play an important role in regulating hematopoiesis development. In this study, the effects of BMP-2 and BMP-7 at different doses on expansion, clonogenicity and differentiation of cord blood (CB)-derived CD34(+) cells were investigated in serum-free medium supplemented with stem cell factor, thrombopoietin and flt3-ligand (STF). Irradiated non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice were used as an animal model to assess the in vivo hematopoietic reconstitution potential of CB-derived CD34(+) cells treated by BMPs. It was demonstrated that the addition of BMP-7 at 5 ng/mL improved the proliferations of total cells, CD34(+) cells and CD34(+)CD38(-) cells without affecting the colony-forming ability of CD34(+) cells and component of lineage cells, while BMP-2 showed no effect on expanding these cells during the 10-day culture. Moreover, CB-derived CD34(+) cells cultured with STF and 5 ng/mL BMP-7 for 10 days were transplanted into irradiated NOD/SCID mice, and showed better engraftment and multi-lineage reconstitution ability compared with the cells cultured with STF alone. Together, 5 ng/mL BMP-7 was beneficial to ex vivo expansion of CB-derived CD34(+) cells for clinical purposes. The results may help improve the existing culture systems and achieve wider application of HSCs.
Collapse
Affiliation(s)
- Yue-Han Su
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Postbox 309#, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | | | | | | |
Collapse
|
63
|
Ryu MS, Woo MY, Kwon D, Hong AE, Song KY, Park S, Lim IK. Accumulation of cytolytic CD8+ T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation. Exp Cell Res 2014; 327:209-21. [PMID: 25088256 DOI: 10.1016/j.yexcr.2014.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/30/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
Abstract
In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO)(2) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT3)e cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8(+) T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B+ CD8+ T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a+ CD8+ T cells in the splenocytes of KO mice may affect the loss of CD8+ T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B+ CD8+ T-cells and CD107a+ CD8+ T-cells, thus transiently regulating in vivo anti-tumor immunity.
Collapse
Affiliation(s)
- Min Sook Ryu
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea
| | - Min-Yeong Woo
- Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea; Department of Biomedical Sciences, The Graduate School, Ajou University, Republic of Korea
| | - Daeho Kwon
- Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701, Republic of Korea
| | - Allen E Hong
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Sun Park
- Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea
| |
Collapse
|
64
|
Skeletal analysis and differential gene expression in Runx2/Osterix double heterozygous embryos. Biochem Biophys Res Commun 2014; 451:442-8. [DOI: 10.1016/j.bbrc.2014.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/02/2014] [Indexed: 11/17/2022]
|
65
|
Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, Wu C, Yang SM, Zeng H, Zou QM, Guo G. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene 2014; 34:2556-65. [PMID: 25043310 DOI: 10.1038/onc.2014.214] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is one of the most common tumors and the molecular mechanism underlying its metastasis is still largely unclear. Here, we show that miR-25 was overexpressed in plasma and primary tumor tissues of GC patients with tumor node metastasis stage (III or IV) or lymph node metastasis. MiR-25 inhibition significantly decreased the metastasis, invasion and proliferation of GC cells in vitro, and reduced their capacity to develop distal pulmonary metastases and peritoneal dissemination in vivo. Furthermore, miR-25 repressed transducer of ERBB2, 1 (TOB1) expression by directly binding to TOB1-3'-UTR, and the inverse correlation was observed between the expressions of miR-25 and TOB1 mRNA in primary GC tissues. Moreover, the loss of TOB1 increased the metastasis, invasion and proliferation of GC cells, and the restoration of TOB1 led to suppressed metastasis, invasion and proliferation. The receiver operating characteristics analysis yielded an area under the curve value of 0.7325 in distinguishing the GC patients with death from those with survival. The analysis of optimal cutoff value revealed poor survival in GC patients with high plasma concentrations of miR-25 (>0.2333 amol/μl). Taken together, miR-25 promotes GC progression by directly downregulating TOB1 expression, and may be a noninvasive biomarker for the prognosis of GC patients.
Collapse
Affiliation(s)
- B-S Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Q-F Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Y-L Zhao
- General Surgery and Center of Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - B Xiao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Y Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - X-H Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - C Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - S-M Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - H Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Q-M Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - G Guo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
66
|
Abstract
Tob1 (transducer of ERBB2-1, TOB1 is humans) is a member of the antiproliferative (APRO) family of proteins that controls cell cycle progression in several cell types. In addition, Tob1 has been implicated in diverse cellular mechanisms such as embryonic dorsal development, and T helper 17 (Th17) cell function. More recently, evidence linking Tob1 function to experimental and human immune related disorders has mounted, thus underscoring the potential of this molecule as a biomarker and as a therapeutic target. This article reviews these functions with an emphasis on their implications for human autoimmune diseases such as multiple sclerosis.
Collapse
|
67
|
Nfatc2 and Tob1 have non-overlapping function in T cell negative regulation and tumorigenesis. PLoS One 2014; 9:e100629. [PMID: 24945807 PMCID: PMC4063948 DOI: 10.1371/journal.pone.0100629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
Nfatc2 and Tob1 are intrinsic negative regulators of T cell activation. Nfatc2-deficient and Tob1-deficient T cells show reduced thresholds of activation; however, whether these factors have independent or overlapping roles in negative regulation of T cell responses has not been previously examined. Here, we show that Nfatc2 knockout (KO) but not Tob1 KO mice have age-associated accumulation of persistently activated T cells in vivo and expansion of the CD44+ memory cell compartment and age-associated lymphocytic infiltrates in visceral organs, without significant changes in numbers of CD4+CD25+Foxp3+ regulatory T cells (Treg). In vitro, CD4+CD25- "conventional" T cells (Tconvs) from both KO strains showed greater proliferation than wild type (WT) Tconvs. However, while Tregs from Nfatc2 KO mice retained normal suppressive function, Tregs from Tob1 KOs had enhanced suppressive activity. Nfatc2 KO Tconvs expanded somewhat more rapidly than WT Tconvs under conditions of homeostatic proliferation, but their accelerated growth capacity was negated, at least acutely, in a lymphoreplete environment. Finally, Nfatc2 KO mice developed a previously uncharacterized increase in B-cell malignancies, which was not accelerated by the absence of Tob1. The data thus support the prevailing hypothesis that Nfatc2 and Tob1 are non-redundant regulators of lymphocyte homeostasis.
Collapse
|
68
|
Kirmizitas A, Gillis WQ, Zhu H, Thomsen GH. Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. Dev Biol 2014; 392:358-67. [PMID: 24858484 DOI: 10.1016/j.ydbio.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/27/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
Smad proteins convey canonical intracellular signals for activated receptors in the TGFβ superfamily, but the activity of Smads and their impact on target genes are further regulated by a wide variety of cofactors and partner proteins. We have identified a new Smad1 partner, a GTPase named Gtpbp2 that is a distant relative of the translation factor eEf1a. Gtpbp2 affects canonical signaling in the BMP branch of the TGFβ superfamily, as morpholino knockdown of Gtpbp2 decreases, and overexpression of Gtpbp2 enhances, animal cap responses to BMP4. During Xenopus development, gtpbp2 transcripts are maternally expressed and localized to the egg animal pole, and partitioned into the nascent ectodermal and mesodermal cells during cleavage and early gastrulation stages. Subsequently, gtpbp2 is expressed in the neural folds, and in early tadpoles undergoing organogenesis gtpbp2 is expressed prominently in the brain, eyes, somites, ventral blood island and branchial arches. Consistent with its expression, morpholino knockdown of Gtpbp2 causes defects in ventral-posterior germ layer patterning, gastrulation and tadpole morphology. Overexpressed Gtpbp2 can induce ventral-posterior marker genes and localize to cell nuclei in Xenopus animal caps, highlighting its role in regulating BMP signaling in the early embryo. Here, we introduce this large GTPase as a novel factor in BMP signaling and ventral-posterior patterning.
Collapse
Affiliation(s)
- Arif Kirmizitas
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - William Q Gillis
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Haitao Zhu
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
69
|
Yang Z, Ren L, Deng F, Wang Z, Song J. Low-intensity pulsed ultrasound induces osteogenic differentiation of human periodontal ligament cells through activation of bone morphogenetic protein-smad signaling. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:865-873. [PMID: 24764342 DOI: 10.7863/ultra.33.5.865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES Low-intensity pulsed ultrasound (US) can accelerate fracture healing and osteogenic differentiation. The aim of this study was to investigate the osteogenic effect of low-intensity pulsed US on human periodontal ligament cells and to determine whether bone morphogenetic protein (BMP)-Smad signaling was involved. METHODS Human periodontal ligament cells were exposed to low-intensity pulsed US at a frequency of 1.5 MHz and intensity of 90 mW/cm(2) for 20 min/d. Osteogenic differentiation was determined by assaying alkaline phosphatase (ALP) and calcium deposition. Expression of BMP-2, BMP-6, and BMP-9 was detected by real-time polymerase chain reaction analysis. Phosphorylated Smad was detected by western blotting; Smad in the cells was labeled by an immunofluorescent antibody and observed by laser-scanning confocal microscopy. RESULTS The optical density of ALP stimulated by US at 1.5 MHz and 90 mW/cm(2) for 20 min/d was significantly higher than in other groups (P < .01); therefore, this dosage was considered optimal for promoting osteogenic differentiation. After 13 days of US exposure, ALP increased gradually after 5 days, peaked at 11 days, and decreased at 13 days, with a significant difference compared with the control group (P < .05). Osteocalcin production increased from 9 to 13 days and peaked at 15 days, with a significant difference compared with the control group (P < .05). BMP-2 and BMP-6 increased dynamically after exposure for 13 days. BMP-2 increased 6.07-fold at 3 days, 6.39-fold at 11 days, and 5.97-fold at 13 days. BMP-6 expression increased 6.82-fold at 1 day and 51.5-fold at 3 days and decreased thereafter. BMP-9 was not expressed. Phospho-Smad1/5/8 expression was significantly increased after exposure (P< .05) and transferred from the cytoplasm into the nuclei. CONCLUSIONS Low-intensity pulsed US effectively induced osteogenic differentiation of human periodontal ligament cells, and the BMP-Smad signaling pathway was involved in the mechanism.
Collapse
Affiliation(s)
- Zun Yang
- Affiliated Hospital of Stomatology, Chongqing Medical University, 426 Songshi North St, Yubei District, 401147 Chongqing, China.
| | | | | | | | | |
Collapse
|
70
|
White-Grindley E, Li L, Mohammad Khan R, Ren F, Saraf A, Florens L, Si K. Contribution of Orb2A stability in regulated amyloid-like oligomerization of Drosophila Orb2. PLoS Biol 2014; 12:e1001786. [PMID: 24523662 PMCID: PMC3921104 DOI: 10.1371/journal.pbio.1001786] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/31/2013] [Indexed: 12/13/2022] Open
Abstract
How learned experiences persist as memory for a long time is an important question. In Drosophila the persistence of memory is dependent upon amyloid-like oligomers of the Orb2 protein. However, it is not clear how the conversion of Orb2 to the amyloid-like oligomeric state is regulated. The Orb2 has two protein isoforms, and the rare Orb2A isoform is critical for oligomerization of the ubiquitous Orb2B isoform. Here, we report the discovery of a protein network comprised of protein phosphatase 2A (PP2A), Transducer of Erb-B2 (Tob), and Lim Kinase (LimK) that controls the abundance of Orb2A. PP2A maintains Orb2A in an unphosphorylated and unstable state, whereas Tob-LimK phosphorylates and stabilizes Orb2A. Mutation of LimK abolishes activity-dependent Orb2 oligomerization in the adult brain. Moreover, Tob-Orb2 association is modulated by neuronal activity and Tob activity in the mushroom body is required for stable memory formation. These observations suggest that the interplay between PP2A and Tob-LimK activity may dynamically regulate Orb2 amyloid-like oligomer formation and the stabilization of memories.
Collapse
Affiliation(s)
- Erica White-Grindley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Liying Li
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Repon Mohammad Khan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Fengzhen Ren
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anita Saraf
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
71
|
Winkler GS, Balacco DL. Heterogeneity and complexity within the nuclease module of the Ccr4-Not complex. Front Genet 2013; 4:296. [PMID: 24391663 PMCID: PMC3870282 DOI: 10.3389/fgene.2013.00296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/04/2013] [Indexed: 11/13/2022] Open
Abstract
The shortening of the poly(A) tail of cytoplasmic mRNA (deadenylation) is a pivotal step in the regulation of gene expression in eukaryotic cells. Deadenylation impacts on both regulated mRNA decay as well as the rate of mRNA translation. An important enzyme complex involved in poly(A) shortening is the Ccr4-Not deadenylase. In addition to at least six non-catalytic subunits, it contains two distinct subunits with ribonuclease activity: a Caf1 subunit, characterized by a DEDD (Asp-Glu-Asp-Asp) domain, and a Ccr4 component containing an endonuclease-exonuclease-phosphatase (EEP) domain. In vertebrate cells, the complexity of the complex is further increased by the presence of paralogs of the Caf1 subunit (encoded by either CNOT7 or CNOT8) and the occurrence of two Ccr4 paralogs (encoded by CNOT6 or CNOT6L). In plants, there are also multiple Caf1 and Ccr4 paralogs. Thus, the composition of the Ccr4-Not complex is heterogeneous. The potential differences in the intrinsic enzymatic activities of the paralogs will be discussed. In addition, the potential redundancy, cooperation, and/or the extent of unique roles for the deadenylase subunits of the Ccr4-Not complex will be reviewed. Finally, novel approaches to study the catalytic roles of the Caf1 and Ccr4 subunits will be discussed.
Collapse
Affiliation(s)
- G Sebastiaan Winkler
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park Nottingham, UK
| | - Dario L Balacco
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park Nottingham, UK
| |
Collapse
|
72
|
Zhu Y, Feng F, Yu J, Song B, Hu M, Gao X, Wang Y, Zhang Q. L1-ORF1p, a Smad4 interaction protein, promotes proliferation of HepG2 cells and tumorigenesis in mice. DNA Cell Biol 2013; 32:531-40. [PMID: 23863096 DOI: 10.1089/dna.2013.2097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long interspersed nucleotide element (LINE-1; L1) as an autonomous retrotransposon is localized usually in AT-rich, low-recombined, and gene-poor regions of genome. It is transiently activated in embryonic development and continuously activated in all tumor cells tested so far. Full-length L1 gene contains 5' untranslated region, two open reading frames (ORFs) encoded L1ORF1p and L1ORF2p, and a 3' terminal polyadenylation site. Compared with L1ORF2p, a protein encompassing reverse transcriptase and endonuclease activities, L1ORF1p remains to be elucidated. With liver cancer cells and tissues, the expression and sub-localization of L1ORF1p were investigated and shown that L1-ORF1p expresses just in liver cancer cells and tissues but not in normal liver cells and almost not in adjacent tissues. To characterize L1ORF1p, the strategies for over-expression and down-regulation of L1ORF1p in transfected cells were implemented. The phenomenon of promoting cell proliferation and colony formation was observed in transfected cells with L1ORF1p over-expression and vice versa. Down-regulation of L1ORF1p suppresses tumorigenesis in vitro and in vivo. Smad4 as an interaction protein of L1ORF1p is identified for the first time, while L1ORF1p is responsible for Smad4 sequestration in the cytoplasm. Thus, L1ORF1p contributed to tumorigenesis and may attribute to, at least partly, its participation in Smad4-signaling regulation.
Collapse
Affiliation(s)
- Yunfeng Zhu
- The Institute of Life Sciences and Bio-Engineering in Beijing Jiaotong University, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Ghosh-Choudhury N, Mandal CC, Das F, Ganapathy S, Ahuja S, Ghosh Choudhury G. c-Abl-dependent molecular circuitry involving Smad5 and phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2-induced osteogenesis. J Biol Chem 2013; 288:24503-17. [PMID: 23821550 DOI: 10.1074/jbc.m113.455733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Skeletal remodeling consists of timely formation and resorption of bone by osteoblasts and osteoclasts in a quantitative manner. Patients with chronic myeloid leukemia receiving inhibitors of c-Abl tyrosine kinase often show reduced bone remodeling due to impaired osteoblast and osteoclast function. BMP-2 plays a significant role in bone generation and resorption by contributing to the formation of mature osteoblasts and osteoclasts. The effects of c-Abl on BMP-2-induced bone remodeling and the underlying mechanisms are not well studied. Using a pharmacological inhibitor and expression of a dominant negative mutant of c-Abl, we show an essential role of this tyrosine kinase in the development of bone nodules containing mature osteoblasts and formation of multinucleated osteoclasts in response to BMP-2. Calvarial osteoblasts prepared from c-Abl null mice showed the absolute requirement of this tyrosine kinase in maturation of osteoblasts and osteoclasts. Activation of phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling by BMP-2 leads to osteoblast differentiation. Remarkably, inhibition of c-Abl significantly suppressed BMP-2-stimulated PI 3-kinase activity and its downstream Akt phosphorylation. Interestingly, c-Abl regulated BMP-2-induced osteoclastogenic CSF-1 expression. More importantly, we identified the requirements of c-Abl in BMP-2 autoregulation and the expressions of alkaline phosphatase and osterix that are necessary for osteoblast differentiation. c-Abl contributed to BMP receptor-specific Smad-dependent transcription of CSF-1, osterix, and BMP-2. Finally, c-Abl associates with BMP receptor IA and regulates phosphorylation of Smad in response to BMP-2. We propose that activation of c-Abl is an important step, which induces into two signaling pathways involving noncanonical PI 3-kinase and canonical Smads to integrate BMP-2-induced osteogenesis.
Collapse
Affiliation(s)
- Nandini Ghosh-Choudhury
- Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Gámez B, Rodríguez-Carballo E, Bartrons R, Rosa JL, Ventura F. MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem 2013; 288:14264-14275. [PMID: 23564456 DOI: 10.1074/jbc.m112.432104] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteogenesis depends on a coordinated network of signals and transcription factors such as Runx2 and Osterix. Recent evidence indicates that microRNAs (miRNAs) act as important post-transcriptional regulators in a large number of processes, including osteoblast differentiation. In this study, we performed miRNA expression profiling and identified miR-322, a BMP-2-down-regulated miRNA, as a regulator of osteoblast differentiation. We report miR-322 gain- and loss-of-function experiments in C2C12 and MC3T3-E1 cells and primary cultures of murine bone marrow-derived mesenchymal stem cells. We demonstrate that overexpression of miR-322 enhances BMP-2 response, increasing the expression of Osx and other osteogenic genes. Furthermore, we identify Tob2 as a target of miR-322, and we characterize the specific Tob2 3'-UTR sequence bound by miR-322 by reporter assays. We demonstrate that Tob2 is a negative regulator of osteogenesis that binds and mediates degradation of Osx mRNA. Our results demonstrate a new molecular mechanism controlling osteogenesis through the specific miR-322/Tob2 regulation of specific target mRNAs. This regulatory circuit provides a clear example of a complex miRNA-transcription factor network for fine-tuning the osteoblast differentiation program.
Collapse
Affiliation(s)
- Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, and L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, and L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, and L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, and L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, and L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
75
|
Park JI, Kim SG, Baek MW, Park TJ, Lim IK, Seo YW, Chun SY. B-cell translocation gene 2: expression in the rat ovary and potential association with adenine nucleotide translocase 2 in mitochondria. Mol Cell Endocrinol 2013; 367:31-40. [PMID: 23267836 DOI: 10.1016/j.mce.2012.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/17/2012] [Accepted: 12/14/2012] [Indexed: 01/02/2023]
Abstract
The B-cell translocation gene 2 (Btg2) is an anti-proliferative tumor suppressor gene that behaves as a transcriptional regulator. The present study investigated gonadotropin induction of Btg2 in the rat ovary and the mechanism of Btg2 action as a partner of mitochondrial protein adenine nucleotide translocase 2 (Ant2). Transient induction of Btg2 as well as Btg1 mRNA levels by LH/hCG was observed in ovarian granulosa cells. Btg2 protein levels were also stimulated by LH/hCG. LH-induced gene expression of Btg2 required ERK signal pathway. Studies of deletion mutants in HeLa cells showed that deletion of Btg2 C-terminus (Btg2/ΔC) abolished the interaction with Ant2. In fact, the expression levels of Btg2/ΔC construct were decreased in mitochondrial fraction. Btg2 was also expressed in mitochondria and interacted with Ant2 in preovulatory granulosa cells. Interestingly, a Btg2/ΔC construct inhibited an action of Btg2 wild-type on ATP and H(2)O(2) production. These findings demonstrate the gonadotropin stimulation of Btg2 in the ovary and, the physical interaction of Btg2 with Ant2 in mitochondria.
Collapse
Affiliation(s)
- Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
76
|
Trompeter HI, Dreesen J, Hermann E, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Wernet P. MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 2013; 14:111. [PMID: 23418963 PMCID: PMC3637629 DOI: 10.1186/1471-2164-14-111] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MicroRNAs are a population of short non-coding RNAs with widespread negative regulatory impact on mRNA translation. Unrestricted somatic stem cells (USSC) are a rare population in human cord blood that can be induced into cells representative of all three germinal layers. Here we analyzed the functional impact of miRNAs on the osteogenic differentiation in USSC. RESULTS Gene expression profiling identified 20 microRNAs that were consistently upregulated during osteogenic differentiation of two different USSC cell lines (SA5/73 and SA8/25). Bioinformatic target gene prediction indicated that among these microRNAs, miR-10a, -22, -26a, -26b, and -29b recognize transcripts that encode a set of proteins inhibiting osteogenesis. We subsequently verified osteo-inhibitory CDK6, CTNNBIP1, HDAC4, and TOB1 and osteo-promoting SMAD1 as targets of these microRNAs. In Western blot analyses demonstrated that endogenous levels of CDK6 and HDAC4 were downregulated during osteogenic differentiation of USSC and reduced following ectopic expression of miR-26a/b and miR-29b. In contrast, endogenous expression of SMAD1, targeted by miR-26a/b, was unaltered during osteogenic differentiation of USSC or following ectopic expression of miR-26a/b. Functional overexpression analyses using microRNA mimics revealed that miR-26a/b, as well as miR-29b strongly accelerated osteogenic differentiation of USSC as assessed by Alizarin-Red staining and calcium-release assays. CONCLUSIONS miR-26a/b and miR-29b are upregulated during osteogenic differentiation of USSC and share target genes inhibiting osteogenesis. Furthermore, these microRNAs accelerate osteogenic differentiation, likely mediated by osteo-inhibitory proteins such as CDK6 and HDAC4.
Collapse
Affiliation(s)
- Hans-Ingo Trompeter
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics (ITZ), Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Wahle E, Winkler GS. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:561-70. [PMID: 23337855 DOI: 10.1016/j.bbagrm.2013.01.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022]
Abstract
Shortening and removal of the 3' poly(A) tail of mature mRNA by poly(A)-specific 3' exonucleases (deadenylases) is the initial and often rate-limiting step in mRNA degradation. The majority of cytoplasmic deadenylase activity is associated with the Ccr4-Not and Pan2-Pan3 complexes. Two distinct catalytic subunits, Caf1/Pop2 and Ccr4, are associated with the Ccr4-Not complex, whereas the Pan2 enzymatic subunit forms a stable complex with Pan3. In this review, we discuss the composition and activity of these two deadenylases. In addition, we comment on generic and specific mechanisms of recruitment of Ccr4-Not and Pan2-Pan3 to mRNAs. Finally, we discuss specialised and redundant functions of the deadenylases and review the importance of Ccr4-Not subunits in the regulation of physiological processes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | |
Collapse
|
78
|
Zhou W, Thiery JP. Loss of Git2 induces epithelial-mesenchymal transition by miR146a-Cnot6L controlled expression of Zeb1. J Cell Sci 2013; 126:2740-6. [DOI: 10.1242/jcs.126367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) can be induced by several pleiotropically activated transcription factors, including the zinc-finger, E-box-binding protein, Zeb1. Mechanisms regulating Zeb1 expression have been partly uncovered, showing a critical role for the miR-200 family members. Here, we show that Zeb1 is regulated by the Arf GTPase-activating protein (GAP), Git2. Following the loss of Git2, we found that miR-146a maturation is enhanced, which in turn promotes the expression of Zeb1 and induction of EMT. Furthermore, we found that Cnot6L, a validated target of miR-146a, affects the stability of Zeb1 mRNA through its deadenylase activity. Our results present evidence for a new role for loss of Git2 in promoting EMT through a novel regulatory pathway.
Collapse
|
79
|
Doidge R, Mittal S, Aslam A, Winkler GS. The anti-proliferative activity of BTG/TOB proteins is mediated via the Caf1a (CNOT7) and Caf1b (CNOT8) deadenylase subunits of the Ccr4-not complex. PLoS One 2012; 7:e51331. [PMID: 23236473 PMCID: PMC3517456 DOI: 10.1371/journal.pone.0051331] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
The human BTG/TOB protein family comprises six members (BTG1, BTG2/PC3/Tis21, BTG3/Ana, BTG4/PC3B, TOB1/Tob, and TOB2) that are characterised by a conserved BTG domain. This domain mediates interactions with the highly similar Caf1a (CNOT7) and Caf1b (CNOT8) catalytic subunits of the Ccr4-Not deadenylase complex. BTG/TOB proteins have anti-proliferative activity: knockdown of BTG/TOB can result in increased cell proliferation, whereas over-expression of BTG/TOB leads to inhibition of cell cycle progression. It was unclear whether the interaction between BTG/TOB proteins and the Caf1a/Caf1b deadenylases is necessary for the anti-proliferative activity of BTG/TOB. To address this question, we further characterised surface-exposed amino acid residues of BTG2 and TOB1 that mediate the interaction with the Caf1a and Caf1b deadenylase enzymes. We then analysed the role of BTG2 and TOB1 in the regulation of cell proliferation, translation and mRNA abundance using a mutant that is no longer able to interact with the Caf1a/Caf1b deadenylases. We conclude that the anti-proliferative activity of BTG/TOB proteins is mediated through interactions with the Caf1a and Caf1b deadenylase enzymes. Furthermore, we show that the activity of BTG/TOB proteins in the regulation of mRNA abundance and translation is dependent on Caf1a/Caf1b, and does not appear to require other Ccr4-Not components, including the Ccr4a (CNOT6)/Ccr4b (CNOT6L) deadenylases, or the non-catalytic subunits CNOT1 or CNOT3.
Collapse
Affiliation(s)
- Rachel Doidge
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Saloni Mittal
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Akhmed Aslam
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - G. Sebastiaan Winkler
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
80
|
Ogami K, Hosoda N, Funakoshi Y, Hoshino S. Antiproliferative protein Tob directly regulates c-myc proto-oncogene expression through cytoplasmic polyadenylation element-binding protein CPEB. Oncogene 2012. [PMID: 23178487 DOI: 10.1038/onc.2012.548] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The regulation of mRNA deadenylation constitutes a pivotal mechanism of the post-transcriptional control of gene expression. Here we show that the antiproliferative protein Tob, a component of the Caf1-Ccr4 deadenylase complex, is involved in regulating the expression of the proto-oncogene c-myc. The c-myc mRNA contains cis elements (CPEs) in its 3'-untranslated region (3'-UTR), which are recognized by the cytoplasmic polyadenylation element-binding protein (CPEB). CPEB recruits Caf1 deadenylase through interaction with Tob to form a ternary complex, CPEB-Tob-Caf1, and negatively regulates the expression of c-myc by accelerating the deadenylation and decay of its mRNA. In quiescent cells, c-myc mRNA is destabilized by the trans-acting complex (CPEB-Tob-Caf1), while in cells stimulated by the serum, both Tob and Caf1 are released from CPEB, and c-Myc expression is induced early after stimulation by the stabilization of its mRNA as an 'immediate-early gene'. Collectively, these results indicate that Tob is a key factor in the regulation of c-myc gene expression, which is essential for cell growth. Thus, Tob appears to function in the control of cell growth at least, in part, by regulating the expression of c-myc.
Collapse
Affiliation(s)
- K Ogami
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - N Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Y Funakoshi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - S Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
81
|
Tob2 inhibits peroxisome proliferator-activated receptor γ2 expression by sequestering Smads and C/EBPα during adipocyte differentiation. Mol Cell Biol 2012; 32:5067-77. [PMID: 23071089 DOI: 10.1128/mcb.00610-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adipogenesis is an important component of adipose tissue development and is critically related to obesity. A cascade of transcription factors is involved in adipogenesis, in which peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding proteins (C/EBPs) play pivotal roles. Bone morphogenetic proteins (BMPs) and Smad proteins are implicated in this cascade, although the precise regulatory mechanisms have yet to be elucidated. Here, we show that Tob2, a member of the Tob/BTG antiproliferative protein family, inhibits adipogenesis by interfering with Smad signaling. tob2 expression is downregulated in the white adipose tissue of high-fat diet-induced or genetically mutated obese mice. Consistent with this, tob2(-/-) mice exhibit increased adiposity with augmented expression of the genes encoding the type 1A BMP receptor (BMPR1A) and PPARγ2 as well as their target genes. We further show accelerated adipogenesis in primary tob2(-/-) preadipocytes. Furthermore, exogenously expressed Tob2 inhibits adipogenic differentiation of 3T3-L1 preadipocytes: the Tob2 protein suppresses PPARγ2 transcription by inhibiting BMP2-induced Smad1/5 phosphorylation through its interaction with Smad6 and by sequestering C/EBPα from the PPARγ2 promoter. Thus, Tob2 negatively regulates adipogenesis by inhibiting PPARγ2 expression.
Collapse
|
82
|
Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JAR, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 2012; 287:42084-92. [PMID: 23060446 DOI: 10.1074/jbc.m112.377515] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) negatively and post-transcriptionally regulate expression of multiple target genes to support anabolic pathways for bone formation. Here, we show that miR-218 is induced during osteoblast differentiation and has potent osteogenic properties. miR-218 promotes commitment and differentiation of bone marrow stromal cells by activating a positive Wnt signaling loop. In a feed forward mechanism, miR-218 stimulates the Wnt pathway by down-regulating three Wnt signaling inhibitors during the process of osteogenesis: Sclerostin (SOST), Dickkopf2 (DKK2), and secreted frizzled-related protein2 (SFRP2). In turn, miR-218 expression is up-regulated in response to stimulated Wnt signaling and functionally drives Wnt-related transcription and osteoblast differentiation, thereby creating a positive feedback loop. Furthermore, in metastatic breast cancer cells but not in normal mammary epithelial cells, miR-218 enhances Wnt activity and abnormal expression of osteoblastic genes (osteomimicry) that contribute to homing and growth of cells metastatic to bone. Thus, miR-218/Wnt signaling circuit amplifies both the osteoblast phenotype and osteomimicry-related tumor activity.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Thouverey C, Caverzasio J. The p38α MAPK positively regulates osteoblast function and postnatal bone acquisition. Cell Mol Life Sci 2012; 69:3115-25. [PMID: 22527716 PMCID: PMC11114644 DOI: 10.1007/s00018-012-0983-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/14/2012] [Accepted: 03/26/2012] [Indexed: 01/13/2023]
Abstract
Bone continuously remodels throughout life by coordinated actions of osteoclasts and osteoblasts. Abnormalities in either osteoclast or osteoblast functions lead to bone disorders. The p38 MAPK pathway has been shown to be essential in controlling osteoblast differentiation and skeletogenesis. Although p38α is the most abundant p38 member in osteoblasts, its specific individual contribution in regulating postnatal osteoblast activity and bone metabolism is unknown. To elucidate the specific role of p38α in regulating osteoblast function and bone homeostasis, we generated mice lacking p38α in differentiated osteoblasts. Osteoblast-specific p38a knockout mice were of normal weight and size. Despite non-significant bone alterations until 5 weeks of age, mutant mice demonstrated significant and progressive decrease in bone mineral density from that age. Adult mice deficient in p38a in osteoblasts displayed a striking reduction in cancellous bone volume at both axial and appendicular skeletal sites. At 6 months of age, trabecular bone volume was reduced by 62% in those mice. Mutant mice also exhibited progressive decrease in cortical thickness of long bones. These abnormalities correlated with decreased endocortical and trabecular bone formation rate and reduced expressions of type 1 collagen, alkaline phosphatase, osteopontin and osteocalcin whereas bone resorption and osteoclasts remained unaffected. Finally, osteoblasts lacking p38α showed impaired marker gene expressions and defective mineralization in vitro. These findings indicate that p38α is an essential positive regulator of osteoblast function and postnatal bone formation in vivo.
Collapse
Affiliation(s)
- Cyril Thouverey
- Department of Internal Medicine, Service of Bone Diseases, University Hospital of Geneva, 64 Avenue de la Roseraie, 1205, Geneva, Switzerland.
| | | |
Collapse
|
84
|
Lin S, Zhu Q, Xu Y, Liu H, Zhang J, Xu J, Wang H, Sang Q, Xing Q, Fan J. The role of the TOB1 gene in growth suppression of hepatocellular carcinoma. Oncol Lett 2012; 4:981-987. [PMID: 23162636 DOI: 10.3892/ol.2012.864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/25/2012] [Indexed: 12/24/2022] Open
Abstract
The TOB1 gene, mapped on 17q21, is a member of the BTG/Tob family. In breast cancer it has been identified as a candidate tumor suppressor gene. However, whether TOB1 is a bona fide tumor suppressor and downregulated in hepatocellular carcinoma (HCC) remains unclear. In addition, whether its expression is regulated through methylation requires investigation. In the present study, we therefore analyzed the expression of TOB1 in HCC and its methylation levels in human HCC and breast cancer. No significant difference in the expression levels of TOB1 was observed between tumor tissues and adjacent normal tissues in HCC. Quantitative methylation analysis by MassArray revealed no significant differences at single CpG sites or in the global promoter region, and all these CpG sites shared a similar methylation pattern in HCC and breast cancer. Moreover, 5-aza-2'-deoxycytidine treatment of three tumor cell lines did not cause elevation of TOB1 mRNA in HepG2 cell lines. Based on these data, we speculate that TOB1 may be a candidate non-tumor suppressor gene in HCC. Furthermore, the clinical outcome was not correlated with TOB1 expression or expression rate. In addition, TOB1 expression or expression rate was not correlated with the overall survival (OS) rates or cumulative recurrence rates. Taken together, we suggest that TOB1 does not act as a tumor suppressor in HCC.
Collapse
Affiliation(s)
- Sheyu Lin
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai 200032; ; School of Life Sciences, Nantong University, Nantong 226019, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
The Ccr4–Not complex is one of the major deadenylase factors present in eukaryotic cells. This multi-subunit protein complex is composed of at least seven stably associated subunits in mammalian cells including two enzymatic deadenylase subunits: one DEDD (Asp-Glu-Asp-Asp)-type deadenylase (either CNOT7/human Caf1/Caf1a or CNOT8/human Pop2/Caf1b/Calif) and one EEP (endonuclease–exonuclease–phosphatase)-type enzyme (either CNOT6/human Ccr4/Ccr4a or CNOT6L/human Ccr4-like/Ccr4b). Here, the role of the human Ccr4–Not complex in cytoplasmic deadenylation of mRNA is discussed, including the mechanism of its recruitment to mRNA and the role of the BTG/Tob proteins.
Collapse
|
86
|
Koromila T, Dailiana Z, Samara S, Chassanidis C, Tzavara C, Patrinos GP, Aleporou-Marinou V, Kollia P. Novel sequence variations in the CER1 gene are strongly associated with low bone mineral density and risk of osteoporotic fracture in postmenopausal women. Calcif Tissue Int 2012; 91:15-23. [PMID: 22543871 DOI: 10.1007/s00223-012-9602-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/07/2012] [Indexed: 01/14/2023]
Abstract
Osteoporosis is a common skeletal disease characterized by a combination of low bone mass and increased fragility. In this case-control study, we investigated the possible association of two novel candidate genes, CER1 and TOB1, with bone mineral density (BMD) and fragility risk in 300 postmenopausal women of Hellenic origin. The entire CER1 and TOB1 gene sequences were amplified and resequenced to assess whether there is a correlation between these genes and BMD. We identified 26 variants in both genes. Statistical analysis did not reveal any correlation between TOB1 and osteoporosis. However, CER1 genetic analysis indicated that five polymorphisms, c.194C>G, c.507+506G>T, c.508-182A>G, c.531A>G, and c.*121T>C, were correlated, with a mean T score ≤-2.2. In particular, the greater number of vertebral fractures was found in patients with osteoporosis carrying the G allele of c.531A>G SNP (p = 0.015). When multiple logistic regression analysis was performed, only the c.507+506G>T polymorphism was independently associated with hip fractures or the presence of any fracture (OR = 6.95, p = 0.016, and OR = 5.33, p < 0.001, respectively). These results suggest that CER1 gene variations play a significant role in determining BMD and vertebral or hip fractures, which might be helpful in clinical practice to identify patients with increased fracture risk.
Collapse
Affiliation(s)
- Theodora Koromila
- Laboratory of Human Genetics, Department of Biology, University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Biver E, Hardouin P, Caverzasio J. The "bone morphogenic proteins" pathways in bone and joint diseases: translational perspectives from physiopathology to therapeutic targets. Cytokine Growth Factor Rev 2012; 24:69-81. [PMID: 22749766 DOI: 10.1016/j.cytogfr.2012.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/06/2012] [Indexed: 01/23/2023]
Abstract
A large body of evidence supports an important role of bone morphogenic proteins (BMPs) pathways in skeletal development in the embryo. BMPs are also involved in skeletal homeostasis and diseases in the adult. They were first identified as major bone anabolic agents and recent advances indicate that they also regulate osteoclastogenesis and joint components via multiple cross-talks with other signaling pathways. This review attempts to integrate these data in the pathogenesis of bone and joints diseases, such as osteoporosis, fracture healing, osteoarthritis, inflammatory arthritis, or bone metastasis. The use of recombinant BMPs in bone tissue engineering and in the treatment of skeletal diseases, or future therapeutic strategies targeting BMPs signal and its regulators, will be discussed based on these considerations.
Collapse
Affiliation(s)
- Emmanuel Biver
- Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoléon, BP120, 62327 Boulogne sur Mer, France.
| | | | | |
Collapse
|
88
|
Jiao Y, Sun KK, Zhao L, Xu JY, Wang LL, Fan SJ. Suppression of human lung cancer cell proliferation and metastasis in vitro by the transducer of ErbB-2.1 (TOB1). Acta Pharmacol Sin 2012; 33:250-60. [PMID: 22158108 DOI: 10.1038/aps.2011.163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To investigate the effects of the transducer of ErbB-2.1 (TOB1) on the proliferation, migration and invasion of human lung cancer cells in vitro. METHODS Human lung cancer cell lines (95-D, A549, NCI-H1299, NCI-H1975, NCI-H661, NCI-H446, NCI-H1395, and Calu-3) and the normal human bronchial epithelial (HBE) cell line were tested. The expression levels of TOB1 in the cells were determined with Western blot and RT-PCR analyses. TOB1-overexpressing cell line 95-D/TOB1 was constructed using lipofectamine-induced TOB1 recombinant plasmid transfection and selective G418 cell culture. The A549 cells were transcend-transfected with TOB1-siRNA. MTT assay, flow cytometry and Western blot analysis were used to examine the effects of TOB1 on cancer cell proliferation and wound healing. Transwell invasive assay was performed to evaluate the effects of TOB1 on cancer cell migration and invasion. The activity of MMP2 and MMP9 was measured using gelatin zymography assay. RESULTS The expression levels of TOB1 in the 8 human lung cancer cell lines were significantly lower than that in HBE cells. TOB1 overexpression inhibited the proliferation of 95-D cells, whereas TOB1 knockdown with TOB1-siRNA promoted the growth of A549 cells. Decreased cell migration and invasion were detected in 95-D/TOB1 cells, and the suppression of TOB1 enhanced the metastasis in A549 cells. TOB1 overexpression not only increased the expression of the phosphatase and tensin homolog (PTEN), an important tumor suppressor, but also regulated the downstream effectors in the PI3K/PTEN signaling pathway, including Akt, ERK1/2, etc. In contrast, decreased expression of TOB1 oppositely regulated the expression of these factors. TOB1 also regulates the gelatinase activity of MMP2 and MMP9 in lung cancer cells. CONCLUSION The results demonstrate that the PI3K/PTEN pathway, which is essential for carcinogenesis, angiogenesis, and metastasis, may be one of the possible signaling pathways for regulation of proliferation and metastasis of human lung cancer cells by TOB1 in vitro.
Collapse
|
89
|
Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 2012; 151:247-54. [PMID: 22253449 DOI: 10.1093/jb/mvs004] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bone morphogenetic protein(s) (BMP) are very powerful cytokines that induce bone and cartilage formation. BMP also stimulate osteoblast and chondrocyte differentiation. During bone and cartilage development, BMP regulates the expression and/or the function of several transcription factors through activation of Smad signalling. Genetic studies revealed that Runx2, Osterix and Sox9, all of which function downstream of BMP, play essential roles in bone and/or cartilage development. In addition, two other transcription factors, Msx2 and Dlx5, which interact with BMP signalling, are involved in bone and cartilage development. The importance of these transcription factors in bone and cartilage development has been supported by biochemical and cell biological studies. Interestingly, BMP is regulated by several negative feedback systems that appear necessary for fine-tuning of bone and cartilage development induced by BMP. Thus, BMP harmoniously regulates bone and cartilage development by forming network with several transcription factors.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry.
| | | | | | | | | |
Collapse
|
90
|
Morita M, Oike Y, Nagashima T, Kadomatsu T, Tabata M, Suzuki T, Nakamura T, Yoshida N, Okada M, Yamamoto T. Obesity resistance and increased hepatic expression of catabolism-related mRNAs in Cnot3+/- mice. EMBO J 2011; 30:4678-91. [PMID: 21897366 DOI: 10.1038/emboj.2011.320] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/10/2011] [Indexed: 01/05/2023] Open
Abstract
Obesity is a life-threatening factor and is often associated with dysregulation of gene expression. Here, we show that the CNOT3 subunit of the CCR4-NOT deadenylase complex is critical to metabolic regulation. Cnot3(+/-) mice are lean with hepatic and adipose tissues containing reduced levels of lipids, and show increased metabolic rates and enhanced glucose tolerance. Cnot3(+/-) mice remain lean and sensitive to insulin even on a high-fat diet. Furthermore, introduction of Cnot3 haplodeficiency in ob/ob mice ameliorated the obese phenotype. Hepatic expression of most mRNAs is not altered in Cnot3(+/-) vis-à-vis wild-type mice. However, the levels of specific mRNAs, such as those coding for energy metabolism-related PDK4 and IGFBP1, are increased in Cnot3(+/-) hepatocytes, having poly(A) tails that are longer than those seen in control cells. We provide evidence that CNOT3 is involved in recruitment of the CCR4-NOT deadenylase to the 3' end of specific mRNAs. Finally, as CNOT3 levels in the liver and white adipose tissues decrease upon fasting, we propose that CNOT3 responds to feeding conditions to regulate deadenylation-specific mRNAs and energy metabolism.
Collapse
Affiliation(s)
- Masahiro Morita
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Yuan J, Cao JY, Tang ZL, Wang N, Li K. Molecular characterization of Tob1 in muscle development in pigs. Int J Mol Sci 2011; 12:4315-26. [PMID: 21845080 PMCID: PMC3155353 DOI: 10.3390/ijms12074315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 11/17/2022] Open
Abstract
Cell proliferation is an important biological process during myogenesis. Tob1 encoded a member of the Tob/BTG family of anti-proliferative proteins. Our previous LongSAGE (Long Serial Analysis of Gene Expression) analysis suggested that Tob1 was differentially expressed during prenatal skeletal muscle development. In this study, we isolated and characterized the swine Tob1 gene. Subsequently, we examined Tob1 chromosome assignment, subcellular localization and dynamic expression profile in prenatal skeletal muscle (33, 65 and 90 days post-conception, dpc) from Landrace (lean-type) and Tongcheng pigs (obese-type). The Tob1 gene was mapped to pig chromosome 12 (SSC12). The Tob1 protein was distributed throughout the nucleus and cytoplasm of PK15 cells. During prenatal skeletal muscle development, Tob1 was up-regulated and highly expressed in skeletal muscle at 90 dpc in Tongcheng pigs but peaked at 65 dpc in Landrace pigs. This result suggested that there were different proliferation patterns during myogenesis between Tongcheng and Landrace pigs. During postnatal skeletal muscle development, the expression of Tob1 increased with aging, indicating that the proliferation potential of myoblasts decreased in postnatal muscle development. In tissues of adult wuzhishan miniature pigs, the Tob1 gene was highly expressed in skeletal muscle. The expression of Tob1 was significantly increased at day 6 during C2C12 differentiation time, suggesting a possible role in skeletal muscle development. Therefore, this study indicated that Tob1 perhaps played an important role in skeletal muscle development.
Collapse
Affiliation(s)
- Jing Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; E-Mail:
- Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; E-Mail:
| | - Ji-Yue Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Y.C.); (Z.-L.T.); Tel.: +86-27-87281593 (J.-Y.C.); +86-10-62818180 (Z.-L.T.); Fax: +86-10-62818180 (Z.-L.T.)
| | - Zhong-Lin Tang
- Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Y.C.); (Z.-L.T.); Tel.: +86-27-87281593 (J.-Y.C.); +86-10-62818180 (Z.-L.T.); Fax: +86-10-62818180 (Z.-L.T.)
| | - Ning Wang
- College of Animal Science, Northeast Agricultural University, Haerbin, Helongjiang 150030, China; E-Mail:
| | - Kui Li
- Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; E-Mail:
| |
Collapse
|
92
|
Wang M, Jin H, Tang D, Huang S, Zuscik M, Chen D. Smad1 plays an essential role in bone development and postnatal bone formation. Osteoarthritis Cartilage 2011; 19:751-62. [PMID: 21420501 PMCID: PMC3113680 DOI: 10.1016/j.joca.2011.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/27/2011] [Accepted: 03/11/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To determine the role of Smad1 in bone development and postnatal bone formation. METHODS Col2a1-Cre transgenic mice were bred with Smad1(fx/fx) mice to produce chondrocyte-specific Smad1 conditional knockout (cKO) mice. Embryonic skeletal preparation and staining were performed, alkaline phosphatase activity (ALP) and relative gene expression were examined in isolated primary cells. Smad1(fx/fx) mice were also bred with Col1a1-Cre transgenic mice to produce osteoblast-specific Smad1 cKO mice. Postnatal bone formation was assessed by micro-computed tomography (μCT) and histological analyses in 2-month-old mice. Mineralized bone nodule formation assay, 5-bromo-2'-deoxy-uridine (BrdU) labeling and gene expression analysis were performed. RESULTS Mice with chondrocyte- and osteoblast-specific deletion of the Smad1 gene are viable and fertile. Calvarial bone development was delayed in chondrocyte-specific Smad1 cKO mice. In osteoblast-specific Smad1 cKO mice, BMP signaling was partially inhibited and mice developed an osteopenic phenotype. Osteoblast proliferation and differentiation were impaired in osteoblast-specific Smad1 cKO mice. CONCLUSIONS Smad1 plays an essential role in bone development and postnatal bone formation.
Collapse
Affiliation(s)
- M. Wang
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - H. Jin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA, Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - D. Tang
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - S. Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M.J. Zuscik
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - D. Chen
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA,Address correspondence and reprint requests to: D. Chen, Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA. Tel: 1-585-273-5631; Fax: 1-585-275-1121. (D. Chen)
| |
Collapse
|
93
|
Lee MH, Kim KW, Morgan CT, Morgan DE, Kimble J. Phosphorylation state of a Tob/BTG protein, FOG-3, regulates initiation and maintenance of the Caenorhabditis elegans sperm fate program. Proc Natl Acad Sci U S A 2011; 108:9125-30. [PMID: 21571637 PMCID: PMC3107262 DOI: 10.1073/pnas.1106027108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
FOG-3, the single Caenorhabditis elegans Tob/BTG protein, directs germ cells to adopt the sperm fate at the expense of oogenesis. Importantly, FOG-3 activity must be maintained for the continued production of sperm that is typical of the male sex. Vertebrate Tob proteins have antiproliferative activity and ERK phosphorylation of Tob proteins has been proposed to abrogate "antiproliferative" activity. Here we investigate FOG-3 phosphorylation and its effect on sperm fate specification. We found both phosphorylated and unphosphorylated forms of FOG-3 in nematodes. We then interrogated the role of FOG-3 phosphorylation in sperm fate specification. Specifically, we assayed FOG-3 transgenes for rescue of a fog-3 null mutant. Wild-type FOG-3 rescued both initiation and maintenance of sperm fate specification. A FOG-3 mutant with its four consensus ERK phosphorylation sites substituted to alanines, called FOG-3(4A), rescued partially: sperm were made transiently but not continuously in both sexes. A different FOG-3 mutant with its sites substituted to glutamates, called FOG-3(4E), had no rescuing activity on its own, but together with FOG-3(4A) rescue was complete. Thus, when FOG-3(4A) and FOG-3(4E) were both introduced into the same animals, sperm fate specification was not only initiated but also maintained, resulting in continuous spermatogenesis in males. Our findings suggest that unphosphorylated FOG-3 initiates the sperm fate program and that phosphorylated FOG-3 maintains that program for continued sperm production typical of males. We discuss implications of our results for Tob/BTG proteins in vertebrates.
Collapse
Affiliation(s)
- Myon-Hee Lee
- The Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
94
|
Shah P, Keppler L, Rutkowski J. Bone morphogenic protein: an elixir for bone grafting--a review. J ORAL IMPLANTOL 2011; 38:767-78. [PMID: 21574851 DOI: 10.1563/aaid-joi-d-10-00196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor beta superfamily. This literature review focuses on the molecular biology of BMPs, their mechanism of action, and subsequent applications. It also discusses uses of BMPs in the fields of dentistry and orthopedics, research on methods of delivering BMPs, and their role in tissue regeneration. BMP has positive effects on bone grafts, and their calculated and timely use with other growth factors can provide extraordinary results in fractured or nonhealing bones. Use of BMP introduces new applications in the field of implantology and bone grafting. This review touches on a few unknown facts about BMP and this ever-changing field of research to improve human life.
Collapse
Affiliation(s)
- Prasun Shah
- St Vincent Charity Hospital, Cleveland, OH, USA.
| | | | | |
Collapse
|
95
|
Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat Immunol 2011; 12:544-50. [PMID: 21532575 DOI: 10.1038/ni.2034] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/05/2011] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms that underlie T cell quiescence are poorly understood. Here we report that mature naive CD8(+) T cells lacking the transcription factor Foxp1 gained effector phenotype and function and proliferated directly in response to interleukin 7 (IL-7) in vitro. Foxp1 repressed expression of the IL-7 receptor α-chain (IL-7Rα) by antagonizing Foxo1 and negatively regulated signaling by the kinases MEK and Erk. Acute deletion of Foxp1 induced naive T cells to gain an effector phenotype and proliferate in lympho-replete mice. Foxp1-deficient naive CD8(+) T cells proliferated even in lymphopenic mice deficient in major histocompatibility complex class I. Our results demonstrate that Foxp1 exerts essential cell-intrinsic regulation of naive T cell quiescence, providing direct evidence that lymphocyte quiescence is achieved through actively maintained mechanisms that include transcriptional regulation.
Collapse
|
96
|
Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J 2011; 30:1311-23. [PMID: 21336257 DOI: 10.1038/emboj.2011.37] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 01/24/2011] [Indexed: 01/17/2023] Open
Abstract
Tob is a member of the anti-proliferative protein family, which functions in transcription and mRNA decay. We have previously demonstrated that Tob is involved in the general mechanism of mRNA decay by mediating mRNA deadenylation through interaction with Caf1 and a general RNA-binding protein, PABPC1. Here, we focus on the role of Tob in the regulation of specific mRNA. We show that Tob binds directly to a sequence-specific RNA-binding protein, cytoplasmic polyadenylation element-binding protein 3 (CPEB3). CPEB3 negatively regulates the expression of a target by accelerating deadenylation and decay of its mRNA, which it achieves by tethering to the mRNA. The carboxyl-terminal RNA-binding domain of CPEB3 binds to the carboxyl-terminal unstructured region of Tob. Tob then binds Caf1 deadenylase and recruits it to CPEB3 to form a ternary complex. The CPEB3-accelerated deadenylation was abrogated by a dominant-negative mutant of either Caf1 or Tob. Together, these results indicate that Tob mediates the recruitment of Caf1 to the target of CPEB3 and elicits deadenylation and decay of the mRNA. Our results provide an explanation of how Tob regulates specific biological processes.
Collapse
|
97
|
Collery RF, Link BA. Dynamic smad-mediated BMP signaling revealed through transgenic zebrafish. Dev Dyn 2011; 240:712-22. [PMID: 21337469 DOI: 10.1002/dvdy.22567] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/11/2022] Open
Abstract
Bone morphogenic protein (BMP) signaling is fundamental to development, injury response, and homeostasis. We have developed transgenic zebrafish that report Smad-mediated BMP signaling in embryos and adults. These lines express either enhanced green fluorescent protein (eGFP), destabilized eGFP, or destabilized Kusabira Orange 2 (KO2) under the well-characterized BMP Response Element (BRE). These fluorescent proteins were found to be expressed dynamically in regions of known BMP signaling including the developing tail bud, hematopoietic lineage, dorsal eye, brain structures, heart, jaw, fins, and somites, as well as other tissues. Responsiveness to changes in BMP signaling was confirmed by observing fluorescence after activation in an hsp70:bmp2b transgenic background or by inhibition in an hsp70:nog3 background. We further demonstrated faithful reportage by the BRE transgenic lines following chemical repression of BMP signaling using an inhibitor of BMP receptor activity, dorsomorphin. Overall, these lines will serve as valuable tools to explore the mechanisms and regulation of BMP signal during embryogenesis, in tissue maintenance, and during disease.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
98
|
Coronin7 forms a novel E3 ubiquitin ligase complex to promote the degradation of the anti-proliferative protein Tob. FEBS Lett 2010; 585:65-70. [DOI: 10.1016/j.febslet.2010.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
|
99
|
Park KH, Han DI, Rhee YH, Jeong SJ, Kim SH, Park YG. Protein kinase C βII and δ/θ play critical roles in bone morphogenic protein-4-stimulated osteoblastic differentiation of MC3T3-E1 cells. Biochem Biophys Res Commun 2010; 403:7-12. [PMID: 20971075 DOI: 10.1016/j.bbrc.2010.10.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/17/2010] [Indexed: 11/29/2022]
Abstract
Bone morphogenic protein-4 (BMP-4), one of TGF-β superfamily, is involved in bone and cartilage development, specifically tooth and bone fracture repair. In the present study, the role of protein kinase C (PKC) was investigated in BMP-4-induced differentiation of osteoblast-like MC3T3-E1 cells. PKC inhibitor UCN-01 significantly attenuated the synthesis of osteocalcin, a marker of mature osteoblast phenotype, in a dose-dependent manner as well as blocked osteroblastic differentiation and mineralization in BMP-4-treated MC3T3-E1 cells. Also, UCN-01 suppressed vascular endothelial growth factor (VEGF) production in BMP-4-treated MC3T3-E1 cells. In addition, UCN-01 remarkably suppressed BMP-4-activated PKC βII and PKC δ/θ of PKC family proteins by Western blotting. Consistently, 2-dimensional electrophoresis (2-DE) immunoblotting revealed that UCN-01 inhibited the BMP-4-induced activation of PKC subfamilies in MC3T3-E1 cells. Taken together, our findings suggest that PKC βII and PKC δ/θ mediate BMP-4-induced osteoblastic differentiation.
Collapse
Affiliation(s)
- Ki Ho Park
- Department of Orthodontics Kyung-Hee University School of Dentistry, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
100
|
Okudaira S, Shimizu M, Otsuki B, Nakanishi R, Ohta A, Higuchi K, Hosokawa M, Tsuboyama T, Nakamura T. Quantitative trait locus on chromosome X affects bone loss after maturation in mice. J Bone Miner Metab 2010; 28:520-31. [PMID: 20354743 DOI: 10.1007/s00774-010-0168-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
Genetic programming is known to affect the peak bone mass and bone loss after maturation. However, little is known about how polymorphic genes on chromosome X (Chr X) modulate bone loss after maturation. We previously reported a quantitative trait locus (QTL) on Chr X, designated Pbd3, which had a suggestive linkage to bone mass, in male SAMP2 and SAMP6 mice. In this study, we aimed to clarify the effects of Pbd3 on the skeletal phenotype. We generated a congenic strain, P2.P6-X, carrying a 45.6-cM SAMP6-derived Chr X interval on a SAMP2 genetic background. The effects of Pbd3 on the bone phenotype were determined by microcomputed tomography (microCT), whole-body dual-energy X-ray absorptiometry (DXA), serum bone turnover markers, and histomorphometric parameters. Both the bone area fraction (BA/TA) on microCT and whole-body DXA revealed reduced bone loss in P2.P6-X compared with that in SAMP2. The serum concentrations of bone turnover markers at 4 months of age were significantly lower in P2.P6-X than in SAMP2, but did not differ at 8 months of age. These results were observed in female mice, but not in male mice. In conclusion, a QTL within a segregated 45.6-cM interval on Chr X is sex-specifically related to the rate of bone loss after maturation.
Collapse
Affiliation(s)
- Shuzo Okudaira
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|