51
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
52
|
Assessment of the PrPc Amino-Terminal Domain in Prion Species Barriers. J Virol 2016; 90:10752-10761. [PMID: 27654299 DOI: 10.1128/jvi.01121-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/14/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) in cervids and bovine spongiform encephalopathy (BSE) in cattle are prion diseases that are caused by the same protein-misfolding mechanism, but they appear to pose different risks to humans. We are interested in understanding the differences between the species barriers of CWD and BSE. We used real-time, quaking-induced conversion (RT-QuIC) to model the central molecular event in prion disease, the templated misfolding of the normal prion protein, PrPc, to a pathogenic, amyloid isoform, scrapie prion protein, PrPSc We examined the role of the PrPc amino-terminal domain (N-terminal domain [NTD], amino acids [aa] 23 to 90) in cross-species conversion by comparing the conversion efficiency of various prion seeds in either full-length (aa 23 to 231) or truncated (aa 90 to 231) PrPc We demonstrate that the presence of white-tailed deer and bovine NTDs hindered seeded conversion of PrPc, but human and bank vole NTDs did the opposite. Additionally, full-length human and bank vole PrPcs were more likely to be converted to amyloid by CWD prions than were their truncated forms. A chimera with replacement of the human NTD by the bovine NTD resembled human PrPc The requirement for an NTD, but not for the specific human sequence, suggests that the NTD interacts with other regions of the human PrPc to increase promiscuity. These data contribute to the evidence that, in addition to primary sequence, prion species barriers are controlled by interactions of the substrate NTD with the rest of the substrate PrPc molecule. IMPORTANCE We demonstrate that the amino-terminal domain of the normal prion protein, PrPc, hinders seeded conversion of bovine and white-tailed deer PrPcs to the prion forms, but it facilitates conversion of the human and bank vole PrPcs to the prion forms. Additionally, we demonstrate that the amino-terminal domain of human and bank vole PrPcs requires interaction with the rest of the molecule to facilitate conversion by CWD prions. These data suggest that interactions of the amino-terminal domain with the rest of the PrPc molecule play an important role in the susceptibility of humans to CWD prions.
Collapse
|
53
|
Nyeste A, Stincardini C, Bencsura P, Cerovic M, Biasini E, Welker E. The prion protein family member Shadoo induces spontaneous ionic currents in cultured cells. Sci Rep 2016; 6:36441. [PMID: 27819308 PMCID: PMC5098206 DOI: 10.1038/srep36441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023] Open
Abstract
Some mutant forms of the cellular prion protein (PrPC) carrying artificial deletions or point mutations associated with familial human prion diseases are capable of inducing spontaneous ionic currents across the cell membrane, conferring hypersensitivity to certain antibiotics to a wide range of cultured cells and primary cerebellar granular neurons (CGNs). These effects are abrogated when the wild type (WT) form is co-expressed, suggesting that they might be related to a physiological activity of PrPC. Interestingly, the prion protein family member Shadoo (Sho) makes cells hypersensitive to the same antibiotics as mutant PrP-s, an effect that is diminished by the co-expression of WT-PrP. Here, we report that Sho engages in another mutant PrP-like activity: it spontaneously induces large ionic currents in cultured SH-SY5Y cells, as detected by whole-cell patch clamping. These currents are also decreased by the co-expression of WT-PrP. Furthermore, deletion of the N-terminal (RXXX)8 motif of Sho, mutation of the eight arginine residues of this motif to glutamines, or replacement of the hydrophobic domain by that of PrP, also diminish Sho-induced ionic currents. Our results suggest that the channel activity that is also characteristic to some pathogenic PrP mutants may be linked to a physiological function of Sho.
Collapse
Affiliation(s)
- Antal Nyeste
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, ITALY
| | - Petra Bencsura
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, ITALY
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, ITALY
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, ITALY
| | - Ervin Welker
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
54
|
Imberdis T, Heeres JT, Yueh H, Fang C, Zhen J, Rich CB, Glicksman M, Beeler AB, Harris DA. Identification of Anti-prion Compounds using a Novel Cellular Assay. J Biol Chem 2016; 291:26164-26176. [PMID: 27803163 DOI: 10.1074/jbc.m116.745612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/19/2016] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are devastating neurodegenerative disorders with no known cure. One strategy for developing therapies for these diseases is to identify compounds that block conversion of the cellular form of the prion protein (PrPC) into the infectious isoform (PrPSc). Most previous efforts to discover such molecules by high-throughput screening methods have utilized, as a read-out, a single kind of cellular assay system: neuroblastoma cells that are persistently infected with scrapie prions. Here, we describe the use of an alternative cellular assay based on suppressing the spontaneous cytotoxicity of a mutant form of PrP (Δ105-125). Using this assay, we screened 75,000 compounds, and identified a group of phenethyl piperidines (exemplified by LD7), which reduces the accumulation of PrPSc in infected neuroblastoma cells by >90% at low micromolar doses, and inhibits PrPSc-induced synaptotoxicity in hippocampal neurons. By analyzing the structure-activity relationships of 35 chemical derivatives, we defined the pharmacophore of LD7, and identified a more potent derivative. Active compounds do not alter total or cell-surface levels of PrPC, and do not bind to recombinant PrP in surface plasmon resonance experiments, although at high concentrations they inhibit PrPSc-seeded conversion of recombinant PrP to a misfolded state in an in vitro reaction (RT-QuIC). This class of small molecules may provide valuable therapeutic leads, as well as chemical biological tools to identify cellular pathways underlying PrPSc metabolism and PrPC function.
Collapse
Affiliation(s)
- Thibaut Imberdis
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - James T Heeres
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Han Yueh
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - Cheng Fang
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jessie Zhen
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - Celeste B Rich
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Marcie Glicksman
- the Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
| | - Aaron B Beeler
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - David A Harris
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
55
|
Watts JC, Giles K, Bourkas MEC, Patel S, Oehler A, Gavidia M, Bhardwaj S, Lee J, Prusiner SB. Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathol 2016; 132:593-610. [PMID: 27350609 DOI: 10.1007/s00401-016-1585-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/27/2022]
Abstract
Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS. Modest expression levels of mutant BVPrP resulted in highly penetrant spontaneous disease in Tg mice, with mean ages of disease onset ranging from ~120 to ~560 days. The brains of spontaneously ill mice exhibited prominent features of prion disease-specific neuropathology that were unique to each mutation and distinct from Tg mice expressing wild-type BVPrP. An ~8-kDa proteinase K-resistant PrP fragment was found in the brains of spontaneously ill Tg mice expressing either wild-type or mutant BVPrP. The spontaneously formed mutant BVPrP prions were transmissible to Tg mice expressing wild-type or mutant BVPrP as well as to Tg mice expressing mouse PrP. Thus, Tg mice expressing mutant BVPrP exhibit many of the hallmarks of heritable prion disorders in humans including spontaneous disease, protease-resistant PrP, and prion infectivity.
Collapse
Affiliation(s)
- Joel C Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Smita Patel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Marta Gavidia
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Joanne Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
56
|
Generating Bona Fide Mammalian Prions with Internal Deletions. J Virol 2016; 90:6963-6975. [PMID: 27226369 DOI: 10.1128/jvi.00555-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. IMPORTANCE Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative disorders. Other aggregation-prone proteins appear to have a prion-like mode of expansion in brains, such as in Alzheimer's or Parkinson's diseases. To date, the resolution of prion structure remains elusive. Thus, to genetically define the landscape of regions critical for prion conversion, we tested the effect of short deletions. We found that, surprisingly, removal of a portion of PrP, the C terminus of alpha-helix H2, did not hamper prion formation but generated infectious agents with an internal deletion that showed characteristics essentially similar to those of original infecting strains. Thus, we demonstrate that completeness of the residues inside prions is not necessary for maintaining infectivity and the main strain-specific information, while reporting one of the few if not the only bona fide prions with an internal deletion.
Collapse
|
57
|
Arkhipenko A, Syan S, Victoria GS, Lebreton S, Zurzolo C. PrPC Undergoes Basal to Apical Transcytosis in Polarized Epithelial MDCK Cells. PLoS One 2016; 11:e0157991. [PMID: 27389581 PMCID: PMC4936696 DOI: 10.1371/journal.pone.0157991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/08/2016] [Indexed: 01/05/2023] Open
Abstract
The Prion Protein (PrP) is an ubiquitously expressed glycosylated membrane protein attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol anchor (GPI). While the misfolded PrPSc scrapie isoform is the infectious agent of prion disease, the cellular isoform (PrPC) is an enigmatic protein with unclear function. Of interest, PrP localization in polarized MDCK cells is controversial and its mechanism of trafficking is not clear. Here we investigated PrP traffic in MDCK cells polarized on filters and in three-dimensional MDCK cysts, a more physiological model of polarized epithelia. We found that, unlike other GPI-anchored proteins (GPI-APs), PrP undergoes basolateral-to-apical transcytosis in fully polarized MDCK cells. Following this event full-length PrP and its cleavage fragments are segregated in different domains of the plasma membrane in polarized cells in both 2D and 3D cultures.
Collapse
Affiliation(s)
- Alexander Arkhipenko
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Sylvie Syan
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Guiliana Soraya Victoria
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| |
Collapse
|
58
|
Wang Y, Hersheson J, Lopez D, Hammer M, Liu Y, Lee KH, Pinto V, Seinfeld J, Wiethoff S, Sun J, Amouri R, Hentati F, Baudry N, Tran J, Singleton AB, Coutelier M, Brice A, Stevanin G, Durr A, Bi X, Houlden H, Baudry M. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep 2016; 16:79-91. [PMID: 27320912 DOI: 10.1016/j.celrep.2016.05.044] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Joshua Hersheson
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Dulce Lopez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Monia Hammer
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia; Laboratory of Neurogenetics, National Institutes of Health, Bethesda 20892, MD, USA
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ka-Hung Lee
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vanessa Pinto
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jeff Seinfeld
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Sarah Wiethoff
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Rim Amouri
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia
| | - Faycal Hentati
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia
| | - Neema Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jennifer Tran
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda 20892, MD, USA
| | - Marie Coutelier
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Laboratory of Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, 75013 Paris, France
| | - Alexis Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Giovanni Stevanin
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Alexandra Durr
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Henry Houlden
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
59
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are fatal neurodegenerative disorders characterised by long incubation period, short clinical duration, and transmissibility to susceptible species. Neuronal loss, spongiform changes, gliosis and the accumulation in the brain of the misfolded version of a membrane-bound cellular prion protein (PrP(C)), termed PrP(TSE), are diagnostic markers of these diseases. Compelling evidence links protein misfolding and its accumulation with neurodegenerative changes. Accordingly, several mechanisms of prion-mediated neurotoxicity have been proposed. In this paper, we provide an overview of the recent knowledge on the mechanisms of neuropathogenesis, the neurotoxic PrP species and the possible therapeutic approaches to treat these devastating disorders.
Collapse
|
60
|
Massignan T, Cimini S, Stincardini C, Cerovic M, Vanni I, Elezgarai SR, Moreno J, Stravalaci M, Negro A, Sangiovanni V, Restelli E, Riccardi G, Gobbi M, Castilla J, Borsello T, Nonno R, Biasini E. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Sci Rep 2016; 6:23180. [PMID: 26976106 PMCID: PMC4791597 DOI: 10.1038/srep23180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity.
Collapse
Affiliation(s)
- Tania Massignan
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Sara Cimini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Claudia Stincardini
- Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Milica Cerovic
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Saioa R Elezgarai
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Elena Restelli
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Geraldina Riccardi
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain
| | - Tiziana Borsello
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan Italy
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Emiliano Biasini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
61
|
Nyeste A, Bencsura P, Vida I, Hegyi Z, Homolya L, Fodor E, Welker E. Expression of the Prion Protein Family Member Shadoo Causes Drug Hypersensitivity That Is Diminished by the Coexpression of the Wild Type Prion Protein. J Biol Chem 2016; 291:4473-86. [PMID: 26721882 DOI: 10.1074/jbc.m115.679035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The prion protein (PrP) seems to exert both neuroprotective and neurotoxic activities. The toxic activities are associated with the C-terminal globular parts in the absence of the flexible N terminus, specifically the hydrophobic domain (HD) or the central region (CR). The wild type prion protein (PrP-WT), having an intact flexible part, exhibits neuroprotective qualities by virtue of diminishing many of the cytotoxic effects of these mutant prion proteins (PrPΔHD and PrPΔCR) when coexpressed. The prion protein family member Doppel, which possesses a three-dimensional fold similar to the C-terminal part of PrP, is also harmful to neuronal and other cells in various models, a phenotype that can also be eliminated by the coexpression of PrP-WT. In contrast, another prion protein family member, Shadoo (Sho), a natively disordered protein possessing structural features similar to the flexible N-terminal tail of PrP, exhibits PrP-WT-like protective properties. Here, we report that, contrary to expectations, Sho expression in SH-SY5Y or HEK293 cells induces the same toxic phenotype of drug hypersensitivity as PrPΔCR. This effect is exhibited in a dose-dependent manner and is also counteracted by the coexpression of PrP-WT. The opposing effects of Shadoo in different model systems revealed here may be explored to help discern the relationship of the various toxic activities of mutant PrPs with each other and the neurotoxic effects seen in neurodegenerative diseases, such as transmissible spongiform encephalopathy and Alzheimer disease.
Collapse
Affiliation(s)
- Antal Nyeste
- From the Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Petra Bencsura
- the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and
| | - István Vida
- the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and the Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Zoltán Hegyi
- the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and
| | - László Homolya
- the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and
| | - Elfrieda Fodor
- From the Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Ervin Welker
- From the Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary, the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and
| |
Collapse
|
62
|
Lewis V, Johanssen VA, Crouch PJ, Klug GM, Hooper NM, Collins SJ. Prion protein "gamma-cleavage": characterizing a novel endoproteolytic processing event. Cell Mol Life Sci 2016; 73:667-83. [PMID: 26298290 PMCID: PMC11108375 DOI: 10.1007/s00018-015-2022-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Abstract
The cellular prion protein (PrP(C)) is a ubiquitously expressed protein of currently unresolved but potentially diverse function. Of putative relevance to normal biological activity, PrP(C) is recognized to undergo both α- and β-endoproteolysis, producing the cleavage fragment pairs N1/C1 and N2/C2, respectively. Experimental evidence suggests the likelihood that these processing events serve differing cellular needs. Through the engineering of a C-terminal c-myc tag onto murine PrP(C), as well as the selective use of a far-C-terminal anti-PrP antibody, we have identified a new PrP(C) fragment, nominally 'C3', and elaborating existing nomenclature, 'γ-cleavage' as the responsible proteolysis. Our studies indicate that this novel γ-cleavage event can occur during transit through the secretory pathway after exiting the endoplasmic reticulum, and after PrP(C) has reached the cell surface, by a matrix metalloprotease. We found that C3 is GPI-anchored like other C-terminal and full length PrP(C) species, though it does not localize primarily at the cell surface, and is preferentially cleaved from an unglycosylated substrate. Importantly, we observed that C3 exists in diverse cell types as well as mouse and human brain tissue, and of possible pathogenic significance, γ-cleavage may increase in human prion diseases. Given the likely relevance of PrP(C) processing to both its normal function, and susceptibility to prion disease, the potential importance of this previously underappreciated and overlooked cleavage event warrants further consideration.
Collapse
Affiliation(s)
- Victoria Lewis
- Department of Medicine, RMH, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Vanessa A Johanssen
- Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter J Crouch
- Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Genevieve M Klug
- Department of Medicine, RMH, The University of Melbourne, Parkville, VIC, 3010, Australia
- The Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nigel M Hooper
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Steven J Collins
- Department of Medicine, RMH, The University of Melbourne, Parkville, VIC, 3010, Australia.
- The Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
63
|
Arii Y, Yamaguchi H, Yamasaki M, Fukuoka SI. Detection of an interaction between prion protein and neuregulin I-β1 by fluorescence resonance energy transfer analysis. Biosci Biotechnol Biochem 2016; 80:761-8. [PMID: 26796243 DOI: 10.1080/09168451.2015.1116934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellular prion protein (PrP) copurifies with neuregulin type I-β1 (NRG I-β1), but no interaction has been detected by a general immunoprecipitation study. We speculate that PrP interacts with NRG I-β1. Here, the interaction of PrP with NRG I-β1 was detected by measuring fluorescence resonance energy transfer (FRET) between enhanced blue (EBFP) and enhanced green (EGFP) fluorescent protein-fusion proteins. Full-length PrP interacted with EGFP in addition to NRG I-β1. From this result, we deduced that PrP interacts with EGFP through its unstructured N-terminal domain. We therefore detected FRET between PrP deleting the N-terminal domain and NRG I-β1. In contrast, the C-terminal domain of PrP interacted with NRG I-β1 and the proteins dissociated completely in the presence of sodium chloride. This interaction occurs at the nanomolar level, which is important for the reaction to be functional in organisms. We concluded that PrP interacted with NRG I-β1 through its C-terminal domain.
Collapse
Affiliation(s)
- Yasuhiro Arii
- a Department of Food Science and Nutrition, School of Human Environmental Sciences , Mukogawa Women's University , Nishinomiya , Japan
| | - Hidenori Yamaguchi
- b Biological Science Course, Graduate School of Science and Engineering , Aoyama Gakuin University , Sagamihara , Japan
| | | | - Shin-Ichi Fukuoka
- b Biological Science Course, Graduate School of Science and Engineering , Aoyama Gakuin University , Sagamihara , Japan
| |
Collapse
|
64
|
Zhu C, Schwarz P, Abakumova I, Aguzzi A. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance. PLoS One 2015; 10:e0144983. [PMID: 26658276 PMCID: PMC4677814 DOI: 10.1371/journal.pone.0144983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023] Open
Abstract
Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer’s disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer’s disease. In addition, impaired insulin signaling in the Alzheimer’s disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.
Collapse
Affiliation(s)
- Caihong Zhu
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Irina Abakumova
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
65
|
Mutated but Not Deleted Ovine PrP(C) N-Terminal Polybasic Region Strongly Interferes with Prion Propagation in Transgenic Mice. J Virol 2015; 90:1638-46. [PMID: 26608316 DOI: 10.1128/jvi.02805-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. IMPORTANCE Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.
Collapse
|
66
|
Iraci N, Stincardini C, Barreca ML, Biasini E. Decoding the function of the N-terminal tail of the cellular prion protein to inspire novel therapeutic avenues for neurodegenerative diseases. Virus Res 2015; 207:62-8. [DOI: 10.1016/j.virusres.2014.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023]
|
67
|
Vilches S, Vergara C, Nicolás O, Mata Á, Del Río JA, Gavín R. Domain-Specific Activation of Death-Associated Intracellular Signalling Cascades by the Cellular Prion Protein in Neuroblastoma Cells. Mol Neurobiol 2015; 53:4438-48. [PMID: 26250617 DOI: 10.1007/s12035-015-9360-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
The biological functions of the cellular prion protein remain poorly understood. In fact, numerous studies have aimed to determine specific functions for the different protein domains. Studies of cellular prion protein (PrP(C)) domains through in vivo expression of molecules carrying internal deletions in a mouse Prnp null background have provided helpful data on the implication of the protein in signalling cascades in affected neurons. Nevertheless, understanding of the mechanisms underlying the neurotoxicity induced by these PrP(C) deleted forms is far from complete. To better define the neurotoxic or neuroprotective potential of PrP(C) N-terminal domains, and to overcome the heterogeneity of results due to the lack of a standardized model, we used neuroblastoma cells to analyse the effects of overexpressing PrP(C) deleted forms. Results indicate that PrP(C) N-terminal deleted forms were properly processed through the secretory pathway. However, PrPΔF35 and PrPΔCD mutants led to death by different mechanisms sharing loss of alpha-cleavage and activation of caspase-3. Our data suggest that both gain-of-function and loss-of-function pathogenic mechanisms may be associated with N-terminal domains and may therefore contribute to neurotoxicity in prion disease. Dissecting the molecular response induced by PrPΔF35 may be the key to unravelling the physiological and pathological functions of the prion protein.
Collapse
Affiliation(s)
- Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Vergara
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Oriol Nicolás
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ágata Mata
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José A Del Río
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
68
|
In Vivo Longitudinal (1)H MRS Study of Transgenic Mouse Models of Prion Disease in the Hippocampus and Cerebellum at 14.1 T. Neurochem Res 2015. [PMID: 26202424 DOI: 10.1007/s11064-015-1643-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vivo (1)H MR spectroscopy allows the non invasive characterization of brain metabolites and it has been used for studying brain metabolic changes in a wide range of neurodegenerative diseases. The prion diseases form a group of fatal neurodegenerative diseases, also described as transmissible spongiform encephalopathies. The mechanism by which prions elicit brain damage remains unclear and therefore different transgenic mouse models of prion disease were created. We performed an in vivo longitudinal (1)H MR spectroscopy study at 14.1 T with the aim to measure the neurochemical profile of Prnp -/- and PrPΔ32-121 mice in the hippocampus and cerebellum. Using high-field MR spectroscopy we were able to analyze in details the in vivo brain metabolites in Prnp -/- and PrPΔ32-121 mice. An increase of myo-inositol, glutamate and lactate concentrations with a decrease of N-acetylaspartate concentrations were observed providing additional information to the previous measurements.
Collapse
|
69
|
Carulla P, Llorens F, Matamoros-Angles A, Aguilar-Calvo P, Espinosa JC, Gavín R, Ferrer I, Legname G, Torres JM, del Río JA. Involvement of PrP(C) in kainate-induced excitotoxicity in several mouse strains. Sci Rep 2015; 5:11971. [PMID: 26155834 PMCID: PMC4648388 DOI: 10.1038/srep11971] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/12/2015] [Indexed: 01/14/2023] Open
Abstract
The cellular prion protein (PrP(C)) has been associated with a plethora of cellular functions ranging from cell cycle to neuroprotection. Mice lacking PrP(C) show an increased susceptibility to epileptic seizures; the protein, then, is neuroprotective. However, lack of experimental reproducibility has led to considering the possibility that other factors besides PrP(C) deletion, such as the genetic background of mice or the presence of so-called "Prnp flanking genes", might contribute to the reported susceptibility. Here, we performed a comparative analysis of seizure-susceptibility using characterized Prnp(+/+) and Prnp(0/0) mice of B6129, B6.129, 129/Ola or FVB/N genetic backgrounds. Our study indicates that PrP(C) plays a role in neuroprotection in KA-treated cells and mice. For this function, PrP(C) should contain the aa32-93 region and needs to be linked to the membrane. In addition, some unidentified "Prnp-flanking genes" play a role parallel to PrP(C) in the KA-mediated responses in B6129 and B6.129 Prnp(0/0) mice.
Collapse
Affiliation(s)
- Patricia Carulla
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Franc Llorens
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain [4] German Center for Neurodegenerative Diseases (DZNE), Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - Andreu Matamoros-Angles
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Rosalina Gavín
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Isidre Ferrer
- 1] Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - José A del Río
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
70
|
Guitart K, Loers G, Schachner M, Kleene R. Prion protein regulates glutathione metabolism and neural glutamate and cysteine uptake via excitatory amino acid transporter 3. J Neurochem 2015; 133:558-71. [PMID: 25692227 DOI: 10.1111/jnc.13071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/29/2015] [Accepted: 02/08/2015] [Indexed: 01/02/2023]
Abstract
Prion protein (PrP) plays crucial roles in regulating antioxidant systems to improve cell defenses against cellular stress. Here, we show that the interactions of PrP with the excitatory amino acid transporter 3 (EAAT3), γ-glutamyl transpeptidase (γ-GT), and multi-drug resistance protein 1 (MRP1) in astrocytes and the interaction between PrP and EAAT3 in neurons regulate the astroglial and neuronal metabolism of the antioxidant glutathione. Ablation of PrP in astrocytes and cerebellar neurons leads to dysregulation of EAAT3-mediated uptake of glutamate and cysteine, which are precursors for the synthesis of glutathione. In PrP-deficient astrocytes, levels of intracellular glutathione are increased, and under oxidative stress, levels of extracellular glutathione are increased, due to (i) increased glutathione release via MRP1 and (ii) reduced activity of the glutathione-degrading enzyme γ-GT. In PrP-deficient cerebellar neurons, cell death is enhanced under oxidative stress and glutamate excitotoxicity, when compared to wild-type cerebellar neurons. These results indicate a functional interplay of PrP with EAAT3, MRP1 and γ-GT in astrocytes and of PrP and EAAT3 in neurons, suggesting that these interactions play an important role in the metabolic cross-talk between astrocytes and neurons and in protection of neurons by astrocytes from oxidative and glutamate-induced cytotoxicity. Interactions of prion protein (PrP) with excitatory amino acid transporter 3 (EAAT3), γ-glutamyl transpeptidase (GGT) and multi-drug resistance protein 1 (MRP1) regulate the astroglial and neuronal metabolism of glutathione (GSH) which protects cells against the cytotoxic oxidative stress. PrP controls the release of GSH from astrocytes via MRP1 and regulates the hydrolysis of extracellular GSH by GGT as well as the neuronal and astroglial glutamate and cysteine uptake via EAAT3.
Collapse
Affiliation(s)
- Kathrin Guitart
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
71
|
Dametto P, Lakkaraju AKK, Bridel C, Villiger L, O’Connor T, Herrmann US, Pelczar P, Rülicke T, McHugh D, Adili A, Aguzzi A. Neurodegeneration and unfolded-protein response in mice expressing a membrane-tethered flexible tail of PrP. PLoS One 2015; 10:e0117412. [PMID: 25658480 PMCID: PMC4319788 DOI: 10.1371/journal.pone.0117412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022] Open
Abstract
The cellular prion protein (PrPC) consists of a flexible N-terminal tail (FT, aa 23–128) hinged to a membrane-anchored globular domain (GD, aa 129–231). Ligation of the GD with antibodies induces rapid neurodegeneration, which is prevented by deletion or functional inactivation of the FT. Therefore, the FT is an allosteric effector of neurotoxicity. To explore its mechanism of action, we generated transgenic mice expressing the FT fused to a GPI anchor, but lacking the GD (PrPΔ141–225, or “FTgpi”). Here we report that FTgpi mice develop a progressive, inexorably lethal neurodegeneration morphologically and biochemically similar to that triggered by anti-GD antibodies. FTgpi was mostly retained in the endoplasmic reticulum, where it triggered a conspicuous unfolded protein response specifically activating the PERK pathway leading to phosphorylation of eIF2α and upregulation of CHOP ultimately leading to neurodegeration similar to what was observed in prion infection.
Collapse
Affiliation(s)
- Paolo Dametto
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Claire Bridel
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Villiger
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Tracy O’Connor
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Uli S. Herrmann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Pawel Pelczar
- Institute of Laboratory Animal Science, University of Zürich, Zurich, Switzerland
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Donal McHugh
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Arlind Adili
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
72
|
Altmeppen HC, Prox J, Krasemann S, Puig B, Kruszewski K, Dohler F, Bernreuther C, Hoxha A, Linsenmeier L, Sikorska B, Liberski PP, Bartsch U, Saftig P, Glatzel M. The sheddase ADAM10 is a potent modulator of prion disease. eLife 2015; 4. [PMID: 25654651 PMCID: PMC4346534 DOI: 10.7554/elife.04260] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/04/2015] [Indexed: 01/10/2023] Open
Abstract
The prion protein (PrPC) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrPSc. Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrPC is shed at the plasma membrane by the metalloprotease ADAM10, yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrPC levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrPSc formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease. DOI:http://dx.doi.org/10.7554/eLife.04260.001 Prion proteins are anchored to the surface of brain cells called neurons. Normally, prion proteins are folded into a specific three-dimensional shape that enables them to carry out their normal roles in the brain. However, they can be misfolded into a different shape known as PrPSc, which can cause Creutzfeldt-Jakob disease and other serious conditions that affect brain function and ultimately lead to death. The PrPSc proteins can force normal prion proteins to change into the PrPSc form, so that over time this form accumulates in the brain. They are essential components of infectious particles termed ‘prions’ and this is why prion diseases are infectious: if prions from one individual enter the brain of another individual they can cause disease in the recipient. The UK outbreak of variant Creutzfeldt-Jakob disease in humans in the 1990s is thought to be due to the consumption of meat from cattle with a prion disease known as mad cow disease. An enzyme called ADAM10 can cut normal prion proteins from the surface of neurons. However, it is not clear whether ADAM10 can also target the PrPSc proteins and what impact this may have on the development of prion diseases. Here, Altmeppen et al. studied mutant mice that were missing ADAM10 in neurons in the front portion of their brain. These mice had a higher number of normal prion proteins on the surface of their neurons than normal mice did. When mice missing ADAM10 were infected with prions, more PrPSc accumulated in their brain and disease symptoms developed sooner than when normal mice were infected. This supports the view that mice with higher numbers of prion proteins are more vulnerable to prion disease. However, disease symptoms did not spread as quickly to other parts of the brain in the mice missing ADAM10. This suggests that by releasing prion proteins from the surface of neurons, ADAM10 helps PrPSc proteins to spread around the brain. Recently, it has been suggested that prion proteins may also play a role in Alzheimer's disease and other neurodegenerative conditions. Therefore, Altmeppen et al.'s findings may help to develop new therapies for other forms of dementia. The next challenge is to understand the precise details of how ADAM10 works. DOI:http://dx.doi.org/10.7554/eLife.04260.002
Collapse
Affiliation(s)
- Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Prox
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kruszewski
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Dohler
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ana Hoxha
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
73
|
Pham N, Sawyer TW, Wang Y, Jazii FR, Vair C, Taghibiglou C. Primary blast-induced traumatic brain injury in rats leads to increased prion protein in plasma: a potential biomarker for blast-induced traumatic brain injury. J Neurotrauma 2015; 32:58-65. [PMID: 25058115 PMCID: PMC4273182 DOI: 10.1089/neu.2014.3471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) is deemed the "signature injury" of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague-Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4-206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL ± 0.13 SE) is significantly increased compared with controls (2.46 ng/mL ± 0.14 SE; two tailed test p < 0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI.
Collapse
Affiliation(s)
- Nam Pham
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Thomas W. Sawyer
- Defence Research and Development Canada, Suffield Research Center, Ralston, Alberta, Canada
| | - Yushan Wang
- Defence Research and Development Canada, Suffield Research Center, Ralston, Alberta, Canada
| | - Ferdous Rastgar Jazii
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Cory Vair
- Defence Research and Development Canada, Suffield Research Center, Ralston, Alberta, Canada
| | - Changiz Taghibiglou
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
74
|
Bravard A, Auvré F, Fantini D, Bernardino-Sgherri J, Sissoëff L, Daynac M, Xu Z, Etienne O, Dehen C, Comoy E, Boussin FD, Tell G, Deslys JP, Radicella JP. The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res 2014; 43:904-16. [PMID: 25539913 PMCID: PMC4333392 DOI: 10.1093/nar/gku1342] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prion protein (PrP) is highly conserved and ubiquitously expressed, suggesting that it plays an important physiological function. However, despite decades of investigation, this role remains elusive. Here, by using animal and cellular models, we unveil a key role of PrP in the DNA damage response. Exposure of neurons to a genotoxic stress activates PRNP transcription leading to an increased amount of PrP in the nucleus where it interacts with APE1, the major mammalian endonuclease essential for base excision repair, and stimulates its activity. Preventing the induction of PRNP results in accumulation of abasic sites in DNA and impairs cell survival after genotoxic treatment. Brains from Prnp−/− mice display a reduced APE1 activity and a defect in the repair of induced DNA damage in vivo. Thus, PrP is required to maintain genomic stability in response to genotoxic stresses.
Collapse
Affiliation(s)
- Anne Bravard
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Frédéric Auvré
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Damiano Fantini
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Ludmilla Sissoëff
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Mathieu Daynac
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Zhou Xu
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Olivier Etienne
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Capucine Dehen
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Emmanuel Comoy
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - François D Boussin
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, I-33100 Udine, Italy
| | - Jean-Philippe Deslys
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - J Pablo Radicella
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
75
|
Chu NK, Shabbir W, Bove-Fenderson E, Araman C, Lemmens-Gruber R, Harris DA, Becker CFW. A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes. J Biol Chem 2014; 289:30144-60. [PMID: 25217642 DOI: 10.1074/jbc.m114.587345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrP(C) into pathogenic PrP(Sc). Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23-231, FL_PrP), N-terminally truncated PrP (residues 90-231, T_PrP), and PrP missing its central hydrophobic region (Δ105-125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions.
Collapse
Affiliation(s)
- Nam K Chu
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - Erin Bove-Fenderson
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Can Araman
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - David A Harris
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Christian F W Becker
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria,
| |
Collapse
|
76
|
Makzhami S, Passet B, Halliez S, Castille J, Moazami-Goudarzi K, Duchesne A, Vilotte M, Laude H, Mouillet-Richard S, Béringue V, Vaiman D, Vilotte JL. The prion protein family: a view from the placenta. Front Cell Dev Biol 2014; 2:35. [PMID: 25364742 PMCID: PMC4207016 DOI: 10.3389/fcell.2014.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/22/2014] [Indexed: 02/01/2023] Open
Abstract
Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health.
Collapse
Affiliation(s)
- Samira Makzhami
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Bruno Passet
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Sophie Halliez
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Johan Castille
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | | | - Amandine Duchesne
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Marthe Vilotte
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Hubert Laude
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- INSERM, UMR-S1124 Signalisation et Physiopathologie Neurologique, Université Paris Descartes Paris, France
| | - Vincent Béringue
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Daniel Vaiman
- Faculté Paris Descartes, UMR8104 CNRS, U1016 INSERM, Institut Cochin Paris, France
| | - Jean-Luc Vilotte
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| |
Collapse
|
77
|
Yang X, Zhang Y, Zhang L, He T, Zhang J, Li C. Prion protein and cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:431-40. [PMID: 24681883 DOI: 10.1093/abbs/gmu019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang 330029, China
| | - Yan Zhang
- Department of Molecular Endocrinology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lihua Zhang
- Department of Pathology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Tianlin He
- Department of General Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Jie Zhang
- Department of Stomatology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi 832000, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
78
|
McDonald AJ, Millhauser GL. PrP overdrive: does inhibition of α-cleavage contribute to PrP(C) toxicity and prion disease? Prion 2014; 8:28796. [PMID: 24721836 DOI: 10.4161/pri.28796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Knockout of the cellular prion protein (PrP(C)) in mice is tolerated, as is complete elimination of the protein's N-terminal domain. However, deletion of select short segments between the N- and C-terminal domains is lethal. How can one reconcile this apparent paradox? Research over the last few years demonstrates that PrP(C) undergoes α-cleavage in the vicinity of residue 109 (mouse sequence) to release the bioactive N1 and C1 fragments. In biophysical studies, we recently characterized the action of relevant members of the ADAM (A Disintegrin And Metalloproteinase) enzyme family (ADAM8, 10, and 17) and found that they all produce α-cleavage, but at 3 distinct cleavage sites, with proteolytic efficiency modulated by the physiologic metals copper and zinc. Remarkably, the shortest lethal deletion segment in PrP(C) fully encompasses the 3 α-cleavage sites. Analysis of all reported PrP(C) deletion mutants suggests that elimination of α-cleavage, coupled with retention of the protein's N-terminal residues, segments 23-31 and longer, confers the lethal phenotype. Interestingly, these N-terminal residues are implicated in the activation of several membrane proteins, including synaptic glutamate receptors. We propose that α-cleavage is a general mechanism essential for downregulating PrP(C)'s intrinsic activity, and that blockage of proteolysis leads to constitutively active PrP(C) and consequent dyshomeostasis.
Collapse
Affiliation(s)
- Alex J McDonald
- Department of Biochemistry; Boston University School of Medicine; Boston, MA USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry; University of California; Santa Cruz, CA USA
| |
Collapse
|
79
|
Abstract
Zoonotic prion transmission was reported after the bovine spongiform encephalopathy (BSE) epidemic, when >200 cases of prion disease in humans were diagnosed as variant Creutzfeldt-Jakob disease. Assessing the risk of cross-species prion transmission remains challenging. We and others have studied how specific amino acid residue differences between species impact prion conversion and have found that the β2-α2 loop region of the mouse prion protein (residues 165-175) markedly influences infection by sheep scrapie, BSE, mouse-adapted scrapie, deer chronic wasting disease, and hamster-adapted scrapie prions. The tyrosine residue at position 169 is strictly conserved among mammals and an aromatic side chain in this position is essential to maintain a 310-helical turn in the β2-α2 loop. Here we examined the impact of the Y169G substitution together with the previously described S170N, N174T "rigid loop" substitutions on cross-species prion transmission in vivo and in vitro. We found that transgenic mice expressing mouse PrP containing the triple-amino acid substitution completely resisted infection with two strains of mouse prions and with deer chronic wasting disease prions. These studies indicate that Y169 is important for prion formation, and they provide a strong indication that variation of the β2-α2 loop structure can modulate interspecies prion transmission.
Collapse
|
80
|
Davidson L, Knight R. Neuropathogenesis of prion disease. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Although much is known about prion diseases (characterized by a post-translational misfolding of the prion protein [PrP]) and their neuropathology and molecular pathology, the fundamental cause of illness, the basic neuropathogenesis, remains uncertain. There are three broad considerations discussed in this review: the possible loss of normal PrP function, the possible direct toxicity of the abnormally folded PrP and a harmful interaction between the normal and abnormal protein. In considering these possibilities, there are difficulties, including the facts that the relevant normal functions of the PrP are somewhat uncertain and that there are a number of possible toxic species of abnormal protein. In addition to the possible interactions of normal and abnormal PrP in prion disease, PrP may play a role in the neuropathogenesis of other diseases (such as Alzheimer’s disease).
Collapse
Affiliation(s)
- Louise Davidson
- National Creutzfeldt–Jakob Disease Research & Surveillance Unit, University of Edinburgh, Edinburgh, UK
| | - Richard Knight
- National Creutzfeldt–Jakob Disease Research & Surveillance Unit, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
81
|
Wang S, Zhao H, Zhang Y. Advances in research on Shadoo, shadow of prion protein. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
82
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
83
|
Abstract
Individuals infected with prions succumb to brain damage, and prion infections continue to be inexorably lethal. However, many crucial steps in prion pathogenesis occur in lymphatic organs and precede invasion of the central nervous system. In the past two decades, a great deal has been learnt concerning the cellular and molecular mechanisms of prion lymphoinvasion. These properties are diagnostically useful and have, for example, facilitated preclinical diagnosis of variant Creutzfeldt-Jakob disease in the tonsils. Moreover, the early colonization of lymphoid organs can be exploited for post-exposure prophylaxis of prion infections. As stromal cells of lymphoid organs are crucial for peripheral prion infection, the dedifferentiation of these cells offers a powerful means of hindering prion spread in infected individuals. In this Review, we discuss the current knowledge of the immunobiology of prions with an emphasis on how basic discoveries might enable translational strategies.
Collapse
|
84
|
Infection of Prions and Treatment of PrP106–126 Alter the Endogenous Status of Protein 14-3-3 and Trigger the Mitochondrial Apoptosis Possibly via Activating Bax Pathway. Mol Neurobiol 2013; 49:840-51. [DOI: 10.1007/s12035-013-8560-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/22/2013] [Indexed: 10/26/2022]
|
85
|
Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion. PLoS One 2013; 8:e70327. [PMID: 23936187 PMCID: PMC3729945 DOI: 10.1371/journal.pone.0070327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Analyses of cultured cells and transgenic mice expressing prion protein (PrP) deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1) the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2) the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP’s essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP’s ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and zebrafish.
Collapse
|
86
|
Lin CF, Yu KH, Jheng CP, Chung R, Lee CI. Curcumin reduces amyloid fibrillation of prion protein and decreases reactive oxidative stress. Pathogens 2013; 2:506-19. [PMID: 25437204 PMCID: PMC4235698 DOI: 10.3390/pathogens2030506] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/17/2013] [Accepted: 07/21/2013] [Indexed: 12/12/2022] Open
Abstract
Misfolding and aggregation into amyloids of the prion protein (PrP) is responsible for the development of fatal transmissible neurodegenerative diseases. Various studies on curcumin demonstrate promise for the prevention of Alzheimer’s disease and inhibition of PrPres accumulation. To evaluate the effect of curcumin on amyloid fibrillation of prion protein, we first investigated the effect of curcumin on mouse prion protein (mPrP) in a cell-free system. Curcumin reduced the prion fibril formation significantly. Furthermore, we monitored the change in apoptosis and reactive oxygen species (ROS) level upon curcumin treatment in mouse neuroblastoma cells (N2a). Curcumin effectively rescues the cells from apoptosis and decreases the ROS level caused by subsequent co-incubation with prion amyloid fibrils. The assays in cell-free mPrP and in N2a cells of this work verified the promising effect of curcumin on the prevention of transmissible neurodegenerative diseases.
Collapse
Affiliation(s)
- Chi-Fen Lin
- Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, College of Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan 621, China.
| | - Kun-Hua Yu
- Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, College of Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan 621, China.
| | - Cheng-Ping Jheng
- Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, College of Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan 621, China.
| | - Raymond Chung
- Department of Chemistry and Biochemistry, Manhattan College, Riverdale, NY 10471, USA.
| | - Cheng-I Lee
- Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, College of Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan 621, China.
| |
Collapse
|
87
|
Hu PP, Huang CZ. Prion protein: structural features and related toxicity. Acta Biochim Biophys Sin (Shanghai) 2013; 45:435-41. [PMID: 23615535 DOI: 10.1093/abbs/gmt035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transmissible spongiform encephalopathies, or prion diseases, is a group of infectious neurodegenerative disorders. The conformational conversion from cellular form (PrP(C)) to disease-causing isoform (PrP(Sc)) is considered to be the most important and remarkable event in these diseases, while accumulation of PrP(Sc) is thought to be the main reason for cell death, inflammation and spongiform degeneration observed in infected individuals. Although these rare but unique neurodegenerative disorders have attracted much attention, there are still many questions that remain to be answered. Knowledge of the scrapie agent structures and the toxic species may have significance for understanding the causes of the diseases, and could be helpful for rational design of novel therapeutic and diagnostic methods. In this review, we summarized the available experimental evidence concerning the relationship among the structural features, aggregation status of misfolded PrP and related neurotoxicity in the course of prion diseases development. In particular, most data supports the idea that the smaller oligomeric PrP(Sc) aggregates, rather than the mature amyloid fibers, exhibit the highest toxicity to the host.
Collapse
Affiliation(s)
- Ping Ping Hu
- Ministry of Education Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
88
|
Didonna A. Prion protein and its role in signal transduction. Cell Mol Biol Lett 2013; 18:209-30. [PMID: 23479001 PMCID: PMC6275729 DOI: 10.2478/s11658-013-0085-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/18/2013] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrP(Sc)). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrP(C)) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the "protein-only" hypothesis for the first time, considerable effort has been put into defining the role played by PrP(C) in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrP(C) in signal transduction.
Collapse
Affiliation(s)
- Alessandro Didonna
- Davee Department of Neurology, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
89
|
Llorens F, Carulla P, Villa A, Torres JM, Fortes P, Ferrer I, del Río JA. PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells. J Neurochem 2013; 127:124-38. [PMID: 23638794 DOI: 10.1111/jnc.12283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 01/28/2023]
Abstract
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Barcelona, Spain; Department of Cell Biology, University of Barcelona (UB), Barcelona, Spain; Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuropathology, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
90
|
Kretzschmar H, Tatzelt J. Prion disease: a tale of folds and strains. Brain Pathol 2013; 23:321-32. [PMID: 23587138 PMCID: PMC8029118 DOI: 10.1111/bpa.12045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022] Open
Abstract
Research on prions, the infectious agents of devastating neurological diseases in humans and animals, has been in the forefront of developing the concept of protein aggregation diseases. Prion diseases are distinguished from other neurodegenerative diseases by three peculiarities. First, prion diseases, in addition to being sporadic or genetic like all other neurodegenerative diseases, are infectious diseases. Animal models were developed early on (a long time before the advent of transgenic technology), and this has made possible the discovery of the prion protein as the infectious agent. Second, human prion diseases have true equivalents in animals, such as scrapie, which has been the subject of experimental research for many years. Variant Creutzfeldt-Jakob disease (vCJD) is a zoonosis caused by bovine spongiform encephalopathy (BSE) prions. Third, they show a wide variety of phenotypes in humans and animals, much wider than the variants of any other sporadic or genetic neurodegenerative disease. It has now become firmly established that particular PrP(Sc) isoforms are closely related to specific human prion strains. The variety of human prion diseases, still an enigma in its own right, is a focus of this article. Recently, a series of experiments has shown that the concept of aberrant protein folding and templating, first developed for prions, may apply to a variety of neurodegenerative diseases. In the wake of these discoveries, the term prion has come to be used for Aβ, α-synuclein, tau and possibly others. The self-propagation of alternative conformations seems to be the common denominator of these "prions," which in future, in order to avoid confusion, may have to be specified either as "neurodegenerative prions" or "infectious prions."
Collapse
Affiliation(s)
| | - Jörg Tatzelt
- NeurobiochemistryAdolf‐Butenandt‐InstituteLudwig‐Maximilians‐University MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| |
Collapse
|
91
|
Kishimoto Y, Hirono M, Atarashi R, Sakaguchi S, Yoshioka T, Katamine S, Kirino Y. Age-dependent impairment of eyeblink conditioning in prion protein-deficient mice. PLoS One 2013; 8:e60627. [PMID: 23593266 PMCID: PMC3622692 DOI: 10.1371/journal.pone.0060627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/28/2013] [Indexed: 02/02/2023] Open
Abstract
Mice lacking the prion protein (PrP(C)) gene (Prnp), Ngsk Prnp (0/0) mice, show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrP(C)-like protein (PrPLP/Dpl). Because PrP(C) is highly expressed in cerebellar neurons (including PCs and granule cells), it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrP(C) and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning. Therefore, the present cross-sectional study was designed to examine cerebellum-dependent delay eyeblink conditioning in Ngsk Prnp (0/0) mice in adulthood (16, 40, and 60 weeks of age). The aims of the present study were two-fold: (1) to examine the role of PrP(C) and/or PrPLP/Dpl in cerebellum-dependent motor learning and (2) to confirm the age-related deterioration of eyeblink conditioning in Ngsk Prnp (0/0) mice as an animal model of progressive cerebellar degeneration. Ngsk Prnp (0/0) mice aged 16 weeks exhibited intact acquisition of conditioned eyeblink responses (CRs), although the CR timing was altered. The same result was observed in another line of PrP(c)-deficient mice, ZrchI PrnP (0/0) mice. However, at 40 weeks of age, CR incidence impairment was observed in Ngsk Prnp (0/0) mice. Furthermore, Ngsk Prnp (0/0) mice aged 60 weeks showed more significantly impaired CR acquisition than Ngsk Prnp (0/0) mice aged 40 weeks, indicating the temporal correlation between cerebellar PC degeneration and motor learning deficits. Our findings indicate the importance of the cerebellar cortex in delay eyeblink conditioning and suggest an important physiological role of prion protein in cerebellar motor learning.
Collapse
Affiliation(s)
- Yasushi Kishimoto
- Laboratory of Neurobiophysics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Moritoshi Hirono
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute, Wako, Japan
| | - Ryuichiro Atarashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Tohru Yoshioka
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shigeru Katamine
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Center for International Collaborative Research, Nagasaki University, Nagasaki, Japan
| | - Yutaka Kirino
- Laboratory of Neurobiophysics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
92
|
Aidt FH, Hasholt LF, Christiansen M, Laursen H. Localization of A11-reactive oligomeric species in prion diseases. Histopathology 2013; 62:994-1001. [PMID: 23570304 DOI: 10.1111/his.12097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/13/2013] [Indexed: 12/16/2022]
Abstract
AIMS To investigate in prion diseases the in-situ localization of prion protein oligomers sharing a common epitope with amyloid oligomers involved in a range of neurodegenerative diseases. METHODS AND RESULTS We performed immunohistochemistry on sporadic Creutzfeldt-Jakob disease (sCJD) (n = 9) and hereditary Gerstmann-Sträussler-Scheinker disease (GSS) (n = 1) specimens with the anti-oligomer antibody A11 to determine the localization of reactive species. We found that A11 reactivity in the sCJD specimens was localized to the cerebral and cerebellar cortices both in spongiform and adjacent, non-spongiform areas, reminiscent of multicentric or diffuse plaques. In the GSS specimens, we found that staining was closely associated with kuru-like plaques, and that A11-reactive species colocalized with protease-resistant prion protein (Prp(Sc)). We also observed sporadic neuronal cytosolic staining in both types of specimen. CONCLUSIONS We confirm that intracellular and extracellular A11-reactive species are present in situ in sCJD cases and GSS, and that immunoreactivity for A11 and Prp(Sc) overlaps. We argue that the A11-reactive species are indeed composed of oligomeric Prp(Sc), and suggest that the toxic effects of Prp(Sc) oligomers could be related to the generic oligomeric conformation recognized by A11.
Collapse
Affiliation(s)
- Frederik H Aidt
- Section of Molecular Medicine, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
93
|
Chakroun N, Fornili A, Prigent S, Kleinjung J, Dreiss CA, Rezaei H, Fraternali F. Decrypting Prion Protein Conversion into a β-Rich Conformer by Molecular Dynamics. J Chem Theory Comput 2013; 9:2455-2465. [PMID: 23700393 PMCID: PMC3656828 DOI: 10.1021/ct301118j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Indexed: 01/08/2023]
Abstract
Prion diseases are fatal neurodegenerative diseases characterized by the formation of β-rich oligomers and the accumulation of amyloid fibrillar deposits in the central nervous system. Understanding the conversion of the cellular prion protein into its β-rich polymeric conformers is fundamental to tackling the early stages of the development of prion diseases. In this paper, we have identified unfolding and refolding steps critical to the conversion into a β-rich conformer for different constructs of the ovine prion protein by molecular dynamics simulations. By combining our results with in vitro experiments, we show that the folded C-terminus of the ovine prion protein is able to recurrently undergo a drastic conformational change by displacement of the H1 helix, uncovering of the H2H3 domain, and formation of persistent β-sheets between H2 and H3 residues. The observed β-sheets refold toward the C-terminus exposing what we call a "bending region" comprising residues 204-214. This is strikingly coincident with the region harboring mutations determining the fate of the prion oligomerization process. The β-rich intermediate is used here for the construction of a putative model for the assembly into an oligomeric aggregate. The results presented here confirm the importance of the H2H3 domain for prion oligomer formation and therefore its potential use as molecular target in the design of novel prion inhibitors.
Collapse
Affiliation(s)
- Nesrine Chakroun
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom ; Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Mutations within the central region of prion protein (PrP) have been shown to be associated with severe neurotoxic activity similar to that observed with Dpl, a PrP-like protein. To further investigate this neurotoxic effect, we generated lines of transgenic (Tg) mice expressing three different chimeric PrP-Dpl proteins. Chi1 (amino acids 1-57 of Dpl replaced by amino acids 1-125 of PrP) and Chi2 (amino acids 1-66 of Dpl replaced by amino acids 1-134 of PrP) abrogated the pathogenicity of Dpl indicating that the presence of a N-terminal domain of PrP (23-134) reduced the toxicity of Dpl, as reported. However, when the amino acids 1-24 of Dpl were replaced by amino acids 1-124 of PrP, Chi3 Tg mice, which express the chimeric protein at a very low level, start developing ataxia at the age of 5-7 weeks. This phenotype was not counteracted by a single copy of full-length-PrP(c) but rather by its overexpression, indicating the strong toxicity of the chimeric protein Chi3. Chi3 Tg mice exhibit severe cerebellar atrophy with a significant loss of granule cells. We concluded that aa25 to aa57 of Dpl, which are not present in Chi1 and Chi2 constructs, confer toxicity to the protein. We tested this possibility by using the 25-57 Dpl peptide in primary culture of mouse embryo cortical neurons and found a significant neurotoxic effect. This finding identifies a protein domain that plays a role in mediating Dpl-related toxicity.
Collapse
|
95
|
Altmeppen HC, Prox J, Puig B, Dohler F, Falker C, Krasemann S, Glatzel M. Roles of endoproteolytic α-cleavage and shedding of the prion protein in neurodegeneration. FEBS J 2013; 280:4338-47. [DOI: 10.1111/febs.12196] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Hermann C. Altmeppen
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Johannes Prox
- Institute of Biochemistry; Christian Albrechts University; Kiel Germany
| | - Berta Puig
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Frank Dohler
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Clemens Falker
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Susanne Krasemann
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Markus Glatzel
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| |
Collapse
|
96
|
Déry MA, Jodoin J, Ursini-Siegel J, Aleynikova O, Ferrario C, Hassan S, Basik M, LeBlanc AC. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer. Breast Cancer Res 2013; 15:R22. [PMID: 23497519 PMCID: PMC3672785 DOI: 10.1186/bcr3398] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 03/01/2013] [Indexed: 01/11/2023] Open
Abstract
Introduction High prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress. Methods Published microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6α (ΔATF6α) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines. Results We find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER stress response element (ERSE) conserved among primates and rodents and three primate-specific ERSEs that regulated PRNP gene expression. Among the various transactivators of the ER stress-regulated unfolded protein response (UPR), ATF6α and XBP1 transactivated PRNP gene expression, but the ability of these varied in different cell types. Functionally, PrP delayed ER stress-induced cell death. Conclusions These results establish PRNP as a novel ER stress-regulated gene that could increase survival in breast cancers.
Collapse
|
97
|
Resenberger UK, Müller V, Munter LM, Baier M, Multhaup G, Wilson MR, Winklhofer KF, Tatzelt J. The heat shock response is modulated by and interferes with toxic effects of scrapie prion protein and amyloid β. J Biol Chem 2012; 287:43765-76. [PMID: 23115236 PMCID: PMC3527961 DOI: 10.1074/jbc.m112.389007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/27/2012] [Indexed: 12/19/2022] Open
Abstract
The heat shock response (HSR) is an evolutionarily conserved pathway designed to maintain proteostasis and to ameliorate toxic effects of aberrant protein folding. We have studied the modulation of the HSR by the scrapie prion protein (PrP(Sc)) and amyloid β peptide (Aβ) and investigated whether an activated HSR or the ectopic expression of individual chaperones can interfere with PrP(Sc)- or Aβ-induced toxicity. First, we observed different effects on the HSR under acute or chronic exposure of cells to PrP(Sc) or Aβ. In chronically exposed cells the threshold to mount a stress response was significantly increased, evidenced by a decreased expression of Hsp72 after stress, whereas an acute exposure lowered the threshold for stress-induced expression of Hsp72. Next, we employed models of PrP(Sc)- and Aβ-induced toxicity to demonstrate that the induction of the HSR ameliorates the toxic effects of both PrP(Sc) and Aβ. Similarly, the ectopic expression of cytosolic Hsp72 or the extracellular chaperone clusterin protected against PrP(Sc)- or Aβ-induced toxicity. However, toxic signaling induced by a pathogenic PrP mutant located at the plasma membrane was prevented by an activated HSR or Hsp72 but not by clusterin, indicating a distinct mode of action of this extracellular chaperone. Our study supports the notion that different pathological protein conformers mediate toxic effects via similar cellular pathways and emphasizes the possibility to exploit the heat shock response therapeutically.
Collapse
Affiliation(s)
- Ulrike K. Resenberger
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
| | - Veronika Müller
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
| | - Lisa M. Munter
- Institut für Chemie und Biochemie, Freie Universität, 14195 Berlin, Germany
- the Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A0G4, Canada
| | | | - Gerd Multhaup
- Institut für Chemie und Biochemie, Freie Universität, 14195 Berlin, Germany
- the Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A0G4, Canada
| | - Mark R. Wilson
- the School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia, and
| | - Konstanze F. Winklhofer
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
- the German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany
| | - Jörg Tatzelt
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
- the German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany
| |
Collapse
|
98
|
Salamat MK, Munoz-Montesino C, Moudjou M, Rezaei H, Laude H, Béringue V, Dron M. Mammalian prions: tolerance to sequence changes-how far? Prion 2012; 7:131-5. [PMID: 23232499 DOI: 10.4161/pri.23110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Upon prion infection, abnormal prion protein (PrP (Sc) ) self-perpetuate by conformational conversion of α-helix-rich PrP (C) into β sheet enriched form, leading to formation and deposition of PrP (Sc) aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrP (Sc) and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region.
Collapse
|
99
|
Abstract
The events leading to the degradation of the endogenous PrP(C) (normal cellular prion protein) have been the subject of numerous studies. Two cleavage processes, α-cleavage and β-cleavage, are responsible for the main C- and N-terminal fragments produced from PrP(C). Both cleavage processes occur within the N-terminus of PrP(C), a region that is significant in terms of function. α-Cleavage, an enzymatic event that occurs at amino acid residues 110 and 111 on PrP(C), interferes with the conversion of PrP(C) into the prion disease-associated isoform, PrP(Sc) (abnormal disease-specific conformation of prion protein). This processing is seen as a positive event in terms of disease development. The study of β-cleavage has taken some surprising turns. β-Cleavage is brought about by ROS (reactive oxygen species). The C-terminal fragment produced, C2, may provide the seed for the abnormal conversion process, as it resembles in size the fragments isolated from prion-infected brains. There is, however, strong evidence that β-cleavage provides an essential process to reduce oxidative stress. β-Cleavage may act as a double-edged sword. By β-cleavage, PrP(C) may try to balance the ROS levels produced during prion infection, but the C2 produced may provide a PrP(Sc) seed that maintains the prion conversion process.
Collapse
|
100
|
Santos TG, Beraldo FH, Hajj GNM, Lopes MH, Roffe M, Lupinacci FCS, Ostapchenko VG, Prado VF, Prado MAM, Martins VR. Laminin-γ1 chain and stress inducible protein 1 synergistically mediate PrPC-dependent axonal growth via Ca2+ mobilization in dorsal root ganglia neurons. J Neurochem 2012; 124:210-23. [PMID: 23145988 DOI: 10.1111/jnc.12091] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/01/2022]
Abstract
Prion protein (PrP(C)) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrP(C) interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrP(C) co-opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross-talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrP(C)-mediated axonogenesis in peripheral neurons in response to STI1 and laminin-γ1 chain-derived peptide (Ln-γ1). STI1 and Ln-γ1 promoted robust axonogenesis in wild-type neurons, whereas no effect was observed in neurons from PrP(C) -null mice. PrP(C) binding to Ln-γ1 or STI1 led to an increase in intracellular Ca(2+) levels via distinct mechanisms: STI1 promoted extracellular Ca(2+) influx, and Ln-γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln-γ1, but depends on, C-type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrP(C)-mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrP(C). These results suggest a role for PrP(C) as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.
Collapse
Affiliation(s)
- Tiago G Santos
- International Research Center, A.C. Camargo Hospital, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|