51
|
Abstract
It has been assumed that DNA synthesis by the leading- and lagging-strand polymerases in the replisome must be coordinated to avoid the formation of significant gaps in the nascent strands. Using real-time single-molecule analysis, we establish that leading- and lagging-strand DNA polymerases function independently within a single replisome. Although average rates of DNA synthesis on leading and lagging strands are similar, individual trajectories of both DNA polymerases display stochastically switchable rates of synthesis interspersed with distinct pauses. DNA unwinding by the replicative helicase may continue during such pauses, but a self-governing mechanism, where helicase speed is reduced by ∼80%, permits recoupling of polymerase to helicase. These features imply a more dynamic, kinetically discontinuous replication process, wherein contacts within the replisome are continually broken and reformed. We conclude that the stochastic behavior of replisome components ensures complete DNA duplication without requiring coordination of leading- and lagging-strand synthesis. PAPERCLIP.
Collapse
|
52
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
53
|
Dickerson SM, Kuchta RD. Protein Displacement by Herpes Helicase-Primase and the Key Role of UL42 during Helicase-Coupled DNA Synthesis by the Herpes Polymerase. Biochemistry 2017; 56:2651-2662. [PMID: 28505413 DOI: 10.1021/acs.biochem.6b01128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The herpes helicase-primase (UL5-UL8-UL52) very inefficiently unwinds double-stranded DNA. To better understand the mechanistic consequences of this inefficiency, we investigated protein displacement activity by UL5-UL8-UL52, as well as the impact of coupling DNA synthesis by the herpes polymerase with helicase activity. While the helicase can displace proteins bound to the lagging strand template, bound proteins significantly impede helicase activity. Remarkably, UL5-UL8-UL52, an extremely inefficient helicase, disrupts the exceptionally tight interaction between streptavidin and biotin on the lagging strand template. It also unwinds DNA containing streptavidin bound to the leading strand template, although it does not displace the streptavidin. These data suggest that the helicase may largely or completely wrap around the lagging strand template, with minimal interactions with the leading strand template. We utilized synthetic DNA minicircles to study helicase activity coupled with the herpes polymerase-processivity factor (UL30-UL42). Coupling greatly enhances unwinding of DNA, although bound proteins still inhibit helicase activity. Surprisingly, while UL30-UL42 and two noncognate polymerases (Klenow Fragment and T4 DNA polymerase) all stimulate unwinding of DNA by the helicase, the isolated UL30 polymerase (i.e., no UL42 processivity factor) binds to the replication fork but in a manner that is incompetent in terms of coupled helicase-polymerase activity.
Collapse
Affiliation(s)
- Sarah Michelle Dickerson
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
54
|
Beattie TR, Kapadia N, Nicolas E, Uphoff S, Wollman AJ, Leake MC, Reyes-Lamothe R. Frequent exchange of the DNA polymerase during bacterial chromosome replication. eLife 2017; 6. [PMID: 28362256 PMCID: PMC5403216 DOI: 10.7554/elife.21763] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
The replisome is a multiprotein machine that carries out DNA replication. In Escherichia coli, a single pair of replisomes is responsible for duplicating the entire 4.6 Mbp circular chromosome. In vitro studies of reconstituted E. coli replisomes have attributed this remarkable processivity to the high stability of the replisome once assembled on DNA. By examining replisomes in live E. coli with fluorescence microscopy, we found that the Pol III* subassembly frequently disengages from the replisome during DNA synthesis and exchanges with free copies from solution. In contrast, the DnaB helicase associates stably with the replication fork, providing the molecular basis for how the E. coli replisome can maintain high processivity and yet possess the flexibility to bypass obstructions in template DNA. Our data challenges the widely-accepted semi-discontinuous model of chromosomal replication, instead supporting a fully discontinuous mechanism in which synthesis of both leading and lagging strands is frequently interrupted. DOI:http://dx.doi.org/10.7554/eLife.21763.001 New cells are created when an existing cell divides to produce two new ones. During this process the original cell must copy its DNA so each new cell inherits a full set of genetic material. DNA is made up of two strands that twist together to form a double helix. These strands need to be separated so they can be used as templates to make new DNA strands. An enzyme called DNA helicase is responsible for separating the two DNA strands and another enzyme makes the new DNA. These enzymes are part of a group of proteins collectively called the replisome that controls the whole DNA copying process. The replisome must be extremely reliable to avoid introducing mistakes into the cell’s genes. Previous research using replisomes extracted from cells indicated that replisomes are effective at copying DNA because the proteins they contain are strongly bound together and remain attached to the DNA for a long time. However, the behavior of replisomes in living cells has not been closely examined. Beattie, Kapadia et al. used microscopy to observe how the replisome copies DNA in a bacterium called Escherichia coli. The experiments revealed that most of the proteins within the replisome are constantly being replaced during DNA copying. The exception to this is DNA helicase, which stays in place at the front of the replisome, providing a landing platform for all the other parts of the machine to come and go. Future work will investigate why the parts of the replisome are replaced so frequently. This may allow us to alter the stability of the bacterial replisome, which may lead to new medical treatments and biotechnologies. DOI:http://dx.doi.org/10.7554/eLife.21763.002
Collapse
Affiliation(s)
| | - Nitin Kapadia
- Department of Biology, McGill University, Montreal, Canada
| | - Emilien Nicolas
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adam Jm Wollman
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, Heslington, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, Heslington, United Kingdom
| | | |
Collapse
|
55
|
The excluded DNA strand is SEW important for hexameric helicase unwinding. Methods 2016; 108:79-91. [DOI: 10.1016/j.ymeth.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/04/2023] Open
|
56
|
Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D, Wightman M, Matak-Vinkovíc D, Pellegrini L, Labib K. Ctf4 Is a Hub in the Eukaryotic Replisome that Links Multiple CIP-Box Proteins to the CMG Helicase. Mol Cell 2016; 63:385-96. [PMID: 27397685 PMCID: PMC4980431 DOI: 10.1016/j.molcel.2016.06.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022]
Abstract
Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a “Ctf4-interacting-peptide” or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation. Ctf4 is a hub that links factors with diverse functions to the eukaryotic replisome Multiple Ctf4 partners bind via short sequences called “CIP-boxes” The CIP-boxes of Dna2 and Tof2 bind to distinct sites on Ctf4 Interaction of Dna2 and Tof2 with Ctf4 is important for rDNA copy number maintenance
Collapse
Affiliation(s)
- Fabrizio Villa
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Aline C Simon
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Maria Angeles Ortiz Bazan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Mairi L Kilkenny
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK
| | - David Wirthensohn
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Mel Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dijana Matak-Vinkovíc
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
57
|
Wessel SR, Cornilescu CC, Cornilescu G, Metz A, Leroux M, Hu K, Sandler SJ, Markley JL, Keck JL. Structure and Function of the PriC DNA Replication Restart Protein. J Biol Chem 2016; 291:18384-96. [PMID: 27382050 DOI: 10.1074/jbc.m116.738781] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
Collisions between DNA replication complexes (replisomes) and barriers such as damaged DNA or tightly bound protein complexes can dissociate replisomes from chromosomes prematurely. Replisomes must be reloaded under these circumstances to avoid incomplete replication and cell death. Bacteria have evolved multiple pathways that initiate DNA replication restart by recognizing and remodeling abandoned replication forks and reloading the replicative helicase. In vitro, the simplest of these pathways is mediated by the single-domain PriC protein, which, along with the DnaC helicase loader, can load the DnaB replicative helicase onto DNA bound by the single-stranded DNA (ssDNA)-binding protein (SSB). Previous biochemical studies have identified PriC residues that mediate interactions with ssDNA and SSB. However, the mechanisms by which PriC drives DNA replication restart have remained poorly defined due to the limited structural information available for PriC. Here, we report the NMR structure of full-length PriC from Cronobacter sakazakii PriC forms a compact bundle of α-helices that brings together residues involved in ssDNA and SSB binding at adjacent sites on the protein surface. Disruption of these interaction sites and of other conserved residues leads to decreased DnaB helicase loading onto SSB-bound DNA. We also demonstrate that PriC can directly interact with DnaB and the DnaB·DnaC complex. These data lead to a model in which PriC acts as a scaffold for recruiting DnaB·DnaC to SSB/ssDNA sites present at stalled replication forks.
Collapse
Affiliation(s)
- Sarah R Wessel
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Claudia C Cornilescu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Gabriel Cornilescu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Alice Metz
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Maxime Leroux
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Kaifeng Hu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Steven J Sandler
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - John L Markley
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706,
| |
Collapse
|
58
|
Nandakumar D, Patel SS. Methods to study the coupling between replicative helicase and leading-strand DNA polymerase at the replication fork. Methods 2016; 108:65-78. [PMID: 27173619 DOI: 10.1016/j.ymeth.2016.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/26/2023] Open
Abstract
Replicative helicases work closely with the replicative DNA polymerases to ensure that the genomic DNA is copied in a timely and error free manner. In the replisomes of prokaryotes, mitochondria, and eukaryotes, the helicase and DNA polymerase enzymes are functionally and physically coupled at the leading strand replication fork and rely on each other for optimal DNA strand separation and synthesis activities. In this review, we describe pre-steady state kinetic methods to quantify the base pair unwinding-synthesis rate constant, a fundamental parameter to understand how the helicase and polymerase help each other during leading strand replication. We describe a robust method to measure the chemical step size of the helicase-polymerase complex that determines how the two motors are energetically coupled while tracking along the DNA. The 2-aminopurine fluorescence-based method provide structural information on the leading strand helicase-polymerase complex, such as the distance between the two enzymes, their relative positions at the replication fork, and their roles in fork junction melting. The combined information garnered from these methods informs on the mutual dependencies between the helicase and DNA polymerase enzymes, their stepping mechanism, and their individual functions at the replication fork during leading strand replication.
Collapse
Affiliation(s)
- Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway 08854, NJ, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway 08854, NJ, USA.
| |
Collapse
|
59
|
Abstract
The cellular replicating machine, or "replisome," is composed of numerous different proteins. The core replication proteins in all cell types include a helicase, primase, DNA polymerases, sliding clamp, clamp loader, and single-strand binding (SSB) protein. The core eukaryotic replisome proteins evolved independently from those of bacteria and thus have distinct architectures and mechanisms of action. The core replisome proteins of the eukaryote include: an 11-subunit CMG helicase, DNA polymerase alpha-primase, leading strand DNA polymerase epsilon, lagging strand DNA polymerase delta, PCNA clamp, RFC clamp loader, and the RPA SSB protein. There are numerous other proteins that travel with eukaryotic replication forks, some of which are known to be involved in checkpoint regulation or nucleosome handling, but most have unknown functions and no bacterial analogue. Recent studies have revealed many structural and functional insights into replisome action. Also, the first structure of a replisome from any cell type has been elucidated for a eukaryote, consisting of 20 distinct proteins, with quite unexpected results. This review summarizes the current state of knowledge of the eukaryotic core replisome proteins, their structure, individual functions, and how they are organized at the replication fork as a machine.
Collapse
Affiliation(s)
- D Zhang
- The Rockefeller University, New York, NY, United States
| | - M O'Donnell
- The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
60
|
Yuan Q, Dohrmann PR, Sutton MD, McHenry CS. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks. J Biol Chem 2016; 291:11727-35. [PMID: 27056333 DOI: 10.1074/jbc.m116.725358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 11/06/2022] Open
Abstract
Examples of dynamic polymerase exchange have been previously characterized in model systems provided by coliphages T4 and T7. Using a dominant negative D403E polymerase (Pol) III α that can form initiation complexes and sequester primer termini but not elongate, we investigated the possibility of exchange at the Escherichia coli replication fork on a rolling circle template. Unlike other systems, addition of polymerase alone did not lead to exchange. Only when D403E Pol III was bound to a τ-containing DnaX complex did exchange occur. In contrast, addition of Pol IV led to rapid exchange in the absence of bound DnaX complex. Examination of Pol III* with varying composition of τ or the alternative shorter dnaX translation product γ showed that τ-, τ2-, or τ3-DnaX complexes supported equivalent levels of synthesis, identical Okazaki fragment size, and gaps between fragments, possessed the ability to challenge pre-established replication forks, and displayed equivalent susceptibility to challenge by exogenous D403E Pol III*. These findings reveal that redundant interactions at the replication fork must stabilize complexes containing only one τ. Previously, it was thought that at least two τs in the trimeric DnaX complex were required to couple the leading and lagging strand polymerases at the replication fork. Possible mechanisms of exchange are discussed.
Collapse
Affiliation(s)
- Quan Yuan
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303 and
| | - Paul R Dohrmann
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303 and
| | - Mark D Sutton
- the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214
| | - Charles S McHenry
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303 and
| |
Collapse
|
61
|
Brüning JG, Myka KK, McGlynn P. Overexpression of the Replicative Helicase in Escherichia coli Inhibits Replication Initiation and Replication Fork Reloading. J Mol Biol 2016; 428:1068-1079. [PMID: 26812209 PMCID: PMC4828956 DOI: 10.1016/j.jmb.2016.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 01/05/2023]
Abstract
Replicative helicases play central roles in chromosome duplication and their assembly onto DNA is regulated via initiators and helicase loader proteins. The Escherichia coli replicative helicase DnaB and the helicase loader DnaC form a DnaB6–DnaC6 complex that is required for loading DnaB onto single-stranded DNA. Overexpression of dnaC inhibits replication by promoting continual rebinding of DnaC to DnaB and consequent prevention of helicase translocation. Here we show that overexpression of dnaB also inhibits growth and chromosome duplication. This inhibition is countered by co-overexpression of wild-type DnaC but not of a DnaC mutant that cannot interact with DnaB, indicating that a reduction in DnaB6–DnaC6 concentration is responsible for the phenotypes associated with elevated DnaB concentration. Partial defects in the oriC-specific initiator DnaA and in PriA-specific initiation away from oriC during replication repair sensitise cells to dnaB overexpression. Absence of the accessory replicative helicase Rep, resulting in increased replication blockage and thus increased reinitiation away from oriC, also exacerbates DnaB-induced defects. These findings indicate that elevated levels of helicase perturb replication initiation not only at origins of replication but also during fork repair at other sites on the chromosome. Thus, imbalances in levels of the replicative helicase and helicase loader can inhibit replication both via inhibition of DnaB6–DnaC6 complex formation with excess DnaB, as shown here, and promotion of formation of DnaB6–DnaC6 complexes with excess DnaC [Allen GC, Jr., Kornberg A. Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J. Biol. Chem. 1991;266:22096–22101; Skarstad K, Wold S. The speed of the Escherichia coli fork in vivo depends on the DnaB:DnaC ratio. Mol. Microbiol. 1995;17:825–831]. Thus, there are two mechanisms by which an imbalance in the replicative helicase and its associated loader protein can inhibit genome duplication. Loading of the replicative helicase is the key step in replisome assembly. Increasing replicative helicase concentration in E. coli inhibits growth. Inhibition is due to helicase complexes depleted of the helicase loader protein. Depletion inhibits replication initiation and reinitiation during replication repair. Imbalances in replicative helicase components can prevent replication initiation.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Kamila Katarzyna Myka
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom.
| |
Collapse
|
62
|
Dohrmann PR, Correa R, Frisch RL, Rosenberg SM, McHenry CS. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase. Nucleic Acids Res 2016; 44:1285-97. [PMID: 26786318 PMCID: PMC4756838 DOI: 10.1093/nar/gkv1510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Raul Correa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan L Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| |
Collapse
|
63
|
Abstract
The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some "gears" of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the "replisome" machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus.
Collapse
Affiliation(s)
- Nina Y Yao
- a DNA Replication Laboratory, The Rockefeller University , New York , NY , USA and
| | - Mike E O'Donnell
- a DNA Replication Laboratory, The Rockefeller University , New York , NY , USA and.,b Howard Hughes Medical Institute, The Rockefeller University , New York , NY , USA
| |
Collapse
|
64
|
Lieder S, Jahn M, Koepff J, Müller S, Takors R. Environmental stress speeds up DNA replication inPseudomonas putidain chemostat cultivations. Biotechnol J 2015; 11:155-63. [DOI: 10.1002/biot.201500059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/10/2015] [Accepted: 08/04/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Sarah Lieder
- Institute for Biochemical Engineering; University of Stuttgart; Stuttgart Germany
| | - Michael Jahn
- Department of Environmental Microbiology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Joachim Koepff
- Institute for Biochemical Engineering; University of Stuttgart; Stuttgart Germany
| | - Susann Müller
- Department of Environmental Microbiology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Ralf Takors
- Institute for Biochemical Engineering; University of Stuttgart; Stuttgart Germany
| |
Collapse
|
65
|
Abstract
This review describes the components of the Escherichia coli replisome and the dynamic process in which they function and interact under normal conditions. It also briefly describes the behavior of the replisome during situations in which normal replication fork movement is disturbed, such as when the replication fork collides with sites of DNA damage. E. coli DNA Pol III was isolated first from a polA mutant E. coli strain that lacked the relatively abundant DNA Pol I activity. Further biochemical studies, and the use of double mutant strains, revealed Pol III to be the replicative DNA polymerase essential to cell viability. In a replisome, DnaG primase must interact with DnaB for activity, and this constraint ensures that new RNA primers localize to the replication fork. The leading strand polymerase continually synthesizes DNA in the direction of the replication fork, whereas the lagging-strand polymerase synthesizes short, discontinuous Okazaki fragments in the opposite direction. Discontinuous lagging-strand synthesis requires that the polymerase rapidly dissociate from each new completed Okazaki fragment in order to begin the extension of a new RNA primer. Lesion bypass can be thought of as a two-step reaction that starts with the incorporation of a nucleotide opposite the lesion, followed by the extension of the resulting distorted primer terminus. A remarkable property of E. coli, and many other eubacterial organisms, is the speed at which it propagates. Rapid cell division requires the presence of an extremely efficient replication machinery for the rapid and faithful duplication of the genome.
Collapse
|
66
|
A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis. PLoS Genet 2015; 11:e1005507. [PMID: 26352807 PMCID: PMC4564189 DOI: 10.1371/journal.pgen.1005507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA. Bacterial DNA polymerase IV (Pol IV) is capable of replicating damaged DNA via a process termed translesion DNA synthesis (TLS). Pol IV-mediated TLS can be accurate or error-prone, depending on the type of DNA damage. Errors made by Pol IV contribute to antibiotic resistance and adaptation of bacterial pathogens. In addition to catalyzing TLS, overproduction of Escherichia coli Pol IV impedes growth. In the current work, we demonstrate that both of these functions rely on the ability of Pol IV to bind the β sliding processivity clamp and switch places on DNA with the replicative Pol, Pol III. This switch requires that Pol IV contact both Pol III as well as two discrete sites on the β clamp protein. Taken together, these results provide a deeper understanding of how E. coli manages the actions of Pol III and Pol IV to coordinate high fidelity replication with potentially error-prone TLS.
Collapse
|
67
|
Elshenawy MM, Jergic S, Xu ZQ, Sobhy MA, Takahashi M, Oakley AJ, Dixon NE, Hamdan SM. Replisome speed determines the efficiency of the Tus−Ter replication termination barrier. Nature 2015; 525:394-8. [DOI: 10.1038/nature14866] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/26/2015] [Indexed: 11/09/2022]
|
68
|
Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly. Proc Natl Acad Sci U S A 2015. [PMID: 26195759 DOI: 10.1073/pnas.1504926112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined.
Collapse
|
69
|
Nandakumar D, Pandey M, Patel SS. Cooperative base pair melting by helicase and polymerase positioned one nucleotide from each other. eLife 2015; 4. [PMID: 25970034 PMCID: PMC4460406 DOI: 10.7554/elife.06562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Leading strand DNA synthesis requires functional coupling between replicative helicase and DNA polymerase (DNAP) enzymes, but the structural and mechanistic basis of coupling is poorly understood. This study defines the precise positions of T7 helicase and T7 DNAP at the replication fork junction with single-base resolution to create a structural model that explains the mutual stimulation of activities. Our 2-aminopurine studies show that helicase and polymerase both participate in DNA melting, but each enzyme melts the junction base pair partially. When combined, the junction base pair is melted cooperatively provided the helicase is located one nucleotide ahead of the primer-end. The synergistic shift in equilibrium of junction base pair melting by combined enzymes explains the cooperativity, wherein helicase stimulates the polymerase by promoting dNTP binding (decreasing dNTP Km), polymerase stimulates the helicase by increasing the unwinding rate-constant (kcat), consequently the combined enzymes unwind DNA with kinetic parameters resembling enzymes translocating on single-stranded DNA. DOI:http://dx.doi.org/10.7554/eLife.06562.001 DNA replication is the process whereby a molecule of DNA is copied to form two identical molecules. First, an enzyme called a DNA helicase separates the two strands of the DNA double helix. This forms a structure called a replication fork that has two exposed single strands. Other enzymes called DNA polymerases then use each strand as a template to build a new matching DNA strand. DNA polymerases build the new DNA strands by joining together smaller molecules called nucleotides. One of the new DNA strands—called the ‘leading strand’—is built continuously, while the other—the ‘lagging strand’—is made as a series of short fragments that are later joined together. Building the leading strand requires the helicase and DNA polymerase to work closely together. However, it was not clear how these two enzymes coordinate their activity. Now, Nandakumar et al. have studied the helicase and DNA polymerase from a virus that infects bacteria and have pinpointed the exact positions of the enzymes at a replication fork. The experiments revealed that both the polymerase and helicase contribute to the separating of the DNA strands, and that this process is most efficient when the helicase is only a single nucleotide ahead of the polymerase. Further experiments showed that the helicase stimulates the polymerase by helping it to bind to nucleotides, and that the polymerase stimulates the helicase by helping it to separate the DNA strands at a faster rate. The next challenge is to investigate the molecular setup that allows the helicase and polymerase to increase each other's activities. DOI:http://dx.doi.org/10.7554/eLife.06562.002
Collapse
Affiliation(s)
- Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Manjula Pandey
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| |
Collapse
|
70
|
Accessory Replicative Helicases and the Replication of Protein-Bound DNA. J Mol Biol 2014; 426:3917-3928. [DOI: 10.1016/j.jmb.2014.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022]
|
71
|
CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A 2014; 111:15390-5. [PMID: 25313033 DOI: 10.1073/pnas.1418334111] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.
Collapse
|
72
|
Abstract
Reconstitution experiments using replication proteins from a number of different model organisms have firmly established that, in vitro, DNA replication is semi-discontinuous: continuous on the leading strand and discontinuous on the lagging strand. The mechanism by which DNA is replicated in vivo is less clear. In fact, there have been many observations of discontinuous replication in the absence of exogenous DNA-damaging agents. It has also been proposed that replication is discontinuous on the leading strand at least in part because of DNA lesion bypass. Several recent studies have revealed mechanistic details of pathways where replication of the leading strand introduces discontinuities. These mechanisms and their potential contributions to observations of discontinuous replication in vivo will be discussed.
Collapse
|
73
|
Fricker AD, Peters JE. Vulnerabilities on the lagging-strand template: opportunities for mobile elements. Annu Rev Genet 2014; 48:167-86. [PMID: 25195506 DOI: 10.1146/annurev-genet-120213-092046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mobile genetic elements have the ability to move between positions in a genome. Some of these elements are capable of targeting one of the template strands during DNA replication. Examples found in bacteria include (a) Red recombination mediated by bacteriophage λ, (b) integration of group II mobile introns that reverse splice and reverse transcribe into DNA, (c) HUH endonuclease elements that move as single-stranded DNA, and (d) Tn7, a DNA cut-and-paste transposon that uses a target-site-selecting protein to target transposition into certain forms of DNA replication. In all of these examples, the lagging-strand template appears to be targeted using a variety of features specific to this strand. These features appear especially available in certain situations, such as when replication forks stall or collapse. In this review, we address the idea that features specific to the lagging-strand template represent vulnerabilities that are capitalized on by mobile genetic elements.
Collapse
Affiliation(s)
- Ashwana D Fricker
- Department of Microbiology, Cornell University, Ithaca, New York 14853;
| | | |
Collapse
|
74
|
Gupta S, Yeeles JTP, Marians KJ. Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially. J Biol Chem 2014; 289:28376-87. [PMID: 25138216 DOI: 10.1074/jbc.m114.587881] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orderly progression of replication forks formed at the origin of replication in Escherichia coli is challenged by encounters with template damage, slow moving RNA polymerases, and frozen DNA-protein complexes that stall the fork. These stalled forks are foci for genomic instability and must be reactivated. Many models of replication fork reactivation invoke nascent strand regression as an intermediate in the processing of the stalled fork. We have investigated the replication fork regression activity of RecG and RuvAB, two proteins commonly thought to be involved in the process, using a reconstituted DNA replication system where the replisome is stalled by collision with leading-strand template damage. We find that both RecG and RuvAB can regress the stalled fork in the presence of the replisome and SSB; however, RuvAB generates a completely unwound product consisting of the paired nascent leading and lagging strands, whereas RuvC cleaves the Holliday junction generated by RecG-catalyzed fork regression. We also find that RecG stimulates RuvAB-catalyzed regression, presumably because it is more efficient at generating the initial Holliday junction from the stalled fork.
Collapse
Affiliation(s)
- Sankalp Gupta
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Joseph T P Yeeles
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
75
|
Ikeda M, Furukohri A, Philippin G, Loechler E, Akiyama MT, Katayama T, Fuchs RP, Maki H. DNA polymerase IV mediates efficient and quick recovery of replication forks stalled at N2-dG adducts. Nucleic Acids Res 2014; 42:8461-72. [PMID: 24957605 PMCID: PMC4117773 DOI: 10.1093/nar/gku547] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Escherichia coli DNA polymerase IV (Pol IV, also known as DinB) is a Y-family DNA polymerase capable of catalyzing translesion DNA synthesis (TLS) on certain DNA lesions, and accumulating data suggest that Pol IV may play an important role in copying various kinds of spontaneous DNA damage including N2-dG adducts and alkylated bases. Pol IV has a unique ability to coexist with Pol III on the same β clamp and to positively dissociate Pol III from β clamp in a concentration-dependent manner. Reconstituting the entire process of TLS in vitro using E. coli replication machinery and Pol IV, we observed that a replication fork stalled at (−)-trans-anti-benzo[a]pyrene-N2-dG lesion on the leading strand was efficiently and quickly recovered via two sequential switches from Pol III to Pol IV and back to Pol III. Our results suggest that TLS by Pol IV smoothes the way for the replication fork with minimal interruption.
Collapse
Affiliation(s)
- Mio Ikeda
- Division of Integrated Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Asako Furukohri
- Division of Integrated Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Gaelle Philippin
- CRCM, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Universite, UM105, F13009 Marseille, France
| | - Edward Loechler
- Biology Department, Boston University, Boston, MA 02215, USA
| | - Masahiro Tatsumi Akiyama
- Division of Integrated Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Robert P Fuchs
- CRCM, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Universite, UM105, F13009 Marseille, France
| | - Hisaji Maki
- Division of Integrated Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
76
|
Pandey M, Patel SS. Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps. Cell Rep 2014; 6:1129-1138. [PMID: 24630996 DOI: 10.1016/j.celrep.2014.02.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 02/16/2014] [Indexed: 01/25/2023] Open
Abstract
By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC) dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.
Collapse
Affiliation(s)
- Manjula Pandey
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
77
|
Strycharska MS, Arias-Palomo E, Lyubimov AY, Erzberger JP, O'Shea VL, Bustamante CJ, Berger JM. Nucleotide and partner-protein control of bacterial replicative helicase structure and function. Mol Cell 2014; 52:844-54. [PMID: 24373746 DOI: 10.1016/j.molcel.2013.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors.
Collapse
Affiliation(s)
- Melania S Strycharska
- Biophysics Program, University of California, Berkeley, Berkeley, CA 94720-3220, USA
| | - Ernesto Arias-Palomo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Artem Y Lyubimov
- The James H Clark Center, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jan P Erzberger
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Valerie L O'Shea
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carlos J Bustamante
- Biophysics Program, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, USA
| | - James M Berger
- Biophysics Program, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, USA.
| |
Collapse
|
78
|
Zhang H, Zhang Z, Yang J, He ZG. Functional characterization of DnaB helicase and its modulation by single-stranded DNA binding protein in Mycobacterium tuberculosis. FEBS J 2014; 281:1256-66. [PMID: 24387047 DOI: 10.1111/febs.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022]
Abstract
DnaB is important in the initiation and extension stages of DNA replication. Although DnaB has been studied in many bacterial species, its function in the devastating human pathogen Mycobacterium tuberculosis remains unclear. In this study, an intein-deleted form of M. tuberculosis DnaB (MtbDnaB) was cloned, expressed and characterized. MtbDnaB exhibited strong 5' to 3' helicase and ATPase activities, suggesting that MtbDnaB is a functional homolog of Escherichia coli DnaB. A physical interaction between MtbSSB (single-stranded binding protein of M. tuberculosis) and MtbDnaB was further identified in vivo and in vitro. The MtbSSB C-terminal fragment was found to have a critical function in this interaction. Moreover, the helicase activity of MtbDnaB was stimulated by MtbSSB at low concentrations and inhibited at high concentrations. An MtbSSB mutant with decreased binding affinity for ssDNA can stimulate the helicase activity of MtbDnaB over a wider concentration range than wild-type MtbSSB. These results suggest that MtbSSB assists in the loading of MtbDnaB on the DNA replication fork in M. tuberculosis.
Collapse
Affiliation(s)
- Hua Zhang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | |
Collapse
|
79
|
Bhowmick K, Dhar SK. Plasmodium falciparum single-stranded DNA-binding protein (PfSSB) interacts with PfPrex helicase and modulates its activity. FEMS Microbiol Lett 2013; 351:78-87. [PMID: 24267922 DOI: 10.1111/1574-6968.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022] Open
Abstract
Plasmodium falciparum (Pf) apicoplast is an essential organelle harbouring a ~35-kb circular genome. Prokaryotic nature of this organelle and its components makes it an attractive therapeutic target. The single-stranded DNA-binding protein (SSB) and multidomain protein PfPrex are important apicoplast replication proteins. However, regulation of these proteins through protein-protein interaction remains largely unknown. Here, we report that P. falciparum single-stranded DNA-binding protein (PfSSB) interacts with PfPrex helicase and modulates its activity. N-terminal domain of PfSSB is involved in this interaction, whereas C-terminal domain plays a pivotal role in the modulation of helicase activity. These results further, to our knowledge, understand apicoplast DNA replication.
Collapse
Affiliation(s)
- Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
80
|
Yeeles JTP, Marians KJ. Dynamics of leading-strand lesion skipping by the replisome. Mol Cell 2013; 52:855-65. [PMID: 24268579 DOI: 10.1016/j.molcel.2013.10.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/24/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022]
Abstract
The E. coli replisome stalls transiently when it encounters a lesion in the leading-strand template, skipping over the damage by reinitiating replication at a new primer synthesized downstream by the primase. We report here that template unwinding and lagging-strand synthesis continue downstream of the lesion at a reduced rate after replisome stalling, that one replisome is capable of skipping multiple lesions, and that the rate-limiting steps of replication restart involve the synthesis and activation of the new primer downstream. We also find little support for the concept that polymerase uncoupling, where extensive lagging-strand synthesis proceeds downstream in the absence of leading-strand synthesis, involves physical separation of the leading-strand polymerase from the replisome. Instead, our data indicate that extensive uncoupled replication likely results from a failure of the leading-strand polymerase still associated with the DNA helicase and the lagging-strand polymerase that are proceeding downstream to reinitiate synthesis.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
81
|
Pham TM, Tan KW, Sakumura Y, Okumura K, Maki H, Akiyama MT. A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed. Mol Microbiol 2013; 90:584-96. [PMID: 23998701 DOI: 10.1111/mmi.12386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 11/26/2022]
Abstract
The replisome catalyses DNA synthesis at a DNA replication fork. The molecular behaviour of the individual replisomes, and therefore the dynamics of replication fork movements, in growing Escherichia coli cells remains unknown. DNA combing enables a single-molecule approach to measuring the speed of replication fork progression in cells pulse-labelled with thymidine analogues. We constructed a new thymidine-requiring strain, eCOMB (E. coli for combing), that rapidly and sufficiently incorporates the analogues into newly synthesized DNA chains for the DNA-combing method. In combing experiments with eCOMB, we found the speed of most replication forks in the cells to be within the narrow range of 550-750 nt s(-1) and the average speed to be 653 ± 9 nt s(-1) (± SEM). We also found the average speed of the replication fork to be only 264 ± 9 nt s(-1) in a dnaE173-eCOMB strain producing a mutant-type of the replicative DNA polymerase III (Pol III) with a chain elongation rate (300 nt s(-1) ) much lower than that of the wild-type Pol III (900 nt s(-1) ). This indicates that the speed of chain elongation by Pol III is a major determinant of replication fork speed in E. coli cells.
Collapse
Affiliation(s)
- Tuan Minh Pham
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
82
|
Multiple C-terminal tails within a single E. coli SSB homotetramer coordinate DNA replication and repair. J Mol Biol 2013; 425:4802-19. [PMID: 24021816 DOI: 10.1016/j.jmb.2013.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/01/2013] [Accepted: 08/16/2013] [Indexed: 11/21/2022]
Abstract
Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold "tetramer". Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance.
Collapse
|
83
|
Weller SK, Kuchta RD. The DNA helicase-primase complex as a target for herpes viral infection. Expert Opin Ther Targets 2013; 17:1119-32. [PMID: 23930666 DOI: 10.1517/14728222.2013.827663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The Herpesviridae are responsible for debilitating acute and chronic infections, and some members of this family are associated with human cancers. Conventional anti-herpesviral therapy targets the viral DNA polymerase and has been extremely successful; however, the emergence of drug-resistant virus strains, especially in neonates and immunocompromised patients, underscores the need for continued development of anti-herpes drugs. In this article, we explore an alternative target for antiviral therapy, the HSV helicase/primase complex. AREAS COVERED This review addresses the current state of knowledge of HSV DNA replication and the important roles played by the herpesvirus helicase- primase complex. In the last 10 years several helicase/primase inhibitors (HPIs) have been described, and in this article, we discuss and contrast these new agents with established inhibitors. EXPERT OPINION The outstanding safety profile of existing nucleoside analogues for α-herpesvirus infection make the development of new therapeutic agents a challenge. Currently used nucleoside analogues exhibit few side effects and have low occurrence of clinically relevant resistance. For HCMV, however, existing drugs have significant toxicity issues and the frequency of drug resistance is high, and no antiviral therapies are available for EBV and KSHV. The development of new anti-herpesvirus drugs is thus well worth pursuing especially for immunocompromised patients and those who develop drug-resistant infections. Although the HPIs are promising, limitations to their development into a successful drug strategy remain.
Collapse
Affiliation(s)
- Sandra K Weller
- University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology , Farmington CT 06030 , USA +1 860 679 2310 ;
| | | |
Collapse
|
84
|
Geertsema HJ, van Oijen AM. A single-molecule view of DNA replication: the dynamic nature of multi-protein complexes revealed. Curr Opin Struct Biol 2013; 23:788-93. [PMID: 23890728 DOI: 10.1016/j.sbi.2013.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 01/31/2023]
Abstract
Recent advances in the development of single-molecule approaches have made it possible to study the dynamics of biomolecular systems in great detail. More recently, such tools have been applied to study the dynamic nature of large multi-protein complexes that support multiple enzymatic activities. In this review, we will discuss single-molecule studies of the replisome, the protein complex responsible for the coordinated replication of double-stranded DNA. In particular, we will focus on new insights obtained into the dynamic nature of the composition of the DNA-replication machinery and how the dynamic replacement of components plays a role in the regulation of the DNA-replication process.
Collapse
Affiliation(s)
- Hylkje J Geertsema
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
85
|
Wallen JR, Majka J, Ellenberger T. Discrete interactions between bacteriophage T7 primase-helicase and DNA polymerase drive the formation of a priming complex containing two copies of DNA polymerase. Biochemistry 2013; 52:4026-36. [PMID: 23675753 DOI: 10.1021/bi400284j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replisomes are multiprotein complexes that coordinate the synthesis of leading and lagging DNA strands to increase the replication efficiency and reduce DNA strand breaks caused by stalling of replication forks. The bacteriophage T7 replisome is an economical machine that requires only four proteins for processive, coupled synthesis of two DNA strands. Here we characterize a complex between T7 primase-helicase and DNA polymerase on DNA that was trapped during the initiation of Okazaki fragment synthesis from an RNA primer. This priming complex consists of two DNA polymerases and a primase-helicase hexamer that assemble on the DNA template in an RNA-dependent manner. The zinc binding domain of the primase-helicase is essential for trapping the RNA primer in complex with the polymerase, and a unique loop located on the thumb of the polymerase also stabilizes this primer extension complex. Whereas one of the polymerases engages the primase-helicase and RNA primer on the lagging strand of a model replication fork, the second polymerase in the complex is also functional and can bind a primed template DNA. These results indicate that the T7 primase-helicase specifically engages two copies of DNA polymerase, which would allow the coordination of leading and lagging strand synthesis at a replication fork. Assembly of the T7 replisome is driven by intimate interactions between the DNA polymerase and multiple subunits of the primase-helicase hexamer.
Collapse
Affiliation(s)
- Jamie R Wallen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
86
|
Structure of the PolIIIα-τc-DNA complex suggests an atomic model of the replisome. Structure 2013; 21:658-64. [PMID: 23478062 PMCID: PMC3652607 DOI: 10.1016/j.str.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 01/07/2023]
Abstract
The C-terminal domain (CTD) of the τ subunit of the clamp loader (τc) binds to both the DnaB helicase and the DNA polymerase III α subunit (PolIIIα), and determines their relative positions and orientations on the leading and lagging strands. Here, we present a 3.2 Å resolution structure of Thermus aquaticus PolIIIα in complex with τc and a DNA substrate. The structure reveals that the CTD of τc interacts with the CTD of PolIIIα through its C-terminal helix and the adjacent loop. Additionally, in this complex PolIIIα displays an open conformation that includes the reorientations of the oligonucleotide-binding fold and the thumb domain, which may be an indirect result of crystal packing due to the presence of the τc. Nevertheless, the position of the τc on PolIIIα allows us to suggest an approximate model for how the PolIIIα is oriented and positioned on the DnaB helicase.
Collapse
|
87
|
Sengupta S, van Deursen F, de Piccoli G, Labib K. Dpb2 Integrates the Leading-Strand DNA Polymerase into the Eukaryotic Replisome. Curr Biol 2013; 23:543-52. [DOI: 10.1016/j.cub.2013.02.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 01/27/2023]
|
88
|
Afonso JP, Chintakayala K, Suwannachart C, Sedelnikova S, Giles K, Hoyes JB, Soultanas P, Rafferty JB, Oldham NJ. Insights into the structure and assembly of the Bacillus subtilis clamp-loader complex and its interaction with the replicative helicase. Nucleic Acids Res 2013; 41:5115-26. [PMID: 23525462 PMCID: PMC3643586 DOI: 10.1093/nar/gkt173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The clamp-loader complex plays a crucial role in DNA replication by loading the β-clamp onto primed DNA to be used by the replicative polymerase. Relatively little is known about the stoichiometry, structure and assembly pathway of this complex, and how it interacts with the replicative helicase, in Gram-positive organisms. Analysis of full and partial complexes by mass spectrometry revealed that a hetero-pentameric τ3-δ-δ' Bacillus subtilis clamp-loader assembles via multiple pathways, which differ from those exhibited by the Gram-negative model Escherichia coli. Based on this information, a homology model of the B. subtilis τ3-δ-δ' complex was constructed, which revealed the spatial positioning of the full C-terminal τ domain. The structure of the δ subunit was determined by X-ray crystallography and shown to differ from that of E. coli in the nature of the amino acids comprising the τ and δ' binding regions. Most notably, the τ-δ interaction appears to be hydrophilic in nature compared with the hydrophobic interaction in E. coli. Finally, the interaction between τ3 and the replicative helicase DnaB was driven by ATP/Mg(2+) conformational changes in DnaB, and evidence is provided that hydrolysis of one ATP molecule by the DnaB hexamer is sufficient to stabilize its interaction with τ3.
Collapse
Affiliation(s)
- José P Afonso
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
RecA acts as a switch to regulate polymerase occupancy in a moving replication fork. Proc Natl Acad Sci U S A 2013; 110:5410-5. [PMID: 23509251 DOI: 10.1073/pnas.1303301110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report discovers a role of Escherichia coli RecA, the cellular recombinase, in directing the action of several DNA polymerases at the replication fork. Bulk chromosome replication is performed by DNA polymerase (Pol) III. However, E. coli contains translesion synthesis (TLS) Pols II, IV, and V that also function with the helicase, primase, and sliding clamp in the replisome. Surprisingly, we find that RecA specifically activates replisomes that contain TLS Pols. In sharp contrast, RecA severely inhibits the Pol III replisome. Given the opposite effects of RecA on Pol III and TLS replisomes, we propose that RecA acts as a switch to regulate the occupancy of polymerases within a moving replisome.
Collapse
|
90
|
Richardson TT, Gilroy L, Ishino Y, Connolly BA, Henneke G. Novel inhibition of archaeal family-D DNA polymerase by uracil. Nucleic Acids Res 2013; 41:4207-18. [PMID: 23408858 PMCID: PMC3627576 DOI: 10.1093/nar/gkt083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Archaeal family-D DNA polymerase is inhibited by the presence of uracil in DNA template strands. When the enzyme encounters uracil, following three parameters change: DNA binding increases roughly 2-fold, the rate of polymerization slows by a factor of ≈ 5 and 3'-5' proof-reading exonuclease activity is stimulated by a factor of ≈ 2. Together these changes result in a significant decrease in polymerization activity and a reduction in net DNA synthesis. Pol D appears to interact with template strand uracil irrespective of its distance ahead of the replication fork. Polymerization does not stop at a defined location relative to uracil, rather a general decrease in DNA synthesis is observed. 'Trans' inhibition, the slowing of Pol D by uracil on a DNA strand not being replicated is also observed. It is proposed that Pol D is able to interact with uracil by looping out the single-stranded template, allowing simultaneous contact of both the base and the primer-template junction to give a polymerase-DNA complex with diminished extension ability.
Collapse
Affiliation(s)
- Tomas T Richardson
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
91
|
Human Tim-Tipin complex affects the biochemical properties of the replicative DNA helicase and DNA polymerases. Proc Natl Acad Sci U S A 2013; 110:2523-7. [PMID: 23359676 DOI: 10.1073/pnas.1222494110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tim (Timeless) and Tipin (Tim-interacting protein) form a stable heterodimeric complex that influences checkpoint responses and replication fork progression. We report that the Tim-Tipin complex interacts with essential replication fork proteins and affects their biochemical properties. The Tim-Tipin complex, reconstituted and purified using the baculovirus expression system, interacts directly with Mcm complexes and inhibits the single-stranded DNA-dependent ATPase activities of the Mcm2-7 and Mcm4/6/7 complexes, the DNA unwinding activity of the Mcm4/6/7 complex, and the DNA unwinding and ATPase activity of Cdc45-Mcm2-7-GINS complex, the presumed replicative DNA helicase in eukaryotes. Although stable interactions between Tim-Tipin and DNA polymerases (pols) were not observed in immunoprecipitation experiments with purified proteins, Tim was shown to interact with DNA pols α, δ, and ε in cells. Furthermore, the Tim-Tipin complex significantly stimulated the pol activities of DNA pols α, δ, and ε in vitro. The effects of Tim-Tipin on the catalytic activities of the Mcm complexes and DNA pols are mediated by the Tim protein alone, and distinct regions of the Tim protein are responsible for the inhibition of Mcm complex activities and stimulation of DNA pols. These results suggest that the Tim-Tipin complex might play a role in coupling DNA unwinding and DNA synthesis by directly affecting the catalytic activities of replication fork proteins.
Collapse
|
92
|
Abstract
Helicases are fundamental components of all replication complexes since unwinding of the double-stranded template to generate single-stranded DNA is essential to direct DNA synthesis by polymerases. However, helicases are also required in many other steps of DNA replication. Replicative helicases not only unwind the template DNA but also play key roles in regulating priming of DNA synthesis and coordination of leading and lagging strand DNA polymerases. Accessory helicases also aid replicative helicases in unwinding of the template strands in the presence of proteins bound to the DNA, minimising the risks posed by nucleoprotein complexes to continued fork movement. Helicases also play critical roles in Okazaki fragment processing in eukaryotes and may also be needed to minimise topological problems when replication forks converge. Thus fork movement, coordination of DNA synthesis, lagging strand maturation and termination of replication all depend on helicases. Moreover, if disaster strikes and a replication fork breaks down then reloading of the replication machinery is effected by helicases, at least in bacteria. This chapter describes how helicases function in these multiple steps at the fork and how DNA unwinding is coordinated with other catalytic processes to ensure efficient, high fidelity duplication of the genetic material in all organisms.
Collapse
Affiliation(s)
- Peter McGlynn
- Department of Biology, University of York, York, Yorkshire, UK,
| |
Collapse
|
93
|
Indiani C, O'Donnell M. A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 2013; 18:312-23. [PMID: 23276924 DOI: 10.2741/4102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome replication is performed by numerous proteins that function together as a "replisome". The replisome machinery duplicates both strands of the parental DNA simultaneously. Upon DNA damage to the cell, replisome action produces single-strand DNA to which RecA binds, enabling its activity in cleaving the LexA repressor and thus inducing the SOS response. How single-strand DNA is produced by a replisome acting on damaged DNA is not clear. For many years it has been assumed the single-strand DNA is generated by the replicative helicase, which continues unwinding DNA even after DNA polymerase stalls at a template lesion. Recent studies indicate another source of the single-strand DNA, resulting from an inherently dynamic replisome that may hop over template lesions on both leading and lagging strands, thereby leaving single-strand gaps in the wake of the replication fork. These single-strand gaps are proposed to be the origin of the single-strand DNA that triggers the SOS response after DNA damage.
Collapse
Affiliation(s)
- Chiara Indiani
- Manhattan College 4513 Manhattan College Pkwy, Riverdale, NY 10471, USA.
| | | |
Collapse
|
94
|
Manhart CM, McHenry CS. The PriA replication restart protein blocks replicase access prior to helicase assembly and directs template specificity through its ATPase activity. J Biol Chem 2012; 288:3989-99. [PMID: 23264623 DOI: 10.1074/jbc.m112.435966] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PriA protein serves as an initiator for the restart of DNA replication on stalled replication forks and as a checkpoint protein that prevents the replicase from advancing in a strand displacement reaction on forks that do not contain a functional replicative helicase. We have developed a primosomal protein-dependent fluorescence resonance energy transfer (FRET) assay using a minimal fork substrate composed of synthetic oligonucleotides. We demonstrate that a self-loading reaction, which proceeds at high helicase concentrations, occurs by threading of a preassembled helicase over free 5'-ends, an event that can be blocked by attaching a steric block to the 5'-end or coating DNA with single-stranded DNA binding protein. The specificity of PriA for replication forks is regulated by its intrinsic ATPase. ATPase-defective PriA K230R shows a strong preference for substrates that contain no gap between the leading strand and the duplex portion of the fork, as demonstrated previously. Wild-type PriA prefers substrates with larger gaps, showing maximal activity on substrates on which PriA K230R is inactive. We demonstrate that PriA blocks replicase function on forks by blocking its binding.
Collapse
Affiliation(s)
- Carol M Manhart
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | | |
Collapse
|
95
|
Lia G, Rigato A, Long E, Chagneau C, Le Masson M, Allemand JF, Michel B. RecA-promoted, RecFOR-independent progressive disassembly of replisomes stalled by helicase inactivation. Mol Cell 2012; 49:547-57. [PMID: 23260658 DOI: 10.1016/j.molcel.2012.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/17/2012] [Accepted: 11/16/2012] [Indexed: 11/26/2022]
Abstract
In all organisms, replication impairment is a recognized source of genomic instability, raising an increasing interest in the fate of inactivated replication forks. We used Escherichia coli strains with a temperature-inactivated replicative helicase (DnaB) and in vivo single-molecule microscopy to quantify the detailed molecular processing of stalled replication forks. After helicase inactivation, RecA binds to blocked replication forks and is essential for the rapid release of hPol III. The entire holoenzyme is disrupted little by little, with some components lost in few minutes, while others are stable in 70% of cells for at least 1 hr. Although replisome dissociation is delayed in a recA mutant, it is not affected by RecF or RecO inactivation. RecFOR are required for full RecA filaments formation, and we propose that polymerase clearance can be catalyzed by short, RecFOR-independent RecA filaments. Our results identify a function for the universally conserved, central recombination protein RecA.
Collapse
Affiliation(s)
- Giuseppe Lia
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette 91198, France.
| | | | | | | | | | | | | |
Collapse
|
96
|
Mori T, Nakamura T, Okazaki N, Furukohri A, Maki H, Akiyama MT. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response. Genes Genet Syst 2012; 87:75-87. [PMID: 22820381 DOI: 10.1266/ggs.87.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.
Collapse
Affiliation(s)
- Tetsuya Mori
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
Replicative DNA helicases generally unwind DNA as a single hexamer that encircles and translocates along one strand of the duplex while excluding the complementary strand (“steric exclusion”). In contrast, large T antigen (T-ag), the replicative DNA helicase of the Simian Virus 40 (SV40), is reported to function as a pair of stacked hexamers that pumps double-stranded DNA through its central channel while laterally extruding single-stranded DNA. Here, we use single-molecule and ensemble assays to show that T-ag assembled on the SV40 origin unwinds DNA efficiently as a single hexamer that translocates on single-stranded DNA in the 3′ to 5′ direction. Unexpectedly, T-ag unwinds DNA past a DNA-protein crosslink on the translocation strand, suggesting that the T-ag ring can open to bypass bulky adducts. Together, our data underscore the profound conservation among replicative helicase mechanisms while revealing a new level of plasticity in their interactions with DNA damage.
Collapse
|
98
|
New insights into replisome fluidity during chromosome replication. Trends Biochem Sci 2012; 38:195-203. [PMID: 23153958 DOI: 10.1016/j.tibs.2012.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 11/21/2022]
Abstract
Several paradigm shifting advances have recently been made on the composition and function of the chromosomal DNA replication machinery. Replisomes appear to be more fluid and dynamic than ever imagined, enabling rapid and efficient bypass of roadblocks and template lesions while faithfully replicating chromosomal DNA. This fluidity is determined by many layers of regulation, which reach beyond the role of replisome components themselves. In fact, recent studies show that additional polymerases, post-transcriptional modifications, and chromatin structure are required for complete chromosome duplication. Many of these factors are involved with the more complex events that take place during lagging-strand synthesis. These, and other recent discoveries, are the focus of this review.
Collapse
|
99
|
Mahdi AA, Briggs GS, Lloyd RG. Modulation of DNA damage tolerance in Escherichia coli recG and ruv strains by mutations affecting PriB, the ribosome and RNA polymerase. Mol Microbiol 2012; 86:675-91. [PMID: 22957744 PMCID: PMC3533792 DOI: 10.1111/mmi.12010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 02/04/2023]
Abstract
RecG is a DNA translocase that helps to maintain genomic integrity. Initial studies suggested a role in promoting recombination, a possibility consistent with synergism between recG and ruv null alleles and reinforced when the protein was shown to unwind Holliday junctions. In this article we describe novel suppressors of recG and show that the pathology seen without RecG is suppressed on reducing or eliminating PriB, a component of the PriA system for replisome assembly and replication restart. Suppression is conditional, depending on additional mutations that modify ribosomal subunit S6 or one of three subunits of RNA polymerase. The latter suppress phenotypes associated with deletion of priB, enabling the deletion to suppress recG. They include alleles likely to disrupt interactions with transcription anti-terminator, NusA. Deleting priB has a different effect in ruv strains. It provokes abortive recombination and compromises DNA repair in a manner consistent with PriB being required to limit exposure of recombinogenic ssDNA. This synergism is reduced by the RNA polymerase mutations identified. Taken together, the results reveal that RecG curbs a potentially negative effect of proteins that direct replication fork assembly at sites removed from the normal origin, a facility needed to resolve conflicts between replication and transcription.
Collapse
Affiliation(s)
- Akeel A Mahdi
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
100
|
Handa T, Kanke M, Takahashi TS, Nakagawa T, Masukata H. DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. Mol Biol Cell 2012; 23:3240-53. [PMID: 22718908 PMCID: PMC3418317 DOI: 10.1091/mbc.e12-05-0339] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA Pol ε synthesizes the leading strands, following the CMG (Cdc45/Mcm2-7/GINS) helicase, although the N-terminal polymerase domain of the catalytic subunit, Cdc20 in fission yeast, is dispensable for viability. We show that the C-terminal domain of Cdc20 plays the noncatalytic essential roles in both the assembly and progression of CMG helicase. DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.
Collapse
Affiliation(s)
- Tetsuya Handa
- Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|