51
|
Ravens S, Yu C, Ye T, Stierle M, Tora L. Tip60 complex binds to active Pol II promoters and a subset of enhancers and co-regulates the c-Myc network in mouse embryonic stem cells. Epigenetics Chromatin 2015; 8:45. [PMID: 26550034 PMCID: PMC4636812 DOI: 10.1186/s13072-015-0039-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/29/2015] [Indexed: 01/24/2023] Open
Abstract
Background Tip60 (KAT5) is the histone acetyltransferase (HAT) of the mammalian Tip60/NuA4 complex. While Tip60 is important for early mouse development and mouse embryonic stem cell (mESC) pluripotency, the function of Tip60 as reflected in a genome-wide context is not yet well understood. Results Gel filtration of nuclear mESCs extracts indicate incorporation of Tip60 into large molecular complexes and exclude the existence of large quantities of “free” Tip60 within the nuclei of ESCs. Thus, monitoring of Tip60 binding to the genome should reflect the behaviour of Tip60-containing complexes. The genome-wide mapping of Tip60 binding in mESCs by chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-seq) shows that the Tip60 complex is present at promoter regions of predominantly active genes that are bound by RNA polymerase II (Pol II) and contain the H3K4me3 histone mark. The coactivator HAT complexes, Tip60- and Mof (KAT8)-containing (NSL and MSL), show a global overlap at promoters, whereas distinct binding profiles at enhancers suggest different regulatory functions of each essential HAT complex. Interestingly, Tip60 enrichment peaks at about 200 bp downstream of the transcription start sites suggesting a function for the Tip60 complexes in addition to histone acetylation. The comparison of genome-wide binding profiles of Tip60 and c-Myc, a somatic cell reprogramming factor that binds predominantly to active genes in mESCs, demonstrate that Tip60 and c-Myc co-bind at 50–60 % of their binding sites. We also show that the Tip60 complex binds to a subset of bivalent developmental genes and defines a set of mESC-specific enhancer as well as super-enhancer regions. Conclusions Our study suggests that the Tip60 complex functions as a global transcriptional co-activator at most active Pol II promoters, co-regulates the ESC-specific c-Myc network, important for ESC self-renewal and cell metabolism and acts at a subset of active distal regulatory elements, or super enhancers, in mESCs. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0039-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarina Ravens
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Changwei Yu
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Tao Ye
- Microarrays and Deep Sequencing Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, UdS, BP 10142, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Matthieu Stierle
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Laszlo Tora
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| |
Collapse
|
52
|
Dalvai M, Loehr J, Jacquet K, Huard CC, Roques C, Herst P, Côté J, Doyon Y. A Scalable Genome-Editing-Based Approach for Mapping Multiprotein Complexes in Human Cells. Cell Rep 2015; 13:621-633. [PMID: 26456817 DOI: 10.1016/j.celrep.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Conventional affinity purification followed by mass spectrometry (AP-MS) analysis is a broadly applicable method used to decipher molecular interaction networks and infer protein function. However, it is sensitive to perturbations induced by ectopically overexpressed target proteins and does not reflect multilevel physiological regulation in response to diverse stimuli. Here, we developed an interface between genome editing and proteomics to isolate native protein complexes produced from their natural genomic contexts. We used CRISPR/Cas9 and TAL effector nucleases (TALENs) to tag endogenous genes and purified several DNA repair and chromatin-modifying holoenzymes to near homogeneity. We uncovered subunits and interactions among well-characterized complexes and report the isolation of MCM8/9, highlighting the efficiency and robustness of the approach. These methods improve and simplify both small- and large-scale explorations of protein interactions as well as the study of biochemical activities and structure-function relationships.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Caroline C Huard
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Céline Roques
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Pauline Herst
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| |
Collapse
|
53
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
54
|
Falahzadeh K, Banaei-Esfahani A, Shahhoseini M. The potential roles of actin in the nucleus. CELL JOURNAL 2015; 17:7-14. [PMID: 25870830 PMCID: PMC4393673 DOI: 10.22074/cellj.2015.507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/05/2013] [Indexed: 11/16/2022]
Abstract
Over the past few decades, actin’s presence in the nucleus has been demonstrated. Actin
is a key protein necessary for different nuclear processes. Although actin is well known for
its functional role in dynamic behavior of the cytoskeleton, emerging studies are now highlighting new roles for actin. At the present time there is no doubt about the presence of actin in the nucleus. A number of studies have uncovered the functional involvement of actin
in nuclear processes. Actin as one of the nuclear components has its own structured and
functional rules, such as nuclear matrix association, chromatin remodeling, transcription
by RNA polymerases I, II, III and mRNA processing. In this historical review, we attempt to
provide an overview of our current understanding of the functions of actin in the nucleus.
Collapse
Affiliation(s)
- Khadijeh Falahzadeh
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran ; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University (TMU), Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
55
|
Fluctuating expression of microRNAs in adenovirus infected cells. Virology 2015; 478:99-111. [PMID: 25744056 DOI: 10.1016/j.virol.2015.01.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 12/15/2022]
Abstract
The changes in cellular microRNA (miRNA) expression during the course of an adenovirus type 2 infection in human lung fibroblast were studied by deep RNA sequencing. Expressions of 175 miRNAs with over 100 transcripts per million nucleotides were changed more than 1.5-fold. The expression patterns of these miRNAs changed dramatically during the course of the infection, from upregulation of the miRNAs known as tumor suppressors (such as miR-22, miR-320, let-7, miR-181b, and miR-155) and down-regulation of oncogenic miRNAs (such as miR-21 and miR-31) early to downregulation of tumor suppressor miRNAs (such as let-7 family, mir-30 family, 23/27 cluster) and upregulation of oncogenic miRNAs (include miR-125, miR-27, miR-191) late after infection. The switch in miRNA expression pattern occurred when adenovirus DNA replication started. Furthermore, deregulation of cellular miRNA expression was a step-wise and special sets of miRNAs were deregulated in different phases of infection.
Collapse
|
56
|
Farria A, Li W, Dent SYR. KATs in cancer: functions and therapies. Oncogene 2015; 34:4901-13. [PMID: 25659580 PMCID: PMC4530097 DOI: 10.1038/onc.2014.453] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Post-translational acetylation of lysines is most extensively studied in histones, but this modification is also found in many other proteins and is implicated in a wide range of biological processes in both the cell nucleus and the cytoplasm. Like phosphorylation, acetylation patterns and levels are often altered in cancer, therefore small molecule inhibition of enzymes that regulate acetylation and deacetylation offers much potential for inhibiting cancer cell growth, as does disruption of interactions between acetylated residues and ‘reader’ proteins. For more than a decade now, histone deacetylase (HDAC) inhibitors have been investigated for their ability to increase acetylation and promote expression of tumor suppressor genes. However, emerging evidence suggests that acetylation can also promote cancer, in part by enhancing the functions of oncogenic transcription factors. In this review we focus on how acetylation of both histone and non-histone proteins may drive cancer, and we will discuss the implications of such changes on how patients are assigned to therapeutic agents. Finally, we will explore what the future holds in the design of small molecule inhibitors for modulation of levels or functions of acetylation states.
Collapse
Affiliation(s)
- A Farria
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - W Li
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - S Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| |
Collapse
|
57
|
Ferrari R, Gou D, Jawdekar G, Johnson SA, Nava M, Su T, Yousef AF, Zemke NR, Pellegrini M, Kurdistani SK, Berk AJ. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection. Cell Host Microbe 2014; 16:663-76. [PMID: 25525796 DOI: 10.1016/j.chom.2014.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/25/2014] [Accepted: 09/07/2014] [Indexed: 12/27/2022]
Abstract
Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGF-β, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication.
Collapse
Affiliation(s)
- Roberto Ferrari
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Dawei Gou
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Microbiology, Immunology and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Gauri Jawdekar
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Sarah A Johnson
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Miguel Nava
- Department of Microbiology, Immunology and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Trent Su
- Department of Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Ahmed F Yousef
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Nathan R Zemke
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Matteo Pellegrini
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Molecular, Cellular, and Developmental Biology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Siavash K Kurdistani
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Pathology and Laboratory of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Arnold J Berk
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Microbiology, Immunology and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
58
|
Smith JA, Haberstroh FS, White EA, Livingston DM, DeCaprio JA, Howley PM. SMCX and components of the TIP60 complex contribute to E2 regulation of the HPV E6/E7 promoter. Virology 2014; 468-470:311-321. [PMID: 25222147 PMCID: PMC4252969 DOI: 10.1016/j.virol.2014.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/19/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Abstract
An important step in the malignant progression of HPV-associated lesions is the dysregulation of expression of the viral E6 and E7 oncogenes. This is often achieved through the loss of expression of E2, which represses the HPV LCR promoter and E6/E7 expression. Our previous studies confirmed a role for Brd4 in mediating the E2 transcriptional repression function, and identified JARID1C/SMCX and EP400 as contributors to E2-mediated repression. Here we show that TIP60, a component of the TIP60/TRRAP histone acetyltransferase complex, also contributes to the E2 repression function, and we extend our studies on SMCX. Di- and tri-methyl marks on histone H3K4 are reduced in the presence of E2 and SMCX, suggesting a mechanism by which SMCX contributes to E2-mediated repression of the HPV LCR. Together, these findings lead us to hypothesize that E2 recruits histone-modifying cellular proteins to the HPV LCR, resulting in transcriptional repression of E6 and E7.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Friederike S Haberstroh
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Elizabeth A White
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Medicine, Brigham and Women׳s Hospital, Boston, MA 02115 and Harvard Medical School, Boston, MA 02115, United States
| | - James A DeCaprio
- Department of Medicine, Brigham and Women׳s Hospital, Boston, MA 02115 and Harvard Medical School, Boston, MA 02115, United States; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
59
|
Sewastianik T, Prochorec-Sobieszek M, Chapuy B, Juszczyński P. MYC deregulation in lymphoid tumors: molecular mechanisms, clinical consequences and therapeutic implications. Biochim Biophys Acta Rev Cancer 2014; 1846:457-67. [PMID: 25199984 DOI: 10.1016/j.bbcan.2014.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/24/2022]
Abstract
MYC is one of the most frequently deregulated oncogenes in human malignancies. It encodes a leucine zipper transcription factor that modulates a broad spectrum of cellular genes responsible for enhancing cell proliferation, cellular metabolism, growth, angiogenesis, metastasis, genomic instability, stem cell self-renewal and reduced differentiation. MYC functions predominantly as an amplifier of expression of already active genes, potentiating the pre-existing transcriptional program, although it can also repress certain transcriptional targets. In mouse models, MYC induces lymphomas, but requires cooperation with other lesions, including inactivation of the p53 pathway, structural alterations of BCL2 family members, or increased PI3K activity. In human B-cell tumors, MYC rearrangements involving the 8q24 region and immunoglobulin heavy or light genes are a hallmark of Burkitt lymphoma (BL), but can also occur in other lymphoid malignancies, that include diffuse large B-cell lymphoma (DLBCL), B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma (BCLU), plasma cell myeloma (PCM), mantle cell lymphoma (MCL) and plasmablastic lymphoma. For non-BL lymphoid malignancies, MYC fusions represent secondary genetic events and exist in the context of complex karyotypes. Regardless of the mechanism deregulating MYC, lymphomas over-expressing MYC are addicted to this oncogene, highlighting the potential clinical utility of MYC targeting strategies. Several promising approaches for pharmaceutical intervention have been suggested which are now in preclinical or clinical development. Herein, we therefore review the molecular pathogenetic mechanisms associated with MYC deregulation in human B-cell lymphomas and their implications for therapies targeting MYC.
Collapse
Affiliation(s)
- Tomasz Sewastianik
- Institute of Hematology and Transfusion Medicine, Department of Diagnostic Hematology, Indiry Gandhi Str. 14, 02-776 Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Institute of Hematology and Transfusion Medicine, Department of Diagnostic Hematology, Indiry Gandhi Str. 14, 02-776 Warsaw, Poland
| | - Bjoern Chapuy
- Dana-Farber Cancer Institute, Harvard Medical School, Department of Medical Oncology, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Przemysław Juszczyński
- Institute of Hematology and Transfusion Medicine, Department of Diagnostic Hematology, Indiry Gandhi Str. 14, 02-776 Warsaw, Poland.
| |
Collapse
|
60
|
Myc and its interactors take shape. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:469-83. [PMID: 24933113 DOI: 10.1016/j.bbagrm.2014.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
61
|
Zhang N, Ichikawa W, Faiola F, Lo SY, Liu X, Martinez E. MYC interacts with the human STAGA coactivator complex via multivalent contacts with the GCN5 and TRRAP subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:395-405. [DOI: 10.1016/j.bbagrm.2014.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 11/24/2022]
|
62
|
Huang X, Spencer GJ, Lynch JT, Ciceri F, Somerville TDD, Somervaille TCP. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells. Leukemia 2014; 28:1081-91. [PMID: 24166297 PMCID: PMC3998875 DOI: 10.1038/leu.2013.316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/30/2013] [Accepted: 10/22/2013] [Indexed: 01/21/2023]
Abstract
Through a targeted knockdown (KD) screen of chromatin regulatory genes, we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic cofactors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD-induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34(+) HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD-induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore, EPC1 and EPC2 are components of a complex that directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential.
Collapse
Affiliation(s)
- Xu Huang
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - James T Lynch
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Filippo Ciceri
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim D D Somerville
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| |
Collapse
|
63
|
Billon P, Côté J. Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:290-302. [PMID: 24459731 DOI: 10.1016/j.bbagrm.2011.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone variant H2A.Z is essential in higher eukaryotes and has different functions in the cell. Several studies indicate that H2A.Z is found at specific loci in the genome such as regulatory-gene regions, where it poises genes for transcription. Itsdeposition creates chromatin regions with particular structural characteristics which could favor rapid transcription activation. This review focuses on the highly regulated mechanism of H2A.Z deposition in chromatin which is essential for genome integrity. Chaperones escort H2A.Z to large ATP-dependent chromatin remodeling enzymes which are responsible for its deposition/eviction. Over the last ten years, biochemical, genetic and genomic studies helped us understand the precise role of these complexes in this process. It hasbeen suggested that a cooperation occurs between histone acetyltransferase and chromatin remodeling activities to incorporate H2A.Z in chromatin. Its regulated deposition near centromeres and telomeres also shows its implication in chromosomal structure integrity and parallels a role in DNA damage response. Thedynamics of H2A.Z deposition/eviction at specific loci was shown to be critical for genome expression andmaintenance, thus cell fate. Altogether, recent findings reassert the importance of the regulated depositionof this histone variant. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
64
|
Mahajan MA, Stanley FM. Insulin-activated Elk-1 recruits the TIP60/NuA4 complex to increase prolactin gene transcription. Mol Cell Endocrinol 2014; 382:159-169. [PMID: 24075908 DOI: 10.1016/j.mce.2013.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022]
Abstract
Insulin increases prolactin gene expression in GH4 cells through phosphorylation of Elk-1 (Jacob and Stanley, 2001). We preformed a reverse two-hybrid screen using Elk-1-B42 as bait to identify proteins from GH4 cells that might serve as co-activators or co-repressors for insulin-increased prolactin gene expression. A number of the components of the TIP60/NuA4 complex interacted with Elk-1 suggesting that Elk-1 might activate transcription by recruiting the TIP60 chromatin-remodeling complex to the prolactin promoter. Inhibition of insulin-increased prolactin-luciferase expression by wild type and mutant adenovirus E1A protein provided physiological context for these yeast studies. Inhibition of histone deacetylases dramatically increased both basal and insulin-increased prolactin gene transcription. Co-immune precipitation experiments demonstrated Elk-1 and TIP60 associate in vitro. Transient or stable expression of TIP60 activated insulin-increased prolactin gene expression while a mutated TIP60 blocked insulin-increased prolactin gene expression. Analysis of the prolactin mRNA by quantitative RT-PCR showed that insulin-increased prolactin mRNA accumulation and that this was inhibited in GH4 cells that stably expressed mutant TIP60. Finally, ChIP experiments demonstrate the insulin-dependent occupancy of the prolactin promoter by Elk-1 and TIP60. Our studies suggest that insulin activates prolactin gene transcription by activating Elk-1 that recruits the NuA4 complex to the promoter.
Collapse
Affiliation(s)
- Muktar A Mahajan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Frederick M Stanley
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States; NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
65
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB2 translocates in 5′–3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2795-811. [DOI: 10.1016/j.bbapap.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/27/2022]
|
66
|
Valero ML, Cimas FJ, Arias L, Melgar-Rojas P, García E, Callejas-Valera JL, García-Cano J, Serrano-Oviedo L, Ángel de la Cruz-Morcillo M, Sánchez-Pérez I, Sánchez-Prieto R. E1a promotes c-Myc-dependent replicative stress: implications in glioblastoma radiosensitization. Cell Cycle 2013; 13:52-61. [PMID: 24196438 PMCID: PMC3925735 DOI: 10.4161/cc.26754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/27/2022] Open
Abstract
The E1a gene from adenovirus is known to be a potent inducer of chemo/radiosensitivity in a wide range of tumors. However, the molecular bases of its radiosensitizer properties are still poorly understood. In an attempt to study this effect, U87MG cells, derived from a radio-resistant tumor as glioblastoma, where infected with lentivirus carrying E1a gene developing an acute sensitivity to ionizing radiation. The induction of radiosensitivity correlated with a marked G 2/M phase accumulation and a potent apoptotic response. Our findings demonstrate that c-Myc plays a pivotal role in E1a-associated radiosensitivity through the induction of a replicative stress situation, as our data support by genetic approaches, based in interference and overexpression in U87MG cells. In fact, we present evidence showing that Chk1 is a novel transcriptional target of E1a gene through the effect exerted by this adenoviral protein onto c-Myc. Moreover, c-Myc upregulation also explains the marked phosphorylation of H2AX associated to E1a expression in the absence of DNA damage. Indeed, all these observations were applicable to other experimental models, such as T98G, LN-405 and A172, rendering the same pattern in terms of radiosensitivity, cell cycle distribution, upregulation of Chk1, c-Myc, and phosphorylation pattern of H2AX. In summary, our data propose a novel mechanism to explain how E1a mediates radiosensitivity through the signaling axis E1a→c-Myc→ replicative stress situation. This novel mechanism of E1a-mediated radiosensitivity could be the key to open new possibilities in the current therapy of glioblastoma.
Collapse
Affiliation(s)
- María Llanos Valero
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Francisco Jose Cimas
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Laura Arias
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Pedro Melgar-Rojas
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Elena García
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Juan Luis Callejas-Valera
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Jesús García-Cano
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Leticia Serrano-Oviedo
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Miguel Ángel de la Cruz-Morcillo
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Isabel Sánchez-Pérez
- Department of Biochemistry; School of Medicine;Biomedical Research Institute of Madrid CSIC/UAM; Madrid, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| |
Collapse
|
67
|
Kuppuswamy M, Subramanian T, Kostas-Polston E, Vijayalingam S, Zhao LJ, Varvares M, Chinnadurai G. Functional similarity between E6 proteins of cutaneous human papillomaviruses and the adenovirus E1A tumor-restraining module. J Virol 2013; 87:7781-6. [PMID: 23637414 PMCID: PMC3700293 DOI: 10.1128/jvi.00037-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/24/2013] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1A C-terminal region restrains oncogenic transformation through interaction with three distinct cellular protein complexes that include the DYRK1A/1B/HAN11 complex. The E6 proteins of beta-human papillomaviruses (beta-HPVs) also interact with the DYRK1/HAN11 complex. A variant of HPV5 E6 frequently found in epidermodysplasia verruciformis skin lesions interacted less efficiently with DYRK1A/HAN11. The E6 variant and E7 of HPV5 efficiently coimmortalized primary epithelial cells, suggesting that naturally arising variants may contribute potential oncogenic activities of beta-HPV E6 proteins.
Collapse
Affiliation(s)
- Mohan Kuppuswamy
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - T. Subramanian
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | | | - S. Vijayalingam
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Ling-jun Zhao
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Mark Varvares
- Saint Louis University Cancer Center, St. Louis, Missouri, USA
| | - G. Chinnadurai
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| |
Collapse
|
68
|
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71:379-404. [PMID: 23652611 DOI: 10.1007/s00018-013-1343-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | | | | | | | | | | |
Collapse
|
69
|
Price BD, D'Andrea AD. Chromatin remodeling at DNA double-strand breaks. Cell 2013; 152:1344-54. [PMID: 23498941 DOI: 10.1016/j.cell.2013.02.011] [Citation(s) in RCA: 432] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 11/27/2022]
Abstract
DNA double-strand breaks (DSBs) can arise from multiple sources, including exposure to ionizing radiation. The repair of DSBs involves both posttranslational modification of nucleosomes and concentration of DNA-repair proteins at the site of damage. Consequently, nucleosome packing and chromatin architecture surrounding the DSB may limit the ability of the DNA-damage response to access and repair the break. Here, we review early chromatin-based events that promote the formation of open, relaxed chromatin structures at DSBs and that allow the DNA-repair machinery to access the spatially confined region surrounding the DSB, thereby facilitating mammalian DSB repair.
Collapse
Affiliation(s)
- Brendan D Price
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
70
|
Pede V, Rombout A, Vermeire J, Naessens E, Mestdagh P, Robberecht N, Vanderstraeten H, Van Roy N, Vandesompele J, Speleman F, Philippé J, Verhasselt B. CLL cells respond to B-Cell receptor stimulation with a microRNA/mRNA signature associated with MYC activation and cell cycle progression. PLoS One 2013; 8:e60275. [PMID: 23560086 PMCID: PMC3613353 DOI: 10.1371/journal.pone.0060275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/24/2013] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV) mutation status are linked to the B-cell receptor (BCR) complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Cycle/drug effects
- Cell Cycle/immunology
- Cells, Cultured
- Gene Expression Regulation, Leukemic/drug effects
- Genome-Wide Association Study
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/drug effects
- MicroRNAs/genetics
- MicroRNAs/immunology
- Multigene Family
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Antigen, B-Cell/agonists
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Valerie Pede
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ans Rombout
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jolien Vermeire
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Evelien Naessens
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Nore Robberecht
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hanne Vanderstraeten
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Philippé
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
71
|
Cheng F, Pekkonen P, Ojala PM. Instigation of Notch signaling in the pathogenesis of Kaposi's sarcoma-associated herpesvirus and other human tumor viruses. Future Microbiol 2013; 7:1191-205. [PMID: 23030424 DOI: 10.2217/fmb.12.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Notch pathway is a highly conserved signaling circuit with a critical role in cell-fate determination and tumor initiation. Notch is reported to regulate various key events in tumor progression, such as angiogenesis, maintenance of cancer stem cells, resistance to therapeutic agents and metastasis. This review describes the intimate interplay of human tumor viruses with the Notch signaling pathway. Special attention is paid to Kaposi's sarcoma-associated herpesvirus, the etiological agent of Kaposi's sarcoma and rare lymphoproliferative disorders. The past decade of active research has led to significant advances in understanding how Kaposi's sarcoma-associated herpesvirus exploits the Notch pathway to regulate its replication phase and to modulate the host cellular microenvironment to make it more favorable for viral persistence and spreading.
Collapse
Affiliation(s)
- Fang Cheng
- Institute of Biotechnology & Research Programs Unit, Genome-Scale Biology, University of Helsinki, PO Box 56 (Viikinkaari 9), 00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
72
|
Courilleau C, Chailleux C, Jauneau A, Grimal F, Briois S, Boutet-Robinet E, Boudsocq F, Trouche D, Canitrot Y. The chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA double-strand breaks. ACTA ACUST UNITED AC 2013; 199:1067-81. [PMID: 23266955 PMCID: PMC3529529 DOI: 10.1083/jcb.201205059] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chromatin remodeling enzyme p400 forms a complex with Rad51 and is required for its recruitment to double-strand breaks during DNA repair by homologous recombination. DNA damage signaling and repair take place in a chromatin context. Consequently, chromatin-modifying enzymes, including adenosine triphosphate–dependent chromatin remodeling enzymes, play an important role in the management of DNA double-strand breaks (DSBs). Here, we show that the p400 ATPase is required for DNA repair by homologous recombination (HR). Indeed, although p400 is not required for DNA damage signaling, DNA DSB repair is defective in the absence of p400. We demonstrate that p400 is important for HR-dependent processes, such as recruitment of Rad51 to DSB (a key component of HR), homology-directed repair, and survival after DNA damage. Strikingly, p400 and Rad51 are present in the same complex and both favor chromatin remodeling around DSBs. Altogether, our data provide a direct molecular link between Rad51 and a chromatin remodeling enzyme involved in chromatin decompaction around DNA DSBs.
Collapse
Affiliation(s)
- Céline Courilleau
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, UMR 5088, Université de Toulouse and 2 Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
RVB1/RVB2 (RuvBL1/RuvBL2 or pontin/reptin) are enigmatic AAA(+) ATPase proteins that are present in multiple cellular complexes. Although they have been implicated in many cellular functions, the exact molecular function of RVB proteins in the various complexes is not clear. TIP60 complex (TIP60.com) is a tumor suppressor chromatin-remodeling complex containing RVB proteins. RVBs are required for the lysine acetyltransferase activity of TIP60.com but not for that of the pure recombinant TIP60 polypeptide. Here we describe two molecular functions of RVBs in TIP60.com. First, RVBs negate the repression of catalytic activity of TIP60 by another protein in TIP60.com, p400. RVBs competitively displace the SNF2 domain of p400 from the TIP60 polypeptide. In addition RVBs are also required for heat stability of TIP60.com by a p400-independent pathway. RVB1 and RVB2 are redundant with each other for these functions and do not require their ATPase activities. Thus, RVB proteins act as molecular adaptors that can substitute for one another to facilitate the optimal assembly, heat stability, and function of the TIP60 complex.
Collapse
|
74
|
Blum ES, Schwendeman AR, Shaham S. PolyQ disease: misfiring of a developmental cell death program? Trends Cell Biol 2012; 23:168-74. [PMID: 23228508 DOI: 10.1016/j.tcb.2012.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022]
Abstract
Polyglutamine (polyQ) repeat diseases are neurodegenerative ailments elicited by glutamine-encoding CAG nucleotide expansions within endogenous human genes. Despite efforts to understand the basis of these diseases, the precise mechanism of cell death remains stubbornly unclear. Much of the data seem to be consistent with a model in which toxicity is an inherent property of the polyQ repeat, whereas host protein sequences surrounding the polyQ expansion modulate severity, age of onset, and cell specificity. Recently, a gene, pqn-41, encoding a glutamine-rich protein, was found to promote normally occurring non-apoptotic cell death in Caenorhabditis elegans. Here we review evidence for toxic and modulatory roles for polyQ repeats and their host proteins, respectively, and suggest similarities with pqn-41 function. We explore the hypothesis that toxicity mediated by glutamine-rich motifs may be important not only in pathology, but also in normal development.
Collapse
Affiliation(s)
- Elyse S Blum
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
75
|
Krasteva V, Buscarlet M, Diaz-Tellez A, Bernard MA, Crabtree GR, Lessard JA. The BAF53a subunit of SWI/SNF-like BAF complexes is essential for hemopoietic stem cell function. Blood 2012; 120:4720-32. [PMID: 23018638 PMCID: PMC10627118 DOI: 10.1182/blood-2012-04-427047] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/16/2012] [Indexed: 12/14/2022] Open
Abstract
ATP-dependent SWI/SNF-like BAF chromatin remodeling complexes are emerging as key regulators of embryonic and adult stem cell function. Particularly intriguing are the findings that specialized assemblies of BAF complexes are required for establishing and maintaining pluripotent and multipotent states in cells. However, little is known on the importance of these complexes in normal and leukemic hemopoiesis. Here we provide the first evidence that the actin-related protein BAF53a, a subunit of BAF complexes preferentially expressed in long-term repopulating stem cells, is essential for adult hemopoiesis. Conditional deletion of BAF53a resulted in multilineage BM failure, aplastic anemia, and rapid lethality. These severe hemopoietic defects originate from a proliferative impairment of BM HSCs and progenitors and decreased progenitor survival. Using hemopoietic chimeras, we show that the impaired function of BAF53a-deficient HSCs is cell-autonomous and independent of the BM microenvironment. Altogether, our studies highlight an unsuspected role for BAF chromatin remodeling complexes in the maintenance of HSC and progenitor cell properties.
Collapse
Affiliation(s)
- Veneta Krasteva
- Institute for Research in Immunology and Cancer (IRIC), Montreal, QC
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC; and
| | - Manuel Buscarlet
- Institute for Research in Immunology and Cancer (IRIC), Montreal, QC
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC; and
| | - Abigail Diaz-Tellez
- Institute for Research in Immunology and Cancer (IRIC), Montreal, QC
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC; and
| | - Marie-Anne Bernard
- Institute for Research in Immunology and Cancer (IRIC), Montreal, QC
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC; and
| | - Gerald R. Crabtree
- Departments of Pathology, Stanford, CA
- Developmental Biology, Stanford University School of Medicine, Howard Hughes Medical Institute, Stanford, CA
| | - Julie A. Lessard
- Institute for Research in Immunology and Cancer (IRIC), Montreal, QC
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC; and
| |
Collapse
|
76
|
Couture JP, Nolet G, Beaulieu E, Blouin R, Gévry N. The p400/Brd8 chromatin remodeling complex promotes adipogenesis by incorporating histone variant H2A.Z at PPARγ target genes. Endocrinology 2012; 153:5796-808. [PMID: 23064015 DOI: 10.1210/en.2012-1380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipogenesis, the biological process by which preadipocytes differentiate into mature fat cells, is coordinated by a tightly regulated gene expression program. Indeed, it has been reported that a large number of genetic events, from fat cell-specific transcription factors expression, such as the master regulator of fat cell differentiation peroxisome proliferator-activated receptor (PPAR)γ2 to epigenetic modifications, govern the acquisition of a mature adipocyte phenotype. Here, we provide evidence that the E1A-binding protein p400 (p400) complex subunit bromo-containing protein 8 (Brd8) plays an important role in the regulation of PPARγ target genes during adipogenesis by targeting and incorporating the histone variant H2A.Z in transcriptional regulatory regions. The results reported here indicate that expression of both Brd8 and p400 increases during fat cell differentiation. In addition, small hairpin RNA-mediated knockdown of Brd8 or H2A.Z completely abrogated the ability of 3T3-L1 preadipocyte to differentiate into mature adipocyte, as evidenced by a lack of lipid accumulation. Chromatin immunoprecipitation experiments also revealed that the knockdown of Brd8 blocked the accumulation of PPARγ, p400, and RNA polymerase II and prevented the incorporation of H2A.Z at two PPARγ target genes. Taken together, these results indicate that the incorporation of the histone variant H2A.Z at the promoter regions of PPARγ target genes by p400/Brd8 is essential to allow fat cell differentiation.
Collapse
Affiliation(s)
- Jean-Philippe Couture
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | | | | | | | | |
Collapse
|
77
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB proteins: Emerging importance and expectations beyond cell cycle progression. Commun Integr Biol 2012; 5:350-61. [PMID: 23060959 PMCID: PMC3460840 DOI: 10.4161/cib.20005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The urgent requirement of next generation antimalarials has been of recent interest due to the emergence of drug-resistant parasite. The genome-wide analysis of Plasmodium falciparum helicases revealed three RuvB proteins. Due to the presence of helicase motif I and II in PfRuvBs, there is a high probability that they contain ATPase and possibly helicase activity. The Plasmodium database has homologs of several key proteins that interact with RuvBs and are most likely involved in the cell cycle progression, chromatin remodeling, and other cellular activities. Phylogenetically PfRuvBs are closely related to Saccharomyces cerevisiae RuvB, which is essential for cell cycle progression and survival of yeast. Thus PfRuvBs can serve as potential drug target if they show an essential role in the survival of parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | |
Collapse
|
78
|
Illingworth RS, Botting CH, Grimes GR, Bickmore WA, Eskeland R. PRC1 and PRC2 are not required for targeting of H2A.Z to developmental genes in embryonic stem cells. PLoS One 2012; 7:e34848. [PMID: 22496869 PMCID: PMC3322156 DOI: 10.1371/journal.pone.0034848] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 03/09/2012] [Indexed: 11/19/2022] Open
Abstract
The essential histone variant H2A.Z localises to both active and silent chromatin sites. In embryonic stem cells (ESCs), H2A.Z is also reported to co-localise with polycomb repressive complex 2 (PRC2) at developmentally silenced genes. The mechanism of H2A.Z targeting is not clear, but a role for the PRC2 component Suz12 has been suggested. Given this association, we wished to determine if polycomb functionally directs H2A.Z incorporation in ESCs. We demonstrate that the PRC1 component Ring1B interacts with multiple complexes in ESCs. Moreover, we show that although the genomic distribution of H2A.Z co-localises with PRC2, Ring1B and with the presence of CpG islands, H2A.Z still blankets polycomb target loci in the absence of Suz12, Eed (PRC2) or Ring1B (PRC1). Therefore we conclude that H2A.Z accumulates at developmentally silenced genes in ESCs in a polycomb independent manner.
Collapse
Affiliation(s)
- Robert S. Illingworth
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine H. Botting
- BMS Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Graeme R. Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (WB); (RE)
| | - Ragnhild Eskeland
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (WB); (RE)
| |
Collapse
|
79
|
Xiang Y, Zhang CQ, Huang K. Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data. BMC Bioinformatics 2012; 13 Suppl 2:S12. [PMID: 22536863 PMCID: PMC3305748 DOI: 10.1186/1471-2105-13-s2-s12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Using gene co-expression analysis, researchers were able to predict clusters of genes with consistent functions that are relevant to cancer development and prognosis. We applied a weighted gene co-expression network (WGCN) analysis algorithm on glioblastoma multiforme (GBM) data obtained from the TCGA project and predicted a set of gene co-expression networks which are related to GBM prognosis. Methods We modified the Quasi-Clique Merger algorithm (QCM algorithm) into edge-covering Quasi-Clique Merger algorithm (eQCM) for mining weighted sub-network in WGCN. Each sub-network is considered a set of features to separate patients into two groups using K-means algorithm. Survival times of the two groups are compared using log-rank test and Kaplan-Meier curves. Simulations using random sets of genes are carried out to determine the thresholds for log-rank test p-values for network selection. Sub-networks with p-values less than their corresponding thresholds were further merged into clusters based on overlap ratios (>50%). The functions for each cluster are analyzed using gene ontology enrichment analysis. Results Using the eQCM algorithm, we identified 8,124 sub-networks in the WGCN, out of which 170 sub-networks show p-values less than their corresponding thresholds. They were then merged into 16 clusters. Conclusions We identified 16 gene clusters associated with GBM prognosis using the eQCM algorithm. Our results not only confirmed previous findings including the importance of cell cycle and immune response in GBM, but also suggested important epigenetic events in GBM development and prognosis.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
80
|
Blum ES, Abraham MC, Yoshimura S, Lu Y, Shaham S. Control of nonapoptotic developmental cell death in Caenorhabditis elegans by a polyglutamine-repeat protein. Science 2012; 335:970-3. [PMID: 22363008 DOI: 10.1126/science.1215156] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Death is a vital developmental cell fate. In Caenorhabditis elegans, programmed death of the linker cell, which leads gonadal elongation, proceeds independently of caspases and apoptotic effectors. To identify genes promoting linker-cell death, we performed a genome-wide RNA interference screen. We show that linker-cell death requires the gene pqn-41, encoding an endogenous polyglutamine-repeat protein. pqn-41 functions cell-autonomously and is expressed at the onset of linker-cell death. pqn-41 expression is controlled by the mitogen-activated protein kinase kinase SEK-1, which functions in parallel to the zinc-finger protein LIN-29 to promote cellular demise. Linker-cell death is morphologically similar to cell death associated with normal vertebrate development and polyglutamine-induced neurodegeneration. Our results may therefore provide molecular inroads to understanding nonapoptotic cell death in metazoan development and disease.
Collapse
Affiliation(s)
- Elyse S Blum
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
81
|
Zhao H, Dahlö M, Isaksson A, Syvänen AC, Pettersson U. The transcriptome of the adenovirus infected cell. Virology 2012; 424:115-28. [PMID: 22236370 DOI: 10.1016/j.virol.2011.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Alternations of cellular gene expression following an adenovirus type 2 infection of human primary cells were studied by using superior sensitive cDNA sequencing. In total, 3791 cellular genes were identified as differentially expressed more than 2-fold. Genes involved in DNA replication, RNA transcription and cell cycle regulation were very abundant among the up-regulated genes. On the other hand, genes involved in various signaling pathways including TGF-β, Rho, G-protein, Map kinase, STAT and NF-κB stood out among the down-regulated genes. Binding sites for E2F, ATF/CREB and AP2 were prevalent in the up-regulated genes, whereas binding sites for SRF and NF-κB were dominant among the down-regulated genes. It is evident that the adenovirus has gained a control of the host cell cycle, growth, immune response and apoptosis at 24 h after infection. However, efforts from host cell to block the cell cycle progression and activate an antiviral response were also observed.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
82
|
Kakihara Y, Houry WA. The R2TP complex: Discovery and functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:101-7. [DOI: 10.1016/j.bbamcr.2011.08.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
83
|
Lüscher B, Vervoorts J. Regulation of gene transcription by the oncoprotein MYC. Gene 2011; 494:145-60. [PMID: 22227497 DOI: 10.1016/j.gene.2011.12.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/27/2011] [Accepted: 12/15/2011] [Indexed: 02/07/2023]
Abstract
The proteins of the MYC/MAX/MAD network are central regulators of many key processes associated with basic cell physiology. These include the regulation of protein biosynthesis, energy metabolism, proliferation, and apoptosis. Molecularly the MYC/MAX/MAD network achieves these broad activities by controlling the expression of many target genes, which are primarily responsible for the diverse physiological consequences elicited by the network. The MYC proteins of the network possess oncogenic activity and their functional deregulation is associated with the majority of human tumors. Over the last years we have witnessed the accumulation of a considerable number of molecular observations that suggest many different biochemical means and tools by which MYC controls gene expression. We will summarize the more recent findings and discuss how these different building blocks might come together to explain how MYC regulates gene transcription. We note that despite the many molecular details known, we do not have an integrated view of how MYC uses the different tools, neither in a spatial nor in a temporal order.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany.
| | | |
Collapse
|
84
|
Gorynia S, Bandeiras TM, Pinho FG, McVey CE, Vonrhein C, Round A, Svergun DI, Donner P, Matias PM, Carrondo MA. Structural and functional insights into a dodecameric molecular machine – The RuvBL1/RuvBL2 complex. J Struct Biol 2011; 176:279-91. [DOI: 10.1016/j.jsb.2011.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/12/2011] [Accepted: 09/02/2011] [Indexed: 11/24/2022]
|
85
|
Van Duyne R, Guendel I, Narayanan A, Gregg E, Shafagati N, Tyagi M, Easley R, Klase Z, Nekhai S, Kehn-Hall K, Kashanchi F. Varying modulation of HIV-1 LTR activity by Baf complexes. J Mol Biol 2011; 411:581-96. [PMID: 21699904 DOI: 10.1016/j.jmb.2011.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 01/08/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) long terminal repeat is present on both ends of the integrated viral genome and contains regulatory elements needed for transcriptional initiation and elongation. Post-integration, a highly ordered chromatin structure consisting of at least five nucleosomes, is found at the 5' long terminal repeat, the location and modification state of which control the state of active viral replication as well as silencing of the latent HIV-1 provirus. In this context, the chromatin remodeling field rapidly emerges as having a critical role in the control of viral gene expression. In the current study, we focused on unique Baf subunits that are common to the most highly recognized of chromatin remodeling proteins, the SWI/SNF (switching-defective-sucrose non-fermenting) complexes. We find that at least two Baf proteins, Baf53 and Baf170, are highly regulated in HIV-1-infected cells. Previously, studies have shown that the depletion of Baf53 in uninfected cells leads to the expansion of chromosomal territories and the decompaction of the chromatin. Baf53, in the presence of HIV-1 infection, co-elutes off of a chromatographic column as a different-sized complex when compared to uninfected cells and appears to be predominantly phosphorylated. The innate function of Baf53-containing complexes appears to be transcriptionally suppressive, in that knocking down Baf53 increases viral gene expression from cells both transiently and chronically infected with HIV-1. Additionally, cdk9/cyclin T in the presence of Tat is able to phosphorylate Baf53 in vitro, implying that this posttranslationally modified form relieves the suppressive effect and allows for viral transcription to proceed.
Collapse
Affiliation(s)
- Rachel Van Duyne
- Department of Molecular and Microbiology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Iwai A, Takegami T, Shiozaki T, Miyazaki T. Hepatitis C virus NS3 protein can activate the Notch-signaling pathway through binding to a transcription factor, SRCAP. PLoS One 2011; 6:e20718. [PMID: 21673954 PMCID: PMC3108961 DOI: 10.1371/journal.pone.0020718] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Persistent infections of hepatitis C virus (HCV) are known to be a major risk factor for causing hepatocellular carcinomas. Nonstructural protein 3 (NS3) of HCV has serine protease and RNA helicase domains, and is essential for the viral replication. Further, NS3 is also considered to be involved in the development of HCV-induced hepatocellular carcinomas. In this report, we focus on the function of NS3 protein, and propose a novel possible molecular mechanism which is thought to be related to the tumorigenesis caused by the persistent infection of HCV. We identified SRCAP (Snf2-related CBP activator protein) as a NS3 binding protein using yeast two-hybrid screening, and a co-immunoprecipitation assay demonstrated that NS3 can bind to SRCAP in mammalian cells. The results of a reporter gene assay using Hes-1 promoter which is known to be a target gene activated by Notch, indicate that NS3 and SRCAP cooperatively activate the Hes-1 promoter in Hep3B cells. In addition, we show in this report that also p400, which is known as a protein closely resembling SRCAP, would be targeted by NS3. NS3 exhibited binding activity also to the 1449–1808 region of p400 by a co-immunoprecipitation assay, and further the activation of the Notch-mediated transcription of Hes-1 promoter by NS3 decreased significantly by the combined silencing of SRCAP and p400 mRNA using short hairpin RNA. These results suggest that the HCV NS3 protein is involved in the activation of the Notch-signaling pathway through the targeting to both SRCAP and p400.
Collapse
Affiliation(s)
- Atsushi Iwai
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tsutomu Takegami
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- * E-mail:
| | - Takuya Shiozaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tadaaki Miyazaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| |
Collapse
|
87
|
Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta Rev Cancer 2011; 1815:147-57. [DOI: 10.1016/j.bbcan.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
|
88
|
Mills RE, Pittard WS, Mullaney JM, Farooq U, Creasy TH, Mahurkar AA, Kemeza DM, Strassler DS, Ponting CP, Webber C, Devine SE. Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res 2011; 21:830-9. [PMID: 21460062 DOI: 10.1101/gr.115907.110] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human genetic variation is expected to play a central role in personalized medicine. Yet only a fraction of the natural genetic variation that is harbored by humans has been discovered to date. Here we report almost 2 million small insertions and deletions (INDELs) that range from 1 bp to 10,000 bp in length in the genomes of 79 diverse humans. These variants include 819,363 small INDELs that map to human genes. Small INDELs frequently were found in the coding exons of these genes, and several lines of evidence indicate that such variation is a major determinant of human biological diversity. Microarray-based genotyping experiments revealed several interesting observations regarding the population genetics of small INDEL variation. For example, we found that many of our INDELs had high levels of linkage disequilibrium (LD) with both HapMap SNPs and with high-scoring SNPs from genome-wide association studies. Overall, our study indicates that small INDEL variation is likely to be a key factor underlying inherited traits and diseases in humans.
Collapse
Affiliation(s)
- Ryan E Mills
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Ou HD, May AP, O'Shea CC. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:48-73. [PMID: 21061422 DOI: 10.1002/wsbm.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | |
Collapse
|
90
|
Poreba E, Broniarczyk JK, Gozdzicka-Jozefiak A. Epigenetic mechanisms in virus-induced tumorigenesis. Clin Epigenetics 2011; 2:233-47. [PMID: 22704339 PMCID: PMC3365383 DOI: 10.1007/s13148-011-0026-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 02/28/2011] [Indexed: 12/14/2022] Open
Abstract
About 15–20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Molecular Virology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | | | | |
Collapse
|
91
|
Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011; 21:396-420. [PMID: 21358755 DOI: 10.1038/cr.2011.32] [Citation(s) in RCA: 633] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular assemblies that regulate chromatin structure using the energy of ATP hydrolysis have critical roles in development, cancer, and stem cell biology. The ATPases of this family are encoded by 27 human genes and are usually associated with several other proteins that are stable, non-exchangeable subunits. One fundamental mechanism used by these complexes is thought to be the movement or exchange of nucleosomes to regulate transcription. However, recent genetic studies indicate that chromatin remodelers may also be involved in regulating other aspects of chromatin structure during many cellular processes. The SWI/SNF family in particular appears to have undergone a substantial change in subunit composition and mechanism coincident with the evolutionary advent of multicellularity and the appearance of linking histones. The differential usage of this greater diversity of mammalian BAF subunits is essential for the development of specific cell fates, including the progression from pluripotency to multipotency to committed neurons. Recent human genetic screens have revealed that BRG1, ARID1A, BAF155, and hSNF5 are frequently mutated in tumors, indicating that BAF complexes also play a critical role in the initiation or progression of cancer. The mechanistic bases underlying the genetic requirements for BAF and other chromatin remodelers in development and cancer are relatively unexplored and will be a focus of this review.
Collapse
Affiliation(s)
- Diana C Hargreaves
- Howard Hughes Medical Institute, Beckman Center B211, 279 Campus Drive, Mailcode 5323, Stanford University School of Medicine, Stanford, CA 94305-5323, USA
| | | |
Collapse
|
92
|
Opposing oncogenic activities of small DNA tumor virus transforming proteins. Trends Microbiol 2011; 19:174-83. [PMID: 21330137 DOI: 10.1016/j.tim.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
The E1A gene of species C human adenovirus is an intensely investigated model viral oncogene that immortalizes primary cells and mediates oncogenic cell transformation in cooperation with other viral or cellular oncogenes. Investigations using E1A proteins have illuminated important paradigms in cell proliferation and about the functions of cellular proteins such as the retinoblastoma protein. Studies with E1A have led to the unexpected discovery that E1A also suppresses cell transformation and oncogenesis. Here, I review our current understanding of the transforming and tumor-suppressive functions of E1A, and how E1A studies led to the discovery of a related tumor-suppressive function in benign human papillomaviruses. The potential role of these opposing functions in viral replication in epithelial cells is also discussed.
Collapse
|
93
|
Smith KN, Lim JM, Wells L, Dalton S. Myc orchestrates a regulatory network required for the establishment and maintenance of pluripotency. Cell Cycle 2011; 10:592-7. [PMID: 21293186 DOI: 10.4161/cc.10.4.14792] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pluripotent stem cells (PSCs) are maintained by a complex regulatory network orchestrated by transcription factors, epigenetic modifiers and non-coding RNAs. Central to this regulatory network is the Myc family of transcription factors. Defining roles for Myc in PSCs has been problematic but recently, a number of reports have provided insight into this question. An emerging picture now places Myc as a key regulator of the cell cycle, genomic maintenance and general metabolic activity in PSCs through its ability to directly regulate large numbers of target genes and more indirectly through control of microRNAs. One of Myc's main roles is to repress the activity of genes required for differentiation such as the endoderm master regulator, GATA6. The general mechanism by which Myc activates target genes is well understood but a remaining major challenge is to understand how it represses gene activity. Here we discuss potential mechanisms for how Myc establishes and maintains the pluripotent state and incorporate proteomics data that supports a model where Myc acts as part of a regulatory network with epigenetic modifiers.
Collapse
Affiliation(s)
- Keriayn N Smith
- Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, Athens, GA USA
| | | | | | | |
Collapse
|
94
|
Abstract
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the direct the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.
Collapse
Affiliation(s)
- Ye Xu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
95
|
|
96
|
Oma Y, Harata M. Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus 2011; 2:38-46. [PMID: 21647298 PMCID: PMC3104808 DOI: 10.4161/nucl.2.1.14510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022] Open
Abstract
The actin family consists of conventional actin and actin-related proteins (ARPs), and the members show moderate similarity and share the same basal structure. Following the finding of various ARPs in the cytoplasm in the 1990s, multiple subfamilies that are localized predominantly in the nucleus were identified. Consistent with these cytological observations, subsequent biochemical analyses revealed the involvement of the nuclear ARPs in ATP-dependent chromatin-remodeling and histone acetyltransferase complexes. In addition to their contribution to chromatin remodeling, recent studies have shown that nuclear ARPs have roles in the organization of the nucleus that are independent of the activity of the above-mentioned complexes. Therefore, nuclear ARPs are recognized as novel key regulators of genome function, and affect not only the remodeling of chromatin but also the spatial arrangement and dynamics of chromatin within the nucleus.
Collapse
Affiliation(s)
- Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | |
Collapse
|
97
|
A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010; 143:313-24. [PMID: 20946988 PMCID: PMC3018841 DOI: 10.1016/j.cell.2010.09.010] [Citation(s) in RCA: 539] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/06/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022]
Abstract
c-Myc (Myc) is an important transcriptional regulator in embryonic stem (ES) cells, somatic cell reprogramming, and cancer. Here, we identify a Myc-centered regulatory network in ES cells by combining protein-protein and protein-DNA interaction studies and show that Myc interacts with the NuA4 complex, a regulator of ES cell identity. In combination with regulatory network information, we define three ES cell modules (Core, Polycomb, and Myc) and show that the modules are functionally separable, illustrating that the overall ES cell transcription program is composed of distinct units. With these modules as an analytical tool, we have reassessed the hypothesis linking an ES cell signature with cancer or cancer stem cells. We find that the Myc module, independent of the Core module, is active in various cancers and predicts cancer outcome. The apparent similarity of cancer and ES cell signatures reflects, in large part, the pervasive nature of Myc regulatory networks.
Collapse
|
98
|
Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, Weinstock DM, Price BD. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. ACTA ACUST UNITED AC 2010; 191:31-43. [PMID: 20876283 PMCID: PMC2953432 DOI: 10.1083/jcb.201001160] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p400 unwinds chromatin from nucleosomes flanking double-strand breaks to facilitate recruitment of the DNA repair components brca1 and 53BP1. The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that DNA damage destabilizes nucleosomes within chromatin regions that correspond to the γ-H2AX domains surrounding DSBs. This nucleosome destabilization is an active process requiring the ATPase activity of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. p400 is recruited to DSBs by a mechanism that is independent of ATM but requires mdc1. Further, the destabilization of nucleosomes by p400 is required for the RNF8-dependent ubiquitination of chromatin, and for the subsequent recruitment of brca1 and 53BP1 to DSBs. These results identify p400 as a novel DNA damage response protein and demonstrate that p400-mediated alterations in nucleosome and chromatin structure promote both chromatin ubiquitination and the accumulation of brca1 and 53BP1 at sites of DNA damage.
Collapse
Affiliation(s)
- Ye Xu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
100
|
Fujii T, Ueda T, Nagata S, Fukunaga R. Essential role of p400/mDomino chromatin-remodeling ATPase in bone marrow hematopoiesis and cell-cycle progression. J Biol Chem 2010; 285:30214-23. [PMID: 20610385 DOI: 10.1074/jbc.m110.104513] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p400/mDomino is an ATP-dependent chromatin-remodeling protein that catalyzes the deposition of histone variant H2A.Z into nucleosomes to regulate gene expression. We previously showed that p400/mDomino is essential for embryonic development and primitive hematopoiesis. Here we generated a conditional knock-out mouse for the p400/mDomino gene and investigated the role of p400/mDomino in adult bone marrow hematopoiesis and in the cell-cycle progression of embryonic fibroblasts. The Mx1-Cre- mediated deletion of p400/mDomino resulted in an acute loss of nucleated cells in the bone marrow, including committed myeloid and erythroid cells as well as hematopoietic progenitor and stem cells. A hematopoietic colony assay revealed a drastic reduction in colony-forming activity after the deletion of p400/mDomino. Moreover, the loss of p400/mDomino in mouse embryonic fibroblasts (MEFs) resulted in strong growth inhibition. Cell-cycle analysis revealed that the mDomino-deficient MEFs exhibited a pleiotropic cell-cycle defect at the S and G(2)/M phases, and polyploid and multi-nucleated cells with micronuclei emerged. DNA microarray analysis revealed that the p400/mDomino deletion from MEFs caused the impaired expression of many cell-cycle-regulatory genes, including G(2)/M-specific genes targeted by the transcription factors FoxM1 and c-Myc. These results indicate that p400/mDomino plays a key role in cellular proliferation by controlling the expression of cell-cycle-regulatory genes.
Collapse
Affiliation(s)
- Toshihiro Fujii
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|