51
|
Amini-Nik S, Dolp R, Eylert G, Datu AK, Parousis A, Blakeley C, Jeschke MG. Stem cells derived from burned skin - The future of burn care. EBioMedicine 2018; 37:509-520. [PMID: 30409728 PMCID: PMC6284415 DOI: 10.1016/j.ebiom.2018.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thermal injuries affect millions of adults and children worldwide and are associated with high morbidity and mortality. The key determinant for the survival of burns is rapid wound healing. Large wounds exceed intrinsic wound-healing capacities, and the currently available coverage materials are insufficient due to lack of cellularity, availability or immunological rejection. METHODS Using the surgically debrided tissue, we isolated viable cells from burned skin. The isolated cells cultured in tissue culture dishes and characterized. FINDINGS We report here that debrided burned skin, which is routinely excised from patients and otherwise considered medical waste and unconsciously discarded, contains viable, undamaged cells which show characteristics of mesenchymal skin stem cells. Those cells can be extracted, characterized, expanded, and incorporated into created epidermal-dermal substitutes to promote wound healing in immune-compromised mice and Yorkshire pigs without adverse side effects. INTERPRETATION These findings are of paramount importance and provide an ideal cell source for autologous skin regeneration. Furthermore, this study highlights that skin contains progenitor cells resistant to thermal stress. FUND: Canadian Institutes of Health Research # 123336. CFI Leader's Opportunity Fund: Project # 25407 National Institutes of Health 2R01GM087285-05A1. EMHSeed: Fund: 500463, A generous donation from Toronto Hydro. Integra© Life Science Company provided the meshed bilayer Integra© for porcine experiments.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Canada; Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Canada.
| | - Reinhard Dolp
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Gertraud Eylert
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada
| | | | | | | | - Marc G Jeschke
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada; Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
52
|
Conditioned medium of ovine Wharton's jelly-derived mesenchymal stem cells improves growth and reduces ROS generation of isolated secondary follicles after short-term in vitro culture. Theriogenology 2018; 125:56-63. [PMID: 30388472 DOI: 10.1016/j.theriogenology.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the effect of the conditioned medium of ovine Wharton's jelly-derived mesenchymal stem cells (oWJ-MSCs) on the morphology, growth, reactive oxygen species (ROS) and glutathione (GSH) intracellular levels, active mitochondria, and meiotic resumption of isolated ovine secondary follicles in vitro. The oWJ-MSCs were isolated and the medium where they were cultured was recovered (conditioned medium). Isolated ovine secondary follicles were cultured for 6 days in 1) supplemented α-MEM+ (control); 2) 50% α-MEM+ + 50% conditioned medium (α-MEM + CM group) or 3) conditioned medium only (CM group). The parameters analyzed were morphology, antrum formation, follicle and oocyte growth, ROS and GSH levels, mitochondrial activity and meiotic resumption. The percentage of normal follicles, antrum formation, and fully grown oocytes did not differ (P > 0.05) among treatments. Follicles cultured in α-MEM + CM group had greater (P < 0.05) diameter than other treatments after culture. Moreover, the diameter of the follicles cultured in CM alone was higher (P < 0.05) than in the α-MEM+. In addition, α-MEM + CM and CM treatments increased the growth rate compared to the α-MEM+. Treatments containing conditioned medium (α-MEM + CM or CM) significantly reduced ROS levels compared to the control medium. Moreover, mitochondrial activity was higher in α-MEM+ and α-MEM + CM than in CM alone. All treatments showed oocytes in GV, GVBD and MI. In conclusion, oWJ-MSCs conditioned medium, especially when associated with α-MEM, improves the growth of secondary follicles and reduces ROS generation after short-term culture.
Collapse
|
53
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
54
|
Xue W, Yu J, Chen W. Plants and Their Bioactive Constituents in Mesenchymal Stem Cell-Based Periodontal Regeneration: A Novel Prospective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7571363. [PMID: 30175141 PMCID: PMC6098897 DOI: 10.1155/2018/7571363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Periodontitis is a common chronic inflammatory disease, which causes the destruction of both the soft and mineralized tissues. However, current treatments such as bone graft materials, barrier membranes, and protein products all have difficulties in regenerating the complete periodontal tissue structure. Stem cell-based tissue engineering has now emerged as one of the most effective treatments for the patients suffering from periodontal diseases. Plants not only can be substrates for life processes, but also contain hormones or functional molecules. Numbers of preclinical studies have revealed that products from plant can be successfully applied in modulating proliferation and differentiation of human mesenchymal stem cells. Plant-derived substances can induce stem cells osteogenic differentiation, and they also possess angiogenic potency. Furthermore, in the field of tissue engineering, plant-derived compounds or plant extracts can be incorporated with biomaterials or utilized as biomaterials for cell transplantation. So it is speculated that botanical products may become a new perspective in stem cell-based periodontal regeneration. However, the lack of achieving predict clinical efficacy and quality control has been the major impediment to its extensive application. This review gives an overview of the prospect of applying different plant-derived substances in various human mesenchymal stem cells-based periodontal regeneration.
Collapse
Affiliation(s)
- Wenqing Xue
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Endodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Wu Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
55
|
Pillai SS, Yukawa H, Onoshima D, Biju V, Baba Y. Förster Resonance Energy Transfer Mediated Photoluminescence Quenching in Stoichiometrically Assembled CdSe/ZnS Quantum Dot-Peptide Labeled Black Hole Quencher Conjugates for Matrix Metalloproteinase-2 Sensing. ANAL SCI 2018; 33:137-142. [PMID: 28190830 DOI: 10.2116/analsci.33.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The steady state and time-resolved photoluminescence quenching of streptavidin modified CdSe/ZnS quantum dots (QDs) instigated by biotin-peptide-BHQ-1 (biotin-pep-BHQ-1) molecule was investigated. Here, we have achieved an efficient photoluminescence (PL) quenching of QDs with the conjugation of dark quencher (black hole quencher-BHQ) molecules intermediated with the GPLGVRGK peptide. The luminescence of streptavidin-QDs585 was decreased upon titration with a nano molar concentration of the biotin-GPLGVRGK-BHQ-1 molecule. It has been suggested that the decrease of QDs PL occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of steady state photoluminescence intensity measurements as well as time resolved lifetime measurements of streptavidin-QDs and QDs-(pep-BHQ-1)n conjugates. The sequence of intermediate peptide GPLG↓VRGK can act as a target material for matrix metalloproteinases-2 (MMP-2) produced by cancer cells at its Gly and Val region, shown by the down-headed arrow. Interestingly, here the reported self-assembled QDs-(pep-BHQ-1)n conjugates could detect the presence MMP-2 at a detection limit of 1 ng/mL with a clear luminescence recovery.
Collapse
|
56
|
Yi T, Huang S, Liu G, Li T, Kang Y, Luo Y, Wu J. Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS APPLIED BIO MATERIALS 2018; 1:193-209. [DOI: 10.1021/acsabm.8b00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tianqi Yi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxiong Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Tiancheng Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuxi Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Polymer Composites and Functional Materials of Ministry of Education, , Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
57
|
Subbarao RB, Shivakumar SB, Choe YH, Son YB, Lee HJ, Ullah I, Jang SJ, Ock SA, Lee SL, Rho GJ. CD105 + Porcine Endometrial Stromal Mesenchymal Stem Cells Possess Differentiation Potential Toward Cardiomyocyte-Like Cells and Insulin-Producing β Cell-Like Cells In Vitro. Reprod Sci 2018; 26:669-682. [PMID: 29986624 DOI: 10.1177/1933719118786461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porcine mesenchymal stem cells (MSCs) are similar to human MSCs, hence considered a valuable model for assessing potential for cell therapy. Porcine adipose-derived MSCs (AD-MSCs) and endometrial stromal MSCs (EMSCs) displayed fibroblast-like morphology and were positive for MSC markers CD73, CD90, and CD105 and negative for hematopoietic markers CD34 and CD45. The EMSCs had similar or slightly higher growth rate compared to AD-MSCs, and similar percentage of cells of both EMSCs and AD-MSCs were at G0/G1 and G2/M phases; however, EMSCs had significantly ( P < .05) higher percentage of cells at S phase of cell cycle than AD-MSCs. Transdifferentiation ability to cardiomyocyte-like cells was confirmed in differentiated cells by the expression of lineage-specific marker genes such as DES, ACTA2, cTnT, and ACTC1 by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, cardiomyocyte-specific protein markers cTnT and ACTC1 were expressed in completely differentiated cells. Endodermal differentiation capacity of EMSCs to pancreatic β cell-like cells was evident with the changes in morphology and the expression of β-cell-specific marker genes such as PDX1, GLUT2, SST, NKX6.1, PAX4, and NGN3 as analyzed by RT-qPCR. The differentiated cells secreted insulin and C-peptide upon glucose challenge and also they expressed insulin, PDX1, PAX4, NGN3, and GLUT2 at protein level as assessed by immunostaining confirming the successful differentiation to β cell-like cells. Porcine EMSCs possess all the characteristics of MSCs and are suitable model for studying molecular mechanisms of cellular differentiation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choe
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Si-Jung Jang
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-A Ock
- 2 Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sung-Lim Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,3 Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
58
|
Liu H, Zhang N, Liu Y, Liu L, Yin G, En L. Effect of Human Wnt10b Transgene Overexpression on Peri-Implant Osteogenesis in Ovariectomized Rats. Hum Gene Ther 2018; 29:1416-1427. [PMID: 29790378 DOI: 10.1089/hum.2018.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the efficacy of human Wnt10b (hWnt10b) transgene expression in ovariectomized (OVX) rats to accelerate osseointegration around titanium implants, and to provide a new strategy for treating osteoporosis with implants. An in vivo osteoporosis model was generated via bilateral ovariectomy in rats, and changes in expression of Wnt pathway-related genes were investigated. In OVX rats with a femur defect, hWnt10b expressed from an adenovirus vector was locally delivered to the defect site prior to implant placement. Surrounding femur tissues were collected 1 and 3 weeks after implantation for imaging, biomechanical testing, and molecular and histological analyses. In an in vitro model, bone-marrow stromal cells (BMSCs) transfected with adenovirus containing hWnt10b (Ad-hWnt10b) were cultured for 2 weeks in adipogenic medium followed by 2 weeks in osteogenic induction medium. Alizarin Red staining and Oil Red O staining, as well as reverse transcription polymerase chain reaction and Western blot analyses, were performed to assess the effect of hWnt10b expression on BMSC differentiation. Expression of Wnt pathway genes was significantly downregulated in OVX rats. OVX rats treated with Ad-hWnt10b prior to induction of a femur defect showed markedly increased ALP, Runx-2, and osteocalcin expression and decreased cathepsin K expression. Histological and imaging analysis showed increases in the number of osteocalcin-positive cells and the density of newly formed bone surrounding the implant in the Ad-hWnt10b group relative to the untreated control. Meanwhile, Ad-hWnt10b-BMSCs showed significantly increased osteogenesis and decreased adipogenesis. hWnt10b may accelerate osseointegration around implants and subsequently enhance bone regeneration and implant stabilization under OVX conditions.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Nian Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yao Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Li Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Guozhu Yin
- Department of Stomatology, Shandong Provincial Hospital affiliated with Shandong University, Jinan, P.R. China
| | - Luo En
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
59
|
Paldi A. Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation. Methods Mol Biol 2018; 1702:27-39. [PMID: 29119500 DOI: 10.1007/978-1-4939-7456-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.
Collapse
Affiliation(s)
- Andras Paldi
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS_951, INSERM, Univ-Evry, Genethon, 1 rue de I'Internationale, Evry, 91002, France.
| |
Collapse
|
60
|
Kim YS, Ahn Y. Functional Relevance of Macrophage-mediated Inflammation to Cardiac Regeneration. Chonnam Med J 2018; 54:10-16. [PMID: 29399560 PMCID: PMC5794473 DOI: 10.4068/cmj.2018.54.1.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide and regenerative medicine is a promising therapeutic option for this disease. We have developed various techniques to attenuate the cardiac remodeling and to regenerate cardiovascular systems via stem cell application. Besides cell therapy, we are interested in the modulation of pathological inflammation mediated by macrophages in the damaged heart tissue to arouse endogenous reparative responses with biocompatible small molecules. Certainly, current understanding of mechanisms of tissue regeneration will lead to the development of innovative regenerative medicine for cardiovascular disease.
Collapse
Affiliation(s)
- Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea.,Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
61
|
Abstract
Aim of the Review The aim of this review is to discuss recent advances in clinical aspects of stem cell therapy in chronic nonischemic heart failure (DCMP) with emphasis on patient selection, stem cell types, and delivery methods. Recent Findings Several stem cell types have been considered for the treatment of DCMP patients. Bone marrow-derived cells and CD34+ cells have been demonstrated to improve myocardial performance, functional capacity, and neurohumoral activation. Furthermore, allogeneic mesenchymal stem cells were also shown to be effective in improving heart function in this patient population; this may represent an important step towards the development of a standardized stem cell product for widespread clinical use in patients with DCMP. Summary The trials of stem cell therapy in DCMP patients have shown some promising results, thus making DCMP apparently more inviting target for stem cell therapy than chronic ischemic heart failure, where studies to date failed to demonstrate a consistent effect of stem cells on myocardial performance. Future stem cell strategies should aim for more personalized therapeutic approach by establishing the optimal stem cell type or their combination, dose, and delivery method for an individual patient adjusted for patient's age and stage of the disease.
Collapse
|
62
|
Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:91-112. [PMID: 30105601 DOI: 10.1007/5584_2018_249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
Collapse
|
63
|
Vats A, Tolley NS, Bishop AE, Polak JM. Embryonic Stem Cells and Tissue Engineering: Delivering Stem Cells to the Clinic. J R Soc Med 2017; 98:346-50. [PMID: 16055897 PMCID: PMC1181832 DOI: 10.1177/014107680509800804] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- A Vats
- Tissue Engineering and Regenerative Medicine Centre, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | | | | | | |
Collapse
|
64
|
Pierro M, Thébaud B, Soll R. Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2017; 11:CD011932. [PMID: 29125893 PMCID: PMC6485972 DOI: 10.1002/14651858.cd011932.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) remains a major complication of prematurity and currently lacks efficient treatments. Mesenchymal stem/stromal cells (MSCs) have been extensively explored as a potential therapy in several preclinical and clinical settings. Human and animal MSCs have been shown to prevent and treat lung injury in various preclinical models of lung diseases, including experimental BPD. OBJECTIVES To determine if MSCs, administered intravenously or endotracheally, are safe and effective in preventing or treating BPD, or both, in preterm infants. SEARCH METHODS We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 10), MEDLINE via PubMed (1966 to 6 November 2016), Embase (1980 to 6 November 2016), and CINAHL (1982 to 6 November 2016). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomized controlled trials (RCTs) and quasi-RCTs. SELECTION CRITERIA We considered RCTs and quasi-RCTs investigating prevention or treatment of BPD, or both, in preterm infants. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality according to prespecified criteria. MAIN RESULTS We found no RCTs or quasi-RCTs addressing the use of MSCs for prevention or treatment of BPD in premature infants. Two RCTs are currently registered and ongoing. AUTHORS' CONCLUSIONS There is insufficient evidence to determine the safety and efficacy of MSCs in the treatment or prevention of BPD in premature infants. The results of the ongoing trials addressing this issue are expected in the near future.
Collapse
Affiliation(s)
- Maria Pierro
- University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore PoliclinicoDepartment of Clinical Sciences and Community HealthMilanItaly
- Alessandro Manzoni HospitalNeonatal Intensive Care UnitLeccoItaly
| | - Bernard Thébaud
- Children’s Hospital of Eastern OntarioDepartment of PediatricsOttawaONCanada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell ResearchOttawaCanada
- University of OttawaDepartment of Cellular and Molecular MedicineOttawaCanada
| | - Roger Soll
- University of Vermont Medical CenterDivision of Neonatal‐Perinatal Medicine111 Colchester AvenueBurlingtonVermontUSA05401
| | | |
Collapse
|
65
|
Abstract
What is a stem cell? Is stemness an intrinsic or extrinsic property? What role does the microenvironment play in the stemness identity? We distinguish four identities for normal and cancerous stem cells and explore their consequences for therapeutic strategy choice in the oncology setting. Acquisition of genetic and epigenetic alterations during cell transformation and disease progression questions the stability of the stemness property's identity in cancers.
Collapse
Affiliation(s)
- Lucie Laplane
- CNRS U8590 - Institut d'histoire et de philosophie des sciences et des techniques (IHPST), université Paris I Panthéon-Sorbonne, 13, rue du Four, 75006 Paris, France - Inserm U1170, Gustave Roussy, 114, rue Edouard Vaillant, 94800 Villejuif, France
| | - Éric Solary
- Inserm U1170, Gustave Roussy, 114, rue Edouard Vaillant, 94800 Villejuif, France - Faculté de médecine Paris-Sud, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
66
|
Abstract
Cell and tissue specific somatic stem cells develop as dynamic populations of precursor cells to discrete tissue and organ differentiation during embryonic and fetal stages and their potential evolves with development. Some of their progeny are sequestered into separate cell niches of tissues as adult somatic stem cells at various times during organ development and differentiation These are diverse cell populations of stem and progenitor cells that respond to homeostatic needs for cell and tissue maintenance and the cycling of differentiated cells for physiological/ endocrinological changes. Nominally, multipotent stem cells in one or more niches follow specific lineages of differentiation that can be followed by diverse markers of differentiation. The activation of precursors appears to be stochastic and results in a population of heterogeneous progenitor cells. When variations in the functional need of the tissue or organ occurs, the progenitor cells exhibit flexibility in their differentiation capacity. Regulation of the progenitors is the result of signals from the stem cell niche that can cause adaptive changes in the behavior or function of the stem -progenitor cell lineage. A possible mechanism may be alteration in the differentiation capacity of the resident or introduced cells. Certain quiescent stem cells also serve as a potential cell reservoir for trauma induced cell regeneration through adaptive changes in differentiation of stem cells, progenitor cells and differentiated cells. If the stem-progenitor cell population is normally depleted or destroyed by trauma, differentiated cells from the niche microenvironment can restore the specific stem potency which suggests the process of dedifferentiation.
Collapse
Affiliation(s)
- Kenyon S Tweedell
- Department of Biological Sciences, University of Notre Dame, Notre Dame IN 46556 USA
| |
Collapse
|
67
|
Vranckx JJ, Hondt MD. Tissue engineering and surgery: from translational studies to human trials. Innov Surg Sci 2017; 2:189-202. [PMID: 31579752 PMCID: PMC6754028 DOI: 10.1515/iss-2017-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022] Open
Abstract
Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.
Collapse
Affiliation(s)
- Jan Jeroen Vranckx
- Department of Plastic and Reconstructive Surgery, KU Leuven University Hospitals, 49 Herestraat, B-3000 Leuven, Belgium
| | - Margot Den Hondt
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU-Leuven University Hospitals, Leuven, Belgium
| |
Collapse
|
68
|
Zou Q, Fu Q. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China. Asian J Urol 2017; 5:57-68. [PMID: 29736367 PMCID: PMC5934513 DOI: 10.1016/j.ajur.2017.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/10/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.
Collapse
Affiliation(s)
- Qingsong Zou
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
69
|
Padovan CS, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A. Expression of Neuronal Markers in Differentiated Marrow Stromal Cells and CD133+ Stem-Like Cells. Cell Transplant 2017; 12:839-48. [PMID: 14763503 DOI: 10.3727/000000003771000183] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bone marrow stromal cells, which normally give rise to bone, cartilage, adipose tissue, and hematopoiesis-supporting cells, have been shown to differentiate in vitro and in vivo into neural-like cells. In this study, we examined the expression of neuronal and glial markers in human marrow stromal cells under culture conditions appropriate for neural stem cells, and compared the unsorted cell population to bone marrow CD133+ stem-like cells using immunofluorescence, Western blot, and functional patch-clamp analysis. Overall, the expression of the early neuronal marker β3-tubulin was most pronounced in the presence of DMEM/F12 and neurotrophin 3 (NT3) or brain-derived neurotrophic factor (BDNF), when marrow stromal cells were cultured onto fibronectin. Electrophysiological examination, however, could not show fast sodium currents or functional neurotransmitter receptors in differentiated marrow stromal cells. CD133+ mesenchymal stem-like cells, but not CD34+/CD133– cells, generally showed a higher expression of neuronal markers than did unsorted marrow stromal cells, and differentiated CD133+ cells more resembled neuron-like cells.
Collapse
Affiliation(s)
- Claudio S Padovan
- Department of Neurology, Ludwig-Maximilian-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
70
|
Morigi M, Benigni A, Remuzzi G, Imberti B. The Regenerative Potential of Stem Cells in Acute Renal Failure. Cell Transplant 2017; 15 Suppl 1:S111-7. [PMID: 16826803 DOI: 10.3727/000000006783982449] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adult stem cells have been characterized in several tissues as a subpopulation of cells able to maintain, generate, and replace terminally differentiated cells in response to physiological cell turnover or tissue injury. Little is known regarding the presence of stem cells in the adult kidney but it is documented that under certain conditions, such as the recovery from acute injury, the kidney can regenerate itself by increasing the proliferation of some resident cells. The origin of these cells is largely undefined; they are often considered to derive from resident renal stem or progenitor cells. Whether these immature cells are a subpopulation preserved from the early stage of nephrogenesis is still a matter of investigation and represents an attractive possibility. Moreover, the contribution of bone marrow-derived stem cells to renal cell turnover and regeneration has been suggested. In mice and humans, there is evidence that extrarenal cells of bone marrow origin take part in tubular epithelium regeneration. Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. Recent studies have demonstrated that hematopoietic stem cells were mobilized following ischemia/reperfusion and engrafted the kidney to differentiate into tubular epithelium in the areas of damage. The evidence that mesenchymal stem cells, by virtue of their renoprotective property, restore renal tubular structure and also ameliorate renal function during experimental acute renal failure provides opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Marina Morigi
- Mario Negri Institute for Pharmacological Research, Via Gavazzeni 11, 24125 Bergamo, Italy.
| | | | | | | |
Collapse
|
71
|
Hayashi M, Li TS, Ito H, Mikamo A, Hamano K. Comparison of Intramyocardial and Intravenous Routes of Delivering Bone Marrow Cells for the Treatment of Ischemic Heart Disease: An Experimental Study. Cell Transplant 2017; 13:639-47. [PMID: 15648734 DOI: 10.3727/000000004783983558] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The implantation of bone marrow cells (BMCs) into ischemic heart after myocardial infarction can induce angiogenesis and improve heart function. We compared the advantages of delivering BMCs intramyocardially and intravenously. An acute myocardial infarction model was created by the ligation of left anterior descending artery in female Dark Agouti rats. The rats were then randomly divided into four treatment groups: one given an intramyocardial injection of phosphate-buffered saline (PBS group), one given an intravenous injection of 2 × 107 BMCs from male rats (IV group), one given an intramyocardial injection with total of 2 × 107 BMCs from male rats at four points in the infarction area (IM group), and one given an intravenous injection of 10-fold the number of BMCs from male rats (10xIV group). Quantitative analysis of the SRY gene by real-time PCR showed that the survival of BMCs in the infarcted area was significantly higher in the IM group than in the IV and 10xIV groups, 3 days after treatment (p < 0.05), but not thereafter. However, the blood flow in the infarcted myocardium was significantly better in the IM and 10xIV groups than in the PBS and IV groups 14 days after treatment (p < 0.05). Echocardiography showed that the LVEF continued to decrease in the PBS and IV groups, but was stable after 3 days in the IM and 10xIV groups. By 14 days after treatment, the LVEF was significantly higher in the IM and 10xIV groups than in the PBS and IV groups (p < 0.01). Our results showed that BMCs were more effective delivered intramyocardially than intravenously for inducing angiogenesis and repairing injured myocardium.
Collapse
Affiliation(s)
- Masanori Hayashi
- Division of Cardiovascular Surgery, Department of Medical Bioregulation, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, Japan 755-8505
| | | | | | | | | |
Collapse
|
72
|
Wang Y, Zhang X, Shao J, Liu H, Liu X, Luo E. Adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/β-catenin pathway. Sci Rep 2017. [PMID: 28623357 PMCID: PMC5473871 DOI: 10.1038/s41598-017-03899-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies have demonstrated the stimulatory effects of adiponectin on bone formation, but the mechanism underlying these effects remains unclear. The Wnt/β-catenin pathway, one of the most important pathways in osteogenesis, has rarely been associated with the osteogenic effects of adiponectin in previous studies. The present study was designed to investigate the effects of adiponectin on bone mesenchymal stem cell (BMSC) osteogenic differentiation and bone formation through the Wnt/β-catenin pathway. We detected adiponectin receptor expression in BMSCs, constructed a recombinant adenovirus containing the human adiponectin gene, and then used the adenovirus to transfect BMSCs in vitro or injected the adenovirus into bone defect areas in animal models. Wnt/β-catenin pathway and osteogenesis were detected by real-time PCR, western blotting, immunofluorescence, HE staining and micro-CT. In both our in vivo and in vitro experiments, we detected higher gene and protein expression levels of the Wnt/β-catenin pathway-related factors β-catenin and cyclinD1 in adiponectin transgenic BMSCs and rats. Similar results were noted regarding the gene and protein expression levels of osteogenesis-related genes. In addition, more new bone formation was observed in the adiponectin-treated groups. Our results indicate that adiponectin could facilitate BMSC osteogenic differentiation and osteogenesis, and the Wnt/β-catenin pathway was involved in the osteogenic effect of adiponectin.
Collapse
Affiliation(s)
- Yiyao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jun Shao
- Department of Stomatology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, People's Republic of China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
73
|
Mu JS, Xu S, Dong S, Zhang J, Bo P. Differentiation of mouse-induced pluripotent stem cells into cardiomyocytesin vitro. J Histotechnol 2017. [DOI: 10.1080/01478885.2017.1326446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jun-sheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shijun Xu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shengjun Dong
- Department of Cardiac Surgery, Binzhou Medical University Hospital, Binzhou, P. R. China
| | - Jianqun Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Ping Bo
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
74
|
Cofre J, Abdelhay E. Cancer Is to Embryology as Mutation Is to Genetics: Hypothesis of the Cancer as Embryological Phenomenon. ScientificWorldJournal 2017; 2017:3578090. [PMID: 28553657 PMCID: PMC5434308 DOI: 10.1155/2017/3578090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/20/2017] [Indexed: 01/20/2023] Open
Abstract
Despite numerous advances in cell biology, genetics, and developmental biology, cancer origin has been attributed to genetic mechanisms primarily involving mutations. Embryologists have expressed timidly cancer embryological origin with little success in leveraging the discussion that cancer could involve a set of conventional cellular processes used to build the embryo during morphogenesis. Thus, this "cancer process" allows the harmonious and coherent construction of the embryo structural base, and its implementation as the embryonic process involves joint regulation of differentiation, proliferation, cell invasion, and migration, enabling the human being recreation of every generation. On the other hand, "cancer disease" is the representation of an abnormal state of the cell that might happen in the stem cells of an adult person, in which the mechanism for joint gene regulating of differentiation, proliferation, cell invasion, and migration could be reactivated in an entirely inappropriate context.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, 88040-900 Florianópolis, SC, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
75
|
Adult Stem Cells in the Pathogenesis and Treatment of Endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2017. [DOI: 10.5301/jeppd.5000310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human endometrium is a dynamic tissue that undergoes approximately 400 cyclical episodes of proliferation, differentiation, shedding, and regeneration in a woman's reproductive lifespan. The regenerative capacity of human endometrium is likely mediated by adult stem cells. At the cellular level, endometrial mesenchymal stem/stromal cells, located in both the functionalis and basalis layers, support regeneration of the stromal vascular compartment and epithelial progenitor cells, postulated to reside in the basalis epithelium, likely regenerate the glands. Bone marrow adult stem cells, including endothelial progenitor cells, may also participate. Endometriosis can be considered an endometrial proliferative disorder due to dysregulation of the cellular and molecular regenerative processes. Endometriosis is primarily thought to occur via retrograde menstruation of endometrial debris. It is postulated that endometrial stem/progenitor cells, which have been identified in menstrual blood, are shed into the peritoneal cavity where they adhere to pelvic organs and initiate endometriotic lesions. The homing of bone-marrow-derived adult stem cells to endometriotic lesions is thought to drive progression of the disease. New drug therapies are urgently required for the treatment of endometriosis due to frequent disease recurrence with current surgical or medical treatments. Medications directly targeting endometrial stem/progenitor cells during menstruation, or following surgery, or targeting bone marrow cell trafficking, are potential targets for future therapies to manage disease initiation and progression. In this review, we will summarize the current literature on adult stem cell contributions to the development of endometriosis and will then examine the current potential therapies that may target endometrial stem/progenitor cells.
Collapse
|
76
|
Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian J Clin Biochem 2017; 33:46-52. [PMID: 29371769 DOI: 10.1007/s12291-017-0641-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/31/2017] [Indexed: 11/29/2022]
Abstract
Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- 1Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Soltani
- 2Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Hamid Reza Rahmani
- 3Department of Animal Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Abbas Sahebghadam Lotfi
- 1Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- 4Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
77
|
Hematopoietic Processes in Eosinophilic Asthma. Chest 2017; 152:410-416. [PMID: 28130045 DOI: 10.1016/j.chest.2017.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 01/21/2023] Open
Abstract
Airway eosinophilia is a hallmark of allergic asthma, and understanding mechanisms that promote increases in lung eosinophil numbers is important for effective pharmacotherapeutic development. It has become evident that expansion of hematopoietic compartments in the bone marrow (BM) promotes differentiation and trafficking of mature eosinophils to the airways. Hematopoietic progenitor cells egress the BM and home to the lungs, where in situ differentiation within the tissue provides an ongoing source of proinflammatory cells. In addition, hematopoietic progenitor cells in the airways can respond to locally derived alarmins to produce a panoply of cytokines, thereby themselves acting as effector proinflammatory cells that potentiate type 2 responses in eosinophilic asthma. In this review, we provide evidence for these findings and discuss novel targets for modulating eosinophilopoietic processes, migration, and effector function of precursor cells.
Collapse
|
78
|
Galvanauskas V, Grincas V, Simutis R, Kagawa Y, Kino-oka M. Current state and perspectives in modeling and control of human pluripotent stem cell expansion processes in stirred-tank bioreactors. Biotechnol Prog 2017; 33:355-364. [DOI: 10.1002/btpr.2431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Vykantas Grincas
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Rimvydas Simutis
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Yuki Kagawa
- Department of Biotechnology; Osaka University; Osaka Japan
| | | |
Collapse
|
79
|
Xiao W, Guo S, Gao C, Dai G, Gao Y, Li M, Wang X, Hu D. A Randomized Comparative Study on the Efficacy of Intracoronary Infusion of Autologous Bone Marrow Mononuclear Cells and Mesenchymal Stem Cells in Patients With Dilated Cardiomyopathy. Int Heart J 2017; 58:238-244. [DOI: 10.1536/ihj.16-328] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wentao Xiao
- Department of Cardiology, Henan Cardiovascular Hospital, Zhengzhou University People’s Hospital
| | - Suping Guo
- Department of Cardiology, Henan Cardiovascular Hospital, Zhengzhou University People’s Hospital
| | - Chuanyu Gao
- Department of Cardiology, Henan Cardiovascular Hospital, Zhengzhou University People’s Hospital
| | - Guoyou Dai
- Center for Translational Study, Henan Cardiovascular Hospital, Zhengzhou University People’s Hospital
| | - Yongjv Gao
- Department of Nuclear Medicine, Henan Cardiovascular Hospital, Zhengzhou University People’s Hospital
| | - Muwei Li
- Department of Cardiology, Henan Cardiovascular Hospital, Zhengzhou University People’s Hospital
| | - Xianpei Wang
- Department of Cardiology, Henan Cardiovascular Hospital, Zhengzhou University People’s Hospital
| | - Dayi Hu
- Department of Cardiology, Heart Center, Peking University People’s Hospital
| |
Collapse
|
80
|
Abstract
Stem cells are commonly defined as undifferentiated cells capable of self-renewing and giving rise to a large number of differentiated progeny. It is becoming increasingly apparent that there exist cancer stem cells (CSCs) from which the cells of any given malignancy arise, whereby only a few cells out of a population of cancer cells are able to initiate tumor formation. These CSCs, like their normal counterparts, are characterized by self-renewal and the ability to “differentiate” into all of the cell types in the original tumor. Current chemotherapeutic strategies involve using non-specific cytotoxic agents that target rapidly cycling cells. Although this may reduce disease burden in many cases, these therapies may miss the rare, self-renewing population that truly gives rise to the malignancy (the CSC). This review will focus on the recent discovery of stem cell-like cells in human brain tumors, putative “brain cancer stem cells,” which exhibit the properties of self-renewal and the ability to recapitulate the original tumor heterogeneity. Dissecting the molecular mechanisms that underlie the ability of these cells to self-renew and maintain quiescence may allow the development of novel therapeutic strategies that will allow for more efficacious and less toxic therapies for these devastating malignancies.
Collapse
Affiliation(s)
- Joseph L Lasky
- Division of Neurosurgery, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
81
|
Yagishita A, Ueno T, Esumi H, Saya H, Kaneko K, Tsuchihara K, Urano Y. Development of Highly Selective Fluorescent Probe Enabling Flow-Cytometric Isolation of ALDH3A1-Positive Viable Cells. Bioconjug Chem 2016; 28:302-306. [DOI: 10.1021/acs.bioconjchem.6b00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Atsushi Yagishita
- Division
of Gene Regulation, Institute for Advanced Medical Research, Graduate
School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Tasuku Ueno
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Hiroyasu Esumi
- Research
Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideyuki Saya
- Division
of Gene Regulation, Institute for Advanced Medical Research, Graduate
School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | | | | | - Yasuteru Urano
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
82
|
Xu RW, Zhang WJ, Zhang JB, Wen JY, Wang M, Liu HL, Pan L, Yu CA, Lou JN, Liu P. A Preliminary Study of the Therapeutic Role of Human Early Fetal Aorta-derived Endothelial Progenitor Cells in Inhibiting Carotid Artery Neointimal Hyperplasia. Chin Med J (Engl) 2016; 128:3357-62. [PMID: 26668152 PMCID: PMC4797513 DOI: 10.4103/0366-6999.171453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Endothelial cell damage is an important pathophysiological step of restenosis after angioplasty and stenting. Cell transplantation has great therapeutic potential for endothelial recovery. We investigated the effect of transplanting endothelial progenitor cells (EPCs) derived from human early fetal aortas in rat injured arteries. Methods: The carotid arterial endothelium of Sprague-Dawley rats was damaged by dilatation with a 1.5 F balloon catheter, and then EPCs derived from human early fetal aortas (<14 weeks) were injected into the lumen of the injured artery in transplanted rats, with an equal volume of normal saline injected into control rats. Rats were sacrificed at 2 and 4 weeks after treatment and transplanted cells were identified by immunohistochemical staining with anti-human CD31 and anti-human mitochondria antibodies. Arterial cross-sections were analyzed by pathology, immunohistochemistry, and morphometry. Results: Green fluorescence-labeled EPCs could be seen in the endovascular surface of balloon-injured vessels after transplantation. The intimal area and intimal/medial area ratio were significantly smaller in the transplanted group than in the control (P < 0.05) and the residual lumen area was larger (P < 0.05). After EPC transplantation, a complete vascular endothelial layer was formed, which was positive for human von Willebrand factor after immunohistochemical staining, and immunohistochemical staining revealed many CD31- and mitochondria-positive cells in the re-endothelialized endothelium with EPC transplantation but not control treatment. Conclusion: EPCs derived from human early fetal aorta were successfully transplanted into injured vessels and might inhibit neointimal hyperplasia after vascular injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100073, China
| |
Collapse
|
83
|
Mitos y realidades del uso de las células troncales en la terapia oftalmológica. REVISTA MEXICANA DE OFTALMOLOGÍA 2016. [DOI: 10.1016/j.mexoft.2015.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
84
|
Changing cells: An analysis of the concept of plasticity in the context of cellular differentiation. BIOSOCIETIES 2016. [DOI: 10.1057/s41292-016-0027-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
85
|
G-CSF-mobilized Bone Marrow Mesenchymal Stem Cells Replenish Neural Lineages in Alzheimer's Disease Mice via CXCR4/SDF-1 Chemotaxis. Mol Neurobiol 2016; 54:6198-6212. [PMID: 27709493 DOI: 10.1007/s12035-016-0122-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
Recent studies reported granulocyte colony-stimulating factor (G-CSF) treatment can improve the cognitive function of Alzheimer's disease (AD) mice, and the mobilized hematopoietic stem cells (HSCs) or bone marrow mesenchymal stem cells (BM-MSCs) are proposed to be involved in this recovery effect. However, the exact role of mobilized HSC/BM-MSC in G-CSF-based therapeutic effects is still unknown. Here, we report that C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor 1 (SDF-1) chemotaxis was a key mediator in G-CSF-based therapeutic effects, which was involved in the recruitment of repair-competent cells. Furthermore, we found both mobilized HSCs and BM-MSCs were able to infiltrate into the brain, but only BM-MSCs replenished the neural lineage cells and contributed to neurogenesis in the brains of AD mice. Together, our data show that mobilized BM-MSCs are involved in the replenishment of neural lineages following G-CSF treatment via CXCR4/SDF-1 chemotaxis and further support the potential use of BM-MSCs for further autogenically therapeutic applications.
Collapse
|
86
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
87
|
Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry. Stem Cells Int 2016; 2016:7231038. [PMID: 27648076 PMCID: PMC5018320 DOI: 10.1155/2016/7231038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.
Collapse
|
88
|
Mirzaei H, Salehi H, Sahebkar A, Avan A, Jaafari MR, Namdar A, Rezaei A, Mirzaei HR. Deciphering biological characteristics of tumorigenic subpopulations in human colorectal cancer reveals cellular plasticity. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 21:64. [PMID: 27904609 PMCID: PMC5122187 DOI: 10.4103/1735-1995.187355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND It is supposed that human colorectal cancer consists of a phenotypically distinct population of tumorigenic cancer cells known as cancer stem cells (CSCs) which play a pivotal role in cancer progression, maintenance, metastasis, and the relapse. The aim of this effort was to investigate and compare biological characterizations of CD133+ with CD133- cell subsets isolated from both primary and metastatic human colorectal tumors. MATERIALS AND METHODS Using our optimized protocols, unfixed colorectal tumors were enzymatically and mechanically dissociated into single cells followed by evaluation of postdigestion viability. The obtained single cell suspensions were then subjected to cell sorting using magnetic beads according to CD133 marker. The resultant CD133+ and CD133- cell subsets were cultured in specific cell culture medium followed by aldehyde dehydrogenases (ALDH) activity assessment and flow cytometric analyses. RESULTS The results demonstrate that CD133+ cells have smaller size and lower complexity of intracellular structure, sphere formation ability, and ALDH enzyme activity while CD133- cells isolated from primary colon cancer samples were not able to form a sphere and did not show ALDH enzyme activity. Intriguingly, CD133- cells isolated from metastatic colorectal cancer specimen were able to form a sphere and shown ALDH enzyme activity. The present study indicates that our results are in agreement with SC theory and possibility of the existence of cellular plasticity among cancer subpopulations should be portrayed. CONCLUSION We also conclude that this cellular plasticity is greatly affected by tumor microenvironment cues and the role of CSCs niche in cancer therapeutic strategies should be precisely considered.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afshin Namdar
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
89
|
Müller AM, Huppertz S, Henschler R. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path? Transfus Med Hemother 2016; 43:247-254. [PMID: 27721700 DOI: 10.1159/000447748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration.
Collapse
Affiliation(s)
- Albrecht M Müller
- Institute of Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| | - Sascha Huppertz
- Institute of Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| | - Reinhard Henschler
- Blood Center Zürich, Swiss Red Cross, Schlieren, Switzerland; Red Cross Blood Service Graubünden, Chur, Switzerland
| |
Collapse
|
90
|
Inamdar AA, Inamdar AC. Heart Failure: Diagnosis, Management and Utilization. J Clin Med 2016; 5:E62. [PMID: 27367736 PMCID: PMC4961993 DOI: 10.3390/jcm5070062] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/28/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022] Open
Abstract
Despite the advancement in medicine, management of heart failure (HF), which usually presents as a disease syndrome, has been a challenge to healthcare providers. This is reflected by the relatively higher rate of readmissions along with increased mortality and morbidity associated with HF. In this review article, we first provide a general overview of types of HF pathogenesis and diagnostic features of HF including the crucial role of exercise in determining the severity of heart failure, the efficacy of therapeutic strategies and the morbidity/mortality of HF. We then discuss the quality control measures to prevent the growing readmission rates for HF. We also attempt to elucidate published and ongoing clinical trials for HF in an effort to evaluate the standard and novel therapeutic approaches, including stem cell and gene therapies, to reduce the morbidity and mortality. Finally, we discuss the appropriate utilization/documentation and medical coding based on the severity of the HF alone and with minor and major co-morbidities. We consider that this review provides an extensive overview of the HF in terms of disease pathophysiology, management and documentation for the general readers, as well as for the clinicians/physicians/hospitalists.
Collapse
Affiliation(s)
- Arati A Inamdar
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA.
- Ansicht Scidel Inc., Edison, NJ 08837, USA.
| | | |
Collapse
|
91
|
Akpulat U, Onbaşılar İ, Kocaefe YÇ. Tenotomy immobilization as a model to investigate skeletal muscle fibrosis (with emphasis on Secreted frizzled-related protein 2). Physiol Genomics 2016; 48:397-408. [DOI: 10.1152/physiolgenomics.00010.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 11/22/2022] Open
Abstract
The pathological endpoint of congenital and senile myopathies is chronic muscle degeneration characterized by the atrophy of contractile elements, accompanied by fibrosis and fatty infiltration of the interstitium. Tenotomy is the release of preload that causes abrupt shortening of the muscle and models atrophy and fibrosis without prominent inflammatory response. Fibrosis in the skeletal muscle is known to be triggered by transforming growth factor (TGF)-β, which is activated by inflammatory events. As these were lacking, tenotomy provided an opportunity to investigate transcriptional events on a background without inflammation. An unbiased look at the transcriptome of tenotomy-immobilized soleus muscle revealed that the majority of the transcriptional changes took place in the first 4 wk. Regarding atrophy, proteasomal and lysosomal pathways were actively involved in accompanying cathepsins and calpains in the breakdown of the macromolecular contractile machinery. The transcriptome provided clear-cut evidence for the upregulation of collagens and several extracellular matrix components that define fibrotic remodeling of the skeletal muscle architecture as well as activation of the fibro-adipogenic precursors. Concomitantly, Sfrp2, a Wnt antagonist as well as a procollagen processor, accompanied fibrosis in skeletal muscle with an expression that was stringently confined to the slow-twitch fibers. An interpreted mechanistic scenario construed the kinetic events initiated through the abnormal shortening of the muscle fibers as enough to trigger the resident latent TGF-β in the extracellular matrix, leading to the activation of fibroadipogenic precursors. As in the heart, Sfrp2 shows itself to be a therapeutic target for the prevention of irreversible fibrosis in degenerative skeletal muscle conditions.
Collapse
Affiliation(s)
- Uğur Akpulat
- Department of Medical Biology, Hacettepe University School of Medicine, Sihhiye Ankara, Turkey; and
| | - İlyas Onbaşılar
- Laboratory Animal Breeding and Research Unit, Hacettepe University School of Medicine, Sihhiye Ankara, Turkey
| | - Y. Çetin Kocaefe
- Department of Medical Biology, Hacettepe University School of Medicine, Sihhiye Ankara, Turkey; and
| |
Collapse
|
92
|
Vadalà G, Russo F, Ambrosio L, Loppini M, Denaro V. Stem cells sources for intervertebral disc regeneration. World J Stem Cells 2016; 8:185-201. [PMID: 27247704 PMCID: PMC4877563 DOI: 10.4252/wjsc.v8.i5.185] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.
Collapse
|
93
|
Sangkum P, Yafi FA, Kim H, Bouljihad M, Ranjan M, Datta A, Mandava SH, Sikka SC, Abdel-Mageed AB, Hellstrom WJG. Effect of adipose tissue-derived stem cell injection in a rat model of urethral fibrosis. Can Urol Assoc J 2016; 10:E175-E180. [PMID: 27790299 DOI: 10.5489/cuaj.3435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION We sought to evaluate the therapeutic effect of adi-pose tissue-derived stem cells (ADSCs) in a rat model of urethral fibrosis. METHODS Eighteen (18) male Sprague-Dawley rats (300‒350 g) were divided into three groups: (1) sham (saline injection); (2) urethral fibrosis group (10 μg transforming growth factor beta 1 (TGF-β1) injection); and (3) ADSCs group (10 μg TGF-β1 injection plus 2 × 105 ADSCs). Rat ADSCs were harvested from rat inguinal fat pads. All study animals were euthanized at two weeks after urethral injection. Following euthanasia, rat urethral tissue was harvested for histologic evaluation. Type I and III collagen levels were quantitated by Western blot analysis. RESULTS TGF-β1 injection induced significant urethral fibrosis and increased collagen type I and III expression (p<0.05). Significant decrease in submucosal fibrosis and collagen type I and III expression were noted in the ADSCs group compared with the urethral fibrosis group (p<0.05). TGF-β1 induced fibrotic changes were ameliorated by injection of ADSCs. CONCLUSIONS Local injection of ADSCs in a rat model of urethral fibrosis significantly decreased collagen type I and III. These findings suggest that ADSC injection may prevent scar formation and potentially serve as an adjunct treatment to increase the success rate of primary treatment for urethral stricture disease. Further animal and clinical studies are needed to confirm these results.
Collapse
Affiliation(s)
- Premsant Sangkum
- Division of Urology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Faysal A Yafi
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mostafa Bouljihad
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Manish Ranjan
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Amrita Datta
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Sree Harsha Mandava
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Wayne J G Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
94
|
Lynch JR, Wang JY. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer. Int J Mol Sci 2016; 17:ijms17050707. [PMID: 27187360 PMCID: PMC4881529 DOI: 10.3390/ijms17050707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Jennifer R Lynch
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jenny Yingzi Wang
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
- Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
95
|
Roura S, Gálvez-Montón C, Bayes-Genis A. Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. J Tissue Eng Regen Med 2016; 11:2304-2313. [PMID: 27061269 DOI: 10.1002/term.2129] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Fibrin is a topical haemostat, sealant and tissue glue, which consists of concentrated fibrinogen and thrombin. It has broad medical and research uses. Recently, several studies have shown that engineered patches comprising mixtures of biological or synthetic materials and progenitor cells showed therapeutic promise for regenerating damaged tissues. In that context, fibrin maintains cell adherence at the site of injury, where cells are required for tissue repair, and offers a nurturing environment that protects implanted cells without interfering with their expected benefit. Here we review the past, present and future uses of fibrin, with a focus on its use as a scaffold material for cardiac repair. Fibrin patches filled with regenerative cells can be placed over the scarring myocardium; this methodology avoids many of the drawbacks of conventional cell-infusion systems. Advantages of using fibrin also include extraction from the patient's blood, an easy readjustment and implantation procedure, increase in viability and early proliferation of delivered cells, and benefits even with the patch alone. In line with this, we discuss the numerous preclinical studies that have used fibrin-cell patches, the practical issues inherent in their generation, and the necessary process of scaling-up from animal models to patients. In the light of the data presented, fibrin stands out as a valuable biomaterial for delivering cells to damaged tissue and for promoting beneficial effects. However, before the fibrin scaffold can be translated from bench to bedside, many issues must be explored further, including suboptimal survival and limited migration of the implanted cells to underlying ischaemic myocardium. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Santiago Roura
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain.,Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
96
|
Arab-Bafrani Z, Shahbazi-Gahrouei D, Abbasian M, Saberi A, Fesharaki M, Hejazi SH, Manshaee S. Culturing in serum-free culture medium on collagen type-I-coated plate increases expression of CD133 and retains original phenotype of HT-29 cancer stem cell. Adv Biomed Res 2016; 5:59. [PMID: 27135028 PMCID: PMC4832887 DOI: 10.4103/2277-9175.179181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/03/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A sub-population of tumor cells termed cancer stem cells (CSCs) has an important role in tumor initiation, progression, and recurrence. Selecting a suitable procedure for isolation and enrichment of CSCs is the biggest challenge in the study of CSCs. In the present study, the role of the combination of stem cell culture medium and collagen type-I was evaluated for successful isolation and enrichment of HT-29 CSCs. MATERIALS AND METHODS HT-29 cells were cultured in serum-containing medium (parental culture medium: Medium + 10% fetal bovine serum) and serum-free medium (stem cell culture medium); both on collagen-coated plates. Spheres forming ability and CD133 expression, as a potential marker of colorectal CSCs, were evaluated in two culture mediums. RESULTS The results show spheroids usually give rise completely within 15 days in the stem cell culture medium on the collagen-coated plate. CD133 expression in spheroid cells (84%) is extensively higher than in parental cells (25%). Moreover, relative to parental cells, spheroid cells were more radioresistance. CONCLUSION Finding of this study suggested that CSCs derived from colon cancer cell line (HT-29) can be propagated and form colonospheres in serum-free culture medium on collagen type-I. According to maintenance of their original phenotype in these conditions, it seems serum-free culture medium on collagen type-I is a suitable way to drug screening of HT-29 CSCs.
Collapse
Affiliation(s)
- Zahra Arab-Bafrani
- Department of Medical Physics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Abbasian
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrafarin Fesharaki
- Department of Cell Sciences, Research Center Medical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Manshaee
- Department of Pharmacology and Biotechnology, School of Biosciences, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
97
|
Chandrakesan P, Panneerselvam J, Qu D, Weygant N, May R, Bronze MS, Houchen CW. Regulatory Roles of Dclk1 in Epithelial Mesenchymal Transition and Cancer Stem Cells. ACTA ACUST UNITED AC 2016; 7. [PMID: 27335684 PMCID: PMC4913783 DOI: 10.4172/2157-2518.1000257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The identification of functionally relevant subpopulations of therapy-resistant cancer cells is a challenge. These cells, intrinsically resistant to conventional therapy, can cause recurrence. Evidence has suggested that therapy-resistant cancer cells are likely epithelial–mesenchymal transition (EMT) cells and/or stem-like cells called cancer stem cells (CSCs). EMT, a normal embryological process that converts epithelial cells into mesenchymal cells, is frequently activated during cancer development and progression. CSCs are a small subpopulation of cancer cells within a tumor mass that have the ability to self-renew and maintain tumor-initiating capacity by giving rise to heterogeneous lineages of cancer cells that comprise the whole tumor. Although the origin of CSCs and EMT cells remains to be fully explored, a growing body of evidence has indicated that the biology of EMT and CSCs is strongly linked. Doublecortin-like kinase 1 (DCLK1), a cancer stem cell marker, is functionally involved in maintaining cancer stemness and the process of EMT important for cancer initiation, cancer metastasis, and secondary tumor formation. Therefore, targeting these cells may provide new strategies to overcome tumor heterogeneity, therapeutic resistance, and cancer relapse. In this review, we will provide a potential mechanistic link between EMT induction and the emergence of CSCs for the origin and progression of cancer. We will highlight the functional activity of DCLK1 in supporting EMT and cancer cell self-renewal, which will lead us to a better understanding of DCLK1 expression in cancer development and progression, and help us to develop targeted therapies for effective cancer treatment.
Collapse
Affiliation(s)
- P Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - J Panneerselvam
- Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - D Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - N Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - M S Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - C W Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA; COARE Biotechnology, Oklahoma City, OK, USA
| |
Collapse
|
98
|
Abstract
Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research toward developing more effective therapeutic strategies to eradicate tumor cells in the patients.
Collapse
Affiliation(s)
- Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA.
| |
Collapse
|
99
|
Afenya EK, Ouifki R, Camara BI, Mundle SD. Mathematical modeling of bone marrow--peripheral blood dynamics in the disease state based on current emerging paradigms, part I. Math Biosci 2016; 274:83-93. [PMID: 26877072 DOI: 10.1016/j.mbs.2016.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/08/2023]
Abstract
Stemming from current emerging paradigms related to the cancer stem cell hypothesis, an existing mathematical model is expanded and used to study cell interaction dynamics in the bone marrow and peripheral blood. The proposed mathematical model is described by a system of nonlinear differential equations with delay, to quantify the dynamics in abnormal hematopoiesis. The steady states of the model are analytically and numerically obtained. Some conditions for the local asymptotic stability of such states are investigated. Model analyses suggest that malignancy may be irreversible once it evolves from a nonmalignant state into a malignant one and no intervention takes place. This leads to the proposition that a great deal of emphasis be placed on cancer prevention. Nevertheless, should malignancy arise, treatment programs for its containment or curtailment may have to include a maximum and extensive level of effort to protect normal cells from eventual destruction. Further model analyses and simulations predict that in the untreated disease state, there is an evolution towards a situation in which malignant cells dominate the entire bone marrow - peripheral blood system. Arguments are then advanced regarding requirements for quantitatively understanding cancer stem cell behavior. Among the suggested requirements are, mathematical frameworks for describing the dynamics of cancer initiation and progression, the response to treatment, the evolution of resistance, and malignancy prevention dynamics within the bone marrow - peripheral blood architecture.
Collapse
Affiliation(s)
- Evans K Afenya
- Department of Mathematics, Elmhurst College, 190 Prospect Avenue, Elmhurst, IL 60126, USA.
| | - Rachid Ouifki
- DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, 19 Jonkershoek Rd, Stellenbosch, 7600, South Africa.
| | - Baba I Camara
- Laboratoire Interdisciplinaire des Environnements Continentaux, Universit de Lorraine, CNRS UMR 7360, 8 rue du General Delestraint, Metz 57070, France.
| | - Suneel D Mundle
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL 60612, USA.
| |
Collapse
|
100
|
Shijun X, Junsheng M, Jianqun Z, Ping B. In vitro three-dimensional coculturing poly3-hydroxybutyrate-co-3-hydroxyhexanoate with mouse-induced pluripotent stem cells for myocardial patch application. J Biomater Appl 2016; 30:1273-82. [PMID: 26873635 DOI: 10.1177/0885328215612115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Identifying a suitable polymeric biomaterial for myocardial patch repair following myocardial infarction, cerebral infarction, and cartilage injury is essential. This study aimed to investigate the effect of the novel polymer material, poly3-hydroxybutyrate- co-3-hydroxyhexanoate, on the adhesion, proliferation, and differentiation of mouse-induced pluripotent stem cells in vitro. Mouse-induced pluripotent stem cells were isolated, expanded, and cultured on either two-dimensional or three-dimensional poly3-hydroxybutyrate- co-3-hydroxyhexanoate films (membranes were perforated to imitate three-dimensional space). Following attachment onto the films, mouse-induced pluripotent stem cell morphology was visualized using scanning electron microscopy. Cell vitality was detected using the Cell Counting Kit-8 assay and cell proliferation was observed using fluorescent 4',6-diamidino-2-phenylindole (DAPI) staining. Mouse-induced pluripotent stem cells were induced into cardiomyocytes by differentiation medium containing vitamin C. A control group in the absence of an inducer was included. Mouse-induced pluripotent stem cell survival and differentiation were observed using immunofluorescence and flow cytometry, respectively. Mouse-induced pluripotent stem cells growth, proliferation, and differentiation were observed on both two-dimensional and three-dimensional poly3-hydroxybutyrate- co-3-hydroxyhexanoate films. Vitamin C markedly improved the efficiency of mouse-induced pluripotent stem cells differentiation into cardiomyocytes on poly3-hydroxybutyrate- co-3-hydroxyhexanoate films. Three-dimensional culture was better at promoting mouse-induced pluripotent stem cell proliferation and differentiation compared with two-dimensional culture.
Collapse
Affiliation(s)
- Xu Shijun
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P.R. China
| | - Mu Junsheng
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P.R. China
| | - Zhang Jianqun
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P.R. China
| | - Bo Ping
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P.R. China
| |
Collapse
|