51
|
Phosphorylation of an HP1-like protein is a prerequisite for heterochromatin body formation in Tetrahymena DNA elimination. Proc Natl Acad Sci U S A 2016; 113:9027-32. [PMID: 27466409 DOI: 10.1073/pnas.1606012113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple heterochromatic loci are often clustered into a higher order nuclear architecture called a heterochromatin body in diverse eukaryotes. Although phosphorylation of Heterochromatin Protein 1 (HP1) family proteins regulates heterochromatin dynamics, its role in heterochromatin bodies remains unknown. We previously reported that dephosphorylation of the HP1-like protein Pdd1p is required for the formation of heterochromatin bodies during the process of programmed DNA elimination in the ciliated protozoan Tetrahymena Here, we show that the heterochromatin body component Jub4p is required for Pdd1p phosphorylation, heterochromatin body formation, and DNA elimination. Moreover, our analyses of unphosphorylatable Pdd1p mutants demonstrate that Pdd1p phosphorylation is required for heterochromatin body formation and DNA elimination, whereas it is dispensable for local heterochromatin assembly. Therefore, both phosphorylation and the following dephosphorylation of Pdd1p are necessary to facilitate the formation of heterochromatin bodies. We suggest that Jub4p-mediated phosphorylation of Pdd1p creates a chromatin environment that is a prerequisite for subsequent heterochromatin body assembly and DNA elimination.
Collapse
|
52
|
Abstract
Over the past 20 years, breakthrough discoveries of chromatin-modifying enzymes and associated mechanisms that alter chromatin in response to physiological or pathological signals have transformed our knowledge of epigenetics from a collection of curious biological phenomena to a functionally dissected research field. Here, we provide a personal perspective on the development of epigenetics, from its historical origins to what we define as 'the modern era of epigenetic research'. We primarily highlight key molecular mechanisms of and conceptual advances in epigenetic control that have changed our understanding of normal and perturbed development.
Collapse
Affiliation(s)
- C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York 10065, New York, USA
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, Freiburg D-79108, Germany
| |
Collapse
|
53
|
Carle CM, Zaher HS, Chalker DL. A Parallel G Quadruplex-Binding Protein Regulates the Boundaries of DNA Elimination Events of Tetrahymena thermophila. PLoS Genet 2016; 12:e1005842. [PMID: 26950070 PMCID: PMC4780704 DOI: 10.1371/journal.pgen.1005842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
Guanine (G)-rich DNA readily forms four-stranded quadruplexes in vitro, but evidence for their participation in genome regulation is limited. We have identified a quadruplex-binding protein, Lia3, that controls the boundaries of germline-limited, internal eliminated sequences (IESs) of Tetrahymena thermophila. Differentiation of this ciliate's somatic genome requires excision of thousands of IESs, targeted for removal by small-RNA-directed heterochromatin formation. In cells lacking LIA3 (ΔLIA3), the excision of IESs bounded by specific G-rich polypurine tracts was impaired and imprecise, whereas the removal of IESs without such controlling sequences was unaffected. We found that oligonucleotides containing these polypurine tracts formed parallel G-quadruplex structures that are specifically bound by Lia3. The discovery that Lia3 binds G-quadruplex DNA and controls the accuracy of DNA elimination at loci with specific G-tracts uncovers an unrecognized potential of quadruplex structures to regulate chromosome organization.
Collapse
Affiliation(s)
- Christine M. Carle
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Douglas L. Chalker
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
54
|
Abstract
Programmed genome rearrangements in the ciliate Paramecium provide a nice illustration of the impact of transposons on genome evolution and plasticity. During the sexual cycle, development of the somatic macronucleus involves elimination of ∼30% of the germline genome, including repeated DNA (e.g., transposons) and ∼45,000 single-copy internal eliminated sequences (IES). IES excision is a precise cut-and-close process, in which double-stranded DNA cleavage at IES ends depends on PiggyMac, a domesticated piggyBac transposase. Genome-wide analysis has revealed that at least a fraction of IESs originate from Tc/mariner transposons unrelated to piggyBac. Moreover, genomic sequences with no transposon origin, such as gene promoters, can be excised reproducibly as IESs, indicating that genome rearrangements contribute to the control of gene expression. How the system has evolved to allow elimination of DNA sequences with no recognizable conserved motif has been the subject of extensive research during the past two decades. Increasing evidence has accumulated for the participation of noncoding RNAs in epigenetic control of elimination for a subset of IESs, and in trans-generational inheritance of alternative rearrangement patterns. This chapter summarizes our current knowledge of the structure of the germline and somatic genomes for the model species Paramecium tetraurelia, and describes the DNA cleavage and repair factors that constitute the IES excision machinery. We present an overview of the role of specialized RNA interference machineries and their associated noncoding RNAs in the control of DNA elimination. Finally, we discuss how RNA-dependent modification and/or remodeling of chromatin may guide PiggyMac to its cognate cleavage sites.
Collapse
|
55
|
Abstract
Ciliates are champions in programmed genome rearrangements. They carry out extensive restructuring during differentiation to drastically alter the complexity, relative copy number, and arrangement of sequences in the somatic genome. This chapter focuses on the model ciliate Tetrahymena, perhaps the simplest and best-understood ciliate studied. It summarizes past studies on various genome rearrangement processes and describes in detail the remarkable progress made in the past decade on the understanding of DNA deletion and other processes. The process occurs at thousands of specific sites to remove defined DNA segments that comprise roughly one-third of the genome including all transposons. Interestingly, this DNA rearranging process is a special form of RNA interference. It involves the production of double-stranded RNA and small RNA that guides the formation of heterochromatin. A domesticated piggyBac transposase is believed to cut off the marked chromatin, and the retained sequences are joined together through nonhomologous end-joining processes. Many of the proteins and DNA players involved have been analyzed and are described. This link provides possible explanations for the evolution, mechanism, and functional roles of the process. The article also discusses the interactions between parental and progeny somatic nuclei that affect the selection of sequences for deletion, and how the specific deletion boundaries are determined after heterochromatin marking.
Collapse
|
56
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
57
|
Woo TT, Chao JL, Yao MC. Dynamic distributions of long double-stranded RNA in Tetrahymena during nuclear development and genome rearrangements. J Cell Sci 2016; 129:1046-58. [DOI: 10.1242/jcs.178236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022] Open
Abstract
Bi-directional non-coding transcripts and their ∼29 nt small RNA products are known to guide DNA deletion in Tetrahymena, leading to the removal of one-third of the genome from developing somatic nuclei. Using an antibody specific for long double-stranded RNAs (dsRNAs), we determined the dynamic subcellular distributions of these RNAs. Conjugation-specific dsRNAs are found and show sequential appearances in parental germline, parental somatic nuclei and finally in new somatic nuclei of progeny. The dsRNAs in germline nuclei and new somatic nuclei are likely transcribed from the sequences destined for deletion; however, the dsRNAs in parental somatic nuclei are unexpected, and PCR analyses suggest their transcription in this nucleus. Deficiency in RNAi pathway leads to abnormal aggregations of dsRNA in both the parental and new somatic nuclei, whereas accumulation of dsRNAs in the germline nuclei is only seen in the Dicer-like gene mutant. In addition, RNAi mutants display an early loss of dsRNAs from developing somatic nuclei. Thus, long dsRNAs are made in multiple nuclear compartments and some are linked to small RNA production whereas others may participate in their regulations.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
58
|
Kataoka K, Mochizuki K. Phosphorylation of an HP1-like Protein Regulates Heterochromatin Body Assembly for DNA Elimination. Dev Cell 2015; 35:775-88. [PMID: 26688337 PMCID: PMC4695338 DOI: 10.1016/j.devcel.2015.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/29/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023]
Abstract
Heterochromatic loci are often assembled into higher-order heterochromatin bodies in diverse eukaryotes. However, the formation and biological roles of heterochromatin bodies are poorly understood. In the ciliated protozoan Tetrahymena, de novo heterochromatin body formation is accompanied by programmed DNA elimination. Here, we show that the heterochromatin body component Jub1p promotes heterochromatin body formation and dephosphorylation of the Heterochromatin Protein 1-like protein Pdd1p. Through the mutagenesis of the phosphorylated residues of Pdd1p, we demonstrate that Pdd1p dephosphorylation promotes the electrostatic interaction between Pdd1p and RNA in vitro and heterochromatin body formation in vivo. We therefore propose that heterochromatin body is assembled by the Pdd1p-RNA interaction. Pdd1p dephosphorylation and Jub1p are required for heterochromatin body formation and DNA elimination but not for local heterochromatin assembly, indicating that heterochromatin body plays an essential role in DNA elimination.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
59
|
Abstract
Tetrahymena is a useful eukaryotic model for biochemistry and molecular cell biology studies. We previously demonstrated that targeted ectopic DNA elimination, also called co-Deletion (coDel), can be induced by the introduction of an internal eliminated sequence (IES)-target DNA chimeric construct. In this study, we demonstrate that coDel occurs at most of the loci tested and can be used for the production of somatic gene KO strains. We also showed that coDel at two loci can be simultaneously induced by a single transformation; thus, coDel can be used to disrupt multiple gene loci in a single cell. Therefore, coDel is a useful tool for functional genetics in Tetrahymena and further extends the usefulness of this model organism.
Collapse
|
60
|
Foda BM, Singh U. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway. J Biol Chem 2015; 290:21114-21130. [PMID: 26149683 DOI: 10.1074/jbc.m115.647263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 01/02/2023] Open
Abstract
RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica.
Collapse
Affiliation(s)
- Bardees M Foda
- Departments of Internal Medicine, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305; Department of Molecular Genetics and Enzymology, National Research Centre, Dokki, Egypt
| | - Upinder Singh
- Departments of Internal Medicine, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305; Departments of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305.
| |
Collapse
|
61
|
Noto T, Kataoka K, Suhren JH, Hayashi A, Woolcock KJ, Gorovsky MA, Mochizuki K. Small-RNA-Mediated Genome-wide trans-Recognition Network in Tetrahymena DNA Elimination. Mol Cell 2015; 59:229-42. [PMID: 26095658 PMCID: PMC4518040 DOI: 10.1016/j.molcel.2015.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/06/2015] [Accepted: 05/15/2015] [Indexed: 12/27/2022]
Abstract
Small RNAs are used to silence transposable elements (TEs) in many eukaryotes, which use diverse evolutionary solutions to identify TEs. In ciliated protozoans, small-RNA-mediated comparison of the germline and somatic genomes underlies identification of TE-related sequences, which are then eliminated from the soma. Here, we describe an additional mechanism of small-RNA-mediated identification of TE-related sequences in the ciliate Tetrahymena. We show that a limited set of internal eliminated sequences (IESs) containing potentially active TEs produces a class of small RNAs that recognize not only the IESs from which they are derived, but also other IESs in trans. This trans recognition triggers the expression of yet another class of small RNAs that identify other IESs. Therefore, TE-related sequences in Tetrahymena are robustly targeted for elimination by a genome-wide trans-recognition network accompanied by a chain reaction of small RNA production. Two types of siRNAs (scnRNAs) are expressed in Tetrahymena sexual reproduction Early-scnRNAs are produced from Type-A IESs containing potentially active transposons Early-scnRNAs trans-recognize Type-B IESs and trigger late-scnRNA production in cis Late-scnRNA production forms trans-recognition network for robust IES elimination
Collapse
Affiliation(s)
- Tomoko Noto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jan H Suhren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Azusa Hayashi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Katrina J Woolcock
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Martin A Gorovsky
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
62
|
Burger K, Gullerova M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 2015; 16:417-30. [DOI: 10.1038/nrm3994] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
63
|
Chromodomain protein Tcd1 is required for macronuclear genome rearrangement and repair in Tetrahymena. Sci Rep 2015; 5:10243. [PMID: 25989344 PMCID: PMC4437310 DOI: 10.1038/srep10243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022] Open
Abstract
The survival of an organism’s progeny depends on the maintenance of its genome. Programmed DNA rearrangement and repair in Tetrahymena occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome. Tetrahymena chromodomain protein (Tcd1) exhibited dynamic localization from the parental to the developing macronuclei. In the developing macronuclei, Tcd1 colocalized with Pdd1 and H3K9me3. Furthermore, Tcd1 colocalized with Pdd1 in the conjusome and “donut structure” of DNA elimination heterochromatin region. During the growth and conjugation stages, TCD1 knockout cells appeared normal and similar to wild-type strains. In addition, these knockout cells proceeded to the 2MAC-1MIC stage. However, the progeny of the TCD1 knockout cells did not grow upon return to SPP medium and eventually died. The deletion of the internal elimination sequence R element was partially disrupted in the developing new macronuclei. Gamma H2A staining showed that Tcd1 loss induced the accumulation of DNA double-strand breaks and the failure of genome repair. These results suggest that the chromodomain protein Tcd1 is required for the rearrangement and repair of new macronuclear genome in Tetrahymena.
Collapse
|
64
|
Fukuda Y, Akematsu T, Attiq R, Tada C, Nakai Y, Pearlman RE. Role of the Cytosolic Heat Shock Protein 70 Ssa5 in the Ciliate Protozoan Tetrahymena thermophila. J Eukaryot Microbiol 2015; 62:481-93. [DOI: 10.1111/jeu.12203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Yasuhiro Fukuda
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | | - Rizwan Attiq
- Department of Biology; York University; Toronto Ontario Canada
| | - Chika Tada
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | - Yutaka Nakai
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | |
Collapse
|
65
|
Woehrer SL, Aronica L, Suhren JH, Busch CJL, Noto T, Mochizuki K. A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms. EMBO J 2015; 34:559-77. [PMID: 25588944 PMCID: PMC4331008 DOI: 10.15252/embj.201490062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The loading of small interfering RNAs (siRNAs) and microRNAs into Argonaute proteins is enhanced by Hsp90 and ATP in diverse eukaryotes. However, whether this loading also occurs independently of Hsp90 and ATP remains unclear. We show that the Tetrahymena Hsp90 co-chaperone Coi12p promotes siRNA loading into the Argonaute protein Twi1p in both ATP-dependent and ATP-independent manners in vitro. The ATP-dependent activity requires Hsp90 and the tetratricopeptide repeat (TPR) domain of Coi12p, whereas these factors are dispensable for the ATP-independent activity. Both activities facilitate siRNA loading by counteracting the Twi1p-binding protein Giw1p, which is important to specifically sort the 26- to 32-nt siRNAs to Twi1p. Although Coi12p lacking its TPR domain does not bind to Hsp90, it can partially restore the siRNA loading and DNA elimination defects of COI12 knockout cells, suggesting that Hsp90- and ATP-independent loading of siRNA occurs in vivo and plays a physiological role in Tetrahymena.
Collapse
Affiliation(s)
- Sophie L Woehrer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Lucia Aronica
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Jan H Suhren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Clara Jana-Lui Busch
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Tomoko Noto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| |
Collapse
|
66
|
Arambasic M, Sandoval PY, Hoehener C, Singh A, Swart EC, Nowacki M. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium. PLoS One 2014; 9:e112899. [PMID: 25397898 PMCID: PMC4232520 DOI: 10.1371/journal.pone.0112899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/16/2014] [Indexed: 01/25/2023] Open
Abstract
The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.
Collapse
Affiliation(s)
| | | | | | - Aditi Singh
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
67
|
Guo X, Han F. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. THE PLANT CELL 2014; 26:4311-27. [PMID: 25415973 PMCID: PMC4277213 DOI: 10.1105/tpc.114.129841] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity.
Collapse
Affiliation(s)
- Xiang Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
68
|
Tetrahymena Pot2 is a developmentally regulated paralog of Pot1 that localizes to chromosome breakage sites but not to telomeres. EUKARYOTIC CELL 2014; 13:1519-29. [PMID: 25303953 DOI: 10.1128/ec.00204-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tetrahymena telomeres are protected by a protein complex composed of Pot1, Tpt1, Pat1, and Pat2. Pot1 binds the 3' overhang and serves multiple roles in telomere maintenance. Here we describe Pot2, a paralog of Pot1 which has evolved a novel function during Tetrahymena sexual reproduction. Pot2 is unnecessary for telomere maintenance during vegetative growth, as the telomere structure is unaffected by POT2 macronuclear gene disruption. Pot2 is expressed only in mated cells, where it accumulates in developing macronuclei around the time of two chromosome processing events: internal eliminated sequence (IES) excision and chromosome breakage. Chromatin immunoprecipitation (ChIP) demonstrated Pot2 localization to regions of chromosome breakage but not to telomeres or IESs. Pot2 association with chromosome breakage sites (CBSs) occurs slightly before chromosome breakage. Pot2 did not bind CBSs or telomeric DNA in vitro, suggesting that it is recruited to CBSs by another factor. The telomere proteins Pot1, Pat1, and Tpt1 and the IES binding factor Pdd1 fail to colocalize with Pot2. Thus, Pot2 is the first protein found to associate specifically with CBSs. The selective association of Pot2 versus Pdd1 with CBSs or IESs indicates a mechanistic difference between the chromosome processing events at these two sites. Moreover, ChIP revealed that histone marks characteristic of IES processing, H3K9me3 and H3K27me3, are absent from CBSs. Thus, the mechanisms of chromosome breakage and IES excision must be fundamentally different. Our results lead to a model where Pot2 directs chromosome breakage by recruiting telomerase and/or the endonuclease responsible for DNA cleavage to CBSs.
Collapse
|
69
|
Ignarski M, Singh A, Swart EC, Arambasic M, Sandoval PY, Nowacki M. Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination. Nucleic Acids Res 2014; 42:11952-64. [PMID: 25270876 PMCID: PMC4231744 DOI: 10.1093/nar/gku874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.
Collapse
Affiliation(s)
- Michael Ignarski
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Aditi Singh
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Miroslav Arambasic
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Pamela Y Sandoval
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
70
|
Lhuillier-Akakpo M, Frapporti A, Denby Wilkes C, Matelot M, Vervoort M, Sperling L, Duharcourt S. Local effect of enhancer of zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet 2014; 10:e1004665. [PMID: 25254958 PMCID: PMC4177680 DOI: 10.1371/journal.pgen.1004665] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences. The unicellular eukaryote Paramecium tetraurelia provides an extraordinary model for studying the mechanisms involved in zygotic genome rearrangements. At each sexual cycle, differentiation of the somatic nucleus from the zygotic nucleus is characterized by extensive remodeling of the entire somatic genome, which includes the precise excision of 45,000 short noncoding germline DNA segments to reconstitute functional open reading frames. Exploiting the unique properties of the Paramecium genome, we show that the enhancer of zeste like protein Ezl1 is necessary for histone H3 trimethylation on lysines 27 and 9 and is required for the precise excision of 31,000 of these single copy, dispersed germline DNA segments that can be as short as 26 bp in length. This implies that histone marks usually associated with heterochromatin may contribute to the precise demarcation of segments that are even shorter than the length of DNA wrapped around a single nucleosome. A quantitative analysis of high throughput sequencing datasets further shows that the underlying genetic properties of the germline DNA segments might act in concert with epigenetic signals to define germline specific sequences.
Collapse
Affiliation(s)
- Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités, UPMC Univ., IFD, Paris, France
| | - Andrea Frapporti
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Denby Wilkes
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Mélody Matelot
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Institut Universitaire de France, Paris, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
71
|
Papazyan R, Voronina E, Chapman JR, Luperchio TR, Gilbert TM, Meier E, Mackintosh SG, Shabanowitz J, Tackett AJ, Reddy KL, Coyne RS, Hunt DF, Liu Y, Taverna SD. Methylation of histone H3K23 blocks DNA damage in pericentric heterochromatin during meiosis. eLife 2014; 3:e02996. [PMID: 25161194 PMCID: PMC4141274 DOI: 10.7554/elife.02996] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the well-established role of heterochromatin in protecting chromosomal integrity during meiosis and mitosis, the contribution and extent of heterochromatic histone posttranslational modifications (PTMs) remain poorly defined. Here, we gained novel functional insight about heterochromatic PTMs by analyzing histone H3 purified from the heterochromatic germline micronucleus of the model organism Tetrahymena thermophila. Mass spectrometric sequencing of micronuclear H3 identified H3K23 trimethylation (H3K23me3), a previously uncharacterized PTM. H3K23me3 became particularly enriched during meiotic leptotene and zygotene in germline chromatin of Tetrahymena and C. elegans. Loss of H3K23me3 in Tetrahymena through deletion of the methyltransferase Ezl3p caused mislocalization of meiosis-induced DNA double-strand breaks (DSBs) to heterochromatin, and a decrease in progeny viability. These results show that an evolutionarily conserved developmental pathway regulates H3K23me3 during meiosis, and our studies in Tetrahymena suggest this pathway may function to protect heterochromatin from DSBs. DOI:http://dx.doi.org/10.7554/eLife.02996.001 Inside the nucleus of a cell, the DNA is wound around histone proteins. This forms a structure called chromatin that allows the long DNA strands to fit inside the cell. Variations in chromatin structure also help the cell to control the functional properties of DNA. For example, a large proportion of chromatin in the cell is in the form of heterochromatin, which is very densely packed, and is associated with many roles such as gene silencing and keeping DNA intact during reproduction. Many animals and plants have two copies of each DNA molecule: one inherited from the mother, and one from the father of the organism. Reproductive cells undergo a process called recombination when they form, where the matching copies of each DNA molecule break in a number of places and rejoin to form a new ‘blend’ of their mother's and their father's DNA, which is passed on to their own offspring. In contrast, most heterochromatin is inherited without recombining, preserving it in an unaltered form. This is important since recombination in heterochromatin can create genetic abnormalities. Adding small chemical modifications—such as methyl groups—to the histone proteins at the core of the chromatin can change how the DNA is packed. However, the histone modifications that yield different chromatin structures, and the effect of these modifications, are not very well understood. Papazyan et al. have taken advantage of a distinct feature of the protozoan Tetrahymena thermophila: a single-celled organism that divides its chromatin into two different nuclei. The smaller micronuclei contain only heterochromatin, and Papazyan et al. discovered that the histone H3 protein in the micronuclei is modified by methyl groups at a specific site that had not been studied before. Furthermore, this protozoan makes more of these modifications when it reproduces. An enzyme called Ezl3p adds these methyl groups, and without this enzyme T. thermophila reproduces more slowly and has offspring that are less likely to survive and more likely to be infertile. Papazyan et al. provide evidence that these characteristics arise because the cells without the histone modification are unable to prevent DNA breaks from occurring in heterochromatin during recombination. The same histone modification also occurs when the microscopic worm Caenorhabditis elegans reproduces, suggesting that this method of DNA protection has been conserved throughout evolution. Papazyan et al. propose that the histone modification may prevent another enzyme that induces DNA breaks from accessing the heterochromatin in reproductive cells; but more work is required to support this hypothesis. These findings reveal the importance of a new histone modification during reproduction, and could provide new directions for infertility research. DOI:http://dx.doi.org/10.7554/eLife.02996.002
Collapse
Affiliation(s)
- Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ekaterina Voronina
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Balitmore, United States Center for Cell Dynamics, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jessica R Chapman
- Department of Chemistry, University of Virginia, Charlottesville, United States
| | - Teresa R Luperchio
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, United States Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Tonya M Gilbert
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Elizabeth Meier
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Karen L Reddy
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, United States Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Robert S Coyne
- Department of Genomic Medicine, J. Craig Venter Institute, Rockville, United States
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, United States Department of Pathology, University of Virginia, Charlottesville, United States
| | - Yifan Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
72
|
Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS One 2014; 9:e104956. [PMID: 25141304 PMCID: PMC4139310 DOI: 10.1371/journal.pone.0104956] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/12/2014] [Indexed: 12/17/2022] Open
Abstract
RNA silencing such as quelling and meiotic silencing by unpaired DNA (MSUD) and several other classes of special small RNAs have been discovered in filamentous fungi recently. More than four different mechanisms of microRNA-like RNAs (milRNAs) production have been illustrated in the model fungus Neurospora crassa including a dicer-independent pathway. To date, very little work focusing on small RNAs in fungi has been reported and no universal or particular characteristic of milRNAs were defined clearly. In this study, small RNA and degradome libraries were constructed and subsequently deep sequenced for investigating milRNAs and their potential cleavage targets on the genome level in the filamentous fungus F. oxysporum f. sp. lycopersici. As a result, there is no intersection of conserved miRNAs found by BLASTing against the miRBase. Further analysis showed that the small RNA population of F. oxysporum shared many common features with the small RNAs from N. crassa and other fungi. According to the known standards of miRNA prediction in plants and animals, milRNA candidates from 8 families (comprising 19 members) were screened out and identified. However, none of them could trigger target cleavage based on the degradome data. Moreover, most major signals of cleavage in transcripts could not match appropriate complementary small RNAs, suggesting that other predominant modes for milRNA-mediated gene regulation could exist in F. oxysporum. In addition, the PAREsnip program was utilized for comprehensive analysis and 3 families of small RNAs leading to transcript cleavage were experimentally validated. Altogether, our findings provided valuable information and important hints for better understanding the functions of the small RNAs and milRNAs in the fungal kingdom.
Collapse
|
73
|
LIA4 encodes a chromoshadow domain protein required for genomewide DNA rearrangements in Tetrahymena thermophila. EUKARYOTIC CELL 2014; 13:1300-11. [PMID: 25084866 DOI: 10.1128/ec.00125-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive DNA elimination occurs as part of macronuclear differentiation during Tetrahymena sexual reproduction. The identification of sequences to excise is guided by a specialized RNA interference (RNAi) machinery that targets the methylation of histone H3 lysine 9 (K9) and K27 on chromatin associated with these internal eliminated sequences (IESs). This modified chromatin is reorganized into heterochromatic subnuclear foci, which is a hallmark of their subsequent elimination. Here, we demonstrate that Lia4, a chromoshadow domain-containing protein, is an essential component in this DNA elimination pathway. LIA4 knockout (ΔLIA4) lines fail to excise IESs from their developing somatic genome and arrest at a late stage of conjugation. Lia4 acts after RNAi-guided heterochromatin formation, as both H3K9 and H3K27 methylation are established. Nevertheless, without LIA4, these cells fail to form the heterochromatic foci associated with DNA rearrangement, and Lia4 accumulates in the foci, indicating that Lia4 plays a key role in their structure. These data indicate a critical role for Lia4 in organizing the nucleus during Tetrahymena macronuclear differentiation.
Collapse
|
74
|
Bracht JR. Beyond transcriptional silencing: is methylcytosine a widely conserved eukaryotic DNA elimination mechanism? Bioessays 2014; 36:346-52. [PMID: 24519896 DOI: 10.1002/bies.201300123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methylation of cytosine DNA residues is a well-studied epigenetic modification with important roles in formation of heterochromatic regions of the genome, and also in tissue-specific repression of transcription. However, we recently found that the ciliate Oxytricha uses methylcytosine in a novel DNA elimination pathway important for programmed genome restructuring. Remarkably, mounting evidence suggests that methylcytosine can play a dual role in ciliates, repressing gene expression during some life-stages and directing DNA elimination in others. In this essay, I describe these recent advances in the DNA methylation field and discuss whether this unexpected novel role for methylcytosine in DNA elimination might be more widely conserved in eukaryotic biology, particularly in apoptotic pathways.
Collapse
Affiliation(s)
- John R Bracht
- Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ, USA
| |
Collapse
|
75
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|
76
|
Vogt A, Mochizuki K. A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena. PLoS Genet 2013; 9:e1004032. [PMID: 24348275 PMCID: PMC3861120 DOI: 10.1371/journal.pgen.1004032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022] Open
Abstract
The somatic genome of the ciliated protist Tetrahymena undergoes DNA elimination of defined sequences called internal eliminated sequences (IESs), which account for ~30% of the germline genome. During DNA elimination, IES regions are heterochromatinized and assembled into heterochromatin bodies in the developing somatic nucleus. The domesticated piggyBac transposase Tpb2p is essential for the formation of heterochromatin bodies and DNA elimination. In this study, we demonstrate that the activities of Tpb2p involved in forming heterochromatin bodies and executing DNA elimination are genetically separable. The cysteine-rich domain of Tpb2p, which interacts with the heterochromatin-specific histone modifications, is necessary for both heterochromatin body formation and DNA elimination, whereas the endonuclease activity of Tpb2p is only necessary for DNA elimination. Furthermore, we demonstrate that the endonuclease activity of Tpb2p in vitro and the endonuclease activity that executes DNA elimination in vivo have similar substrate sequence preferences. These results strongly indicate that Tpb2p is the endonuclease that directly catalyzes the excision of IESs and that the boundaries of IESs are at least partially determined by the combination of Tpb2p-heterochromatin interaction and relaxed sequence preference of the endonuclease activity of Tpb2p.
Collapse
Affiliation(s)
- Alexander Vogt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna, Austria
- * E-mail:
| |
Collapse
|
77
|
Mutations in Pdd1 reveal distinct requirements for its chromodomain and chromoshadow domain in directing histone methylation and heterochromatin elimination. EUKARYOTIC CELL 2013; 13:190-201. [PMID: 24297443 DOI: 10.1128/ec.00219-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pdd1, a specialized HP1-like protein, is required for genome-wide DNA rearrangements that restructure a previously silent germ line genome into an active somatic genome during macronuclear differentiation of Tetrahymena thermophila. We deleted or otherwise mutated conserved regions of the protein to investigate how its different domains promote the excision of thousands of internal eliminated sequences (IESs). Previous studies revealed that Pdd1 contributes to recognition of IES loci after they are targeted by small-RNA-guided methylation of histone H3 on lysine 27 (H3K27), subsequently aids the establishment of H3K9 methylation, and recruits proteins that lead to excision. The phenotypes we observed for different Pdd1 alleles showed that each of the two chromodomains and the chromoshadow domain (CSD) have distinct contributions during somatic genome differentiation. Chromodomain 1 (CD1) is essential for conjugation as either its deletion or the substitution of two key aromatic amino acid residues (the W97A W100A mutant) is lethal. These mutations caused mislocalization of a cyan fluorescent protein (CFP)-tagged protein, prevented the establishment of histone H3 dimethylated on K9 (H3K9me2), and abolished IES excision. Nevertheless, the requirement for CD1 could be bypassed by recruiting Pdd1 directly to an IES by addition of a specific DNA binding domain. Chromodomain 2 (CD2) was necessary for producing viable progeny, but low levels of H3K9me2 and IES excision still occurred. A mutation in the chromoshadow domain (CSD) prevented Pdd1 focus formation but still permitted ∼17% of conjugants to produce viable progeny. However, this mutant was unable to stimulate excision when recruited to an ectopic IES, indicating that this domain is important for recruitment of excision factors.
Collapse
|
78
|
Abstract
Research using ciliates revealed early examples of epigenetic phenomena and continues to provide novel findings. These protozoans maintain separate germline and somatic nuclei that carry transcriptionally silent and active genomes, respectively. Examining the differences in chromatin within distinct nuclei of Tetrahymena identified histone variants and established that transcriptional regulators act by modifying histones. Formation of somatic nuclei requires both transcriptional activation of silent chromatin and large-scale DNA elimination. This somatic genome remodeling is directed by homologous RNAs, acting with an RNA interference (RNAi)-related machinery. Furthermore, the content of the parental somatic genome provides a homologous template to guide this genome restructuring. The mechanisms regulating ciliate DNA rearrangements reveal the surprising power of homologous RNAs to remodel the genome and transmit information transgenerationally.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | |
Collapse
|
79
|
Akematsu T, Fukuda Y, Attiq R, Pearlman RE. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila. Autophagy 2013; 10:209-25. [PMID: 24280724 PMCID: PMC5396089 DOI: 10.4161/auto.26929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Programmed nuclear death (PND) in the ciliate protozoan Tetrahymena thermophila is a novel type of autophagy that occurs during conjugation, in which only the parental somatic macronucleus is destined to die and is then eliminated from the progeny cytoplasm. Other coexisting nuclei, however, such as new micro- and macronuclei are unaffected. PND starts with condensation in the nucleus followed by apoptotic DNA fragmentation, lysosomal acidification, and final resorption. Because of the peculiarity in the process and the absence of some ATG genes in this organism, the mechanism of PND has remained unclear. In this study, we focus on the role of class III phosphatidylinositol 3-kinase (PtdIns3K, corresponding to yeast Vps34) in order to identify central regulators of PND. We identified the sole Tetrahymena thermophila ortholog (TtVPS34) to yeast Vps34 and human PIK3C3 (the catalytic subunit of PtdIns3K), through phylogenetic analysis, and generated the gene knockdown mutant for functional analysis. Loss of TtVPS34 activity prevents autophagosome formation on the parental macronucleus, and this nucleus escapes from the lysosomal pathway. In turn, DNA fragmentation and final resorption of the nucleus are drastically impaired. These phenotypes are similar to the situation in the ATG8Δ mutants of Tetrahymena, implying an inextricable link between TtVPS34 and TtATG8s in controlling PND as well as general macroautophagy. On the other hand, TtVPS34 does not appear responsible for the nuclear condensation and does not affect the progeny nuclear development. These results demonstrate that TtVPS34 is critically involved in the nuclear degradation events of PND in autophagosome formation rather than with an involvement in commitment to the death program.
Collapse
Affiliation(s)
| | - Yasuhiro Fukuda
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University, Oosaki, Japan
| | - Rizwan Attiq
- Department of Biology; York University; Toronto, CA
| | | |
Collapse
|
80
|
Shieh AWY, Chalker DL. LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation. PLoS One 2013; 8:e75337. [PMID: 24069402 PMCID: PMC3775806 DOI: 10.1371/journal.pone.0075337] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/13/2013] [Indexed: 01/24/2023] Open
Abstract
During macronuclear differentiation of the ciliate Tetrahymena thermophila, genome-wide DNA rearrangements eliminate nearly 50 Mbp of germline derived DNA, creating a streamlined somatic genome. The transposon-like and other repetitive sequences to be eliminated are identified using a piRNA pathway and packaged as heterochromatin prior to their removal. In this study, we show that LIA5, which encodes a zinc-finger protein likely of transposon origin, is required for both chromosome fragmentation and DNA elimination events. Lia5p acts after the establishment of RNAi-directed heterochromatin modifications, but prior to the excision of the modified sequences. In ∆LIA5 cells, DNA elimination foci, large nuclear sub-structures containing the sequences to be eliminated and the essential chromodomain protein Pdd1p, do not form. Lia5p, unlike Pdd1p, is not stably associated with these structures, but is required for their formation. In the absence of Lia5p, we could recover foci formation by ectopically inducing DNA damage by UV treatment. Foci in both wild-type or UV-treated ∆LIA5 cells contain dephosphorylated Pdd1p. These studies of LIA5 reveal that DNA elimination foci form after the excision of germ-line limited sequences occurs and indicate that Pdd1p reorganization is likely mediated through a DNA damage response.
Collapse
Affiliation(s)
- Annie Wan Yi Shieh
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Douglas L. Chalker
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
81
|
Feng X, Guang S. Non-coding RNAs mediate the rearrangements of genomic DNA in ciliates. SCIENCE CHINA-LIFE SCIENCES 2013; 56:937-43. [PMID: 24008384 DOI: 10.1007/s11427-013-4539-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/10/2013] [Indexed: 01/24/2023]
Abstract
Most eukaryotes employ a variety of mechanisms to defend the integrity of their genome by recognizing and silencing parasitic mobile nucleic acids. However, recent studies have shown that genomic DNA undergoes extensive rearrangements, including DNA elimination, fragmentation, and unscrambling, during the sexual reproduction of ciliated protozoa. Non-coding RNAs have been identified to program and regulate genome rearrangement events. In Paramecium and Tetrahymena, scan RNAs (scnRNAs) are produced from micronuclei and transported to vegetative macronuclei, in which scnRNA elicits the elimination of cognate genomic DNA. In contrast, Piwi-interacting RNAs (piRNAs) in Oxytricha enable the retention of genomic DNA that exhibits sequence complementarity in macronuclei. An RNA interference (RNAi)-like mechanism has been found to direct these genomic rearrangements. Furthermore, in Oxytricha, maternal RNA templates can guide the unscrambling process of genomic DNA. The non-coding RNA-directed genome rearrangements may have profound evolutionary implications, for example, eliciting the multigenerational inheritance of acquired adaptive traits.
Collapse
Affiliation(s)
- Xuezhu Feng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | | |
Collapse
|
82
|
Vogt A, Goldman AD, Mochizuki K, Landweber LF. Transposon domestication versus mutualism in ciliate genome rearrangements. PLoS Genet 2013; 9:e1003659. [PMID: 23935529 PMCID: PMC3731211 DOI: 10.1371/journal.pgen.1003659] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ciliated protists rearrange their genomes dramatically during nuclear development via chromosome fragmentation and DNA deletion to produce a trimmer and highly reorganized somatic genome. The deleted portion of the genome includes potentially active transposons or transposon-like sequences that reside in the germline. Three independent studies recently showed that transposase proteins of the DDE/DDD superfamily are indispensible for DNA processing in three distantly related ciliates. In the spirotrich Oxytricha trifallax, high copy-number germline-limited transposons mediate their own excision from the somatic genome but also contribute to programmed genome rearrangement through a remarkable transposon mutualism with the host. By contrast, the genomes of two oligohymenophorean ciliates, Tetrahymena thermophila and Paramecium tetraurelia, encode homologous PiggyBac-like transposases as single-copy genes in both their germline and somatic genomes. These domesticated transposases are essential for deletion of thousands of different internal sequences in these species. This review contrasts the events underlying somatic genome reduction in three different ciliates and considers their evolutionary origins and the relationships among their distinct mechanisms for genome remodeling.
Collapse
Affiliation(s)
- Alexander Vogt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Aaron David Goldman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Laura F. Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
83
|
Dogma derailed: the many influences of RNA on the genome. Mol Cell 2013; 49:783-94. [PMID: 23473599 DOI: 10.1016/j.molcel.2013.02.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/26/2013] [Accepted: 02/01/2013] [Indexed: 12/22/2022]
Abstract
Epigenetic control of gene expression is a critical component of transcriptional regulation. Remarkably, the deposition of epigenetic modifications is often guided by noncoding RNAs. Although noncoding RNAs have been most often implicated in posttranscriptional gene silencing, these molecules are now emerging as critical regulators of gene expression and genomic stability at the transcriptional level. Here, we review recent efforts to understand the mechanisms by which RNA controls the expression or content of DNA. We discuss the role of both small RNAs and long noncoding RNAs in directing chromatin changes through histone modifications and DNA methylation. Furthermore, we highlight the function of RNA in mediating DNA cleavage during genome rearrangements and pathogen defense. In understanding the mechanisms of RNA control over DNA, the power of RNA may one day be harnessed to impact gene expression in a therapeutic setting.
Collapse
|
84
|
Abstract
Ciliates are an ancient and diverse group of microbial eukaryotes that have emerged as powerful models for RNA-mediated epigenetic inheritance. They possess extensive sets of both tiny and long noncoding RNAs that, together with a suite of proteins that includes transposases, orchestrate a broad cascade of genome rearrangements during somatic nuclear development. This Review emphasizes three important themes: the remarkable role of RNA in shaping genome structure, recent discoveries that unify many deeply diverged ciliate genetic systems, and a surprising evolutionary "sign change" in the role of small RNAs between major species groups.
Collapse
|
85
|
Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013; 14:100-12. [PMID: 23329111 DOI: 10.1038/nrg3355] [Citation(s) in RCA: 683] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability.
Collapse
Affiliation(s)
- Stephane E Castel
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
86
|
Abstract
There is growing evidence to support the notion that small RNAs derived from noncoding RNAs (ncRNAs) are mobile carriers of epigenetic information in diverse eukaryotic systems. However, challenges remain in defining what messages are being sent and how. In the August 1, 2012, issue of Genes & Development, Schoeberl and colleagues (pp. 1729-1742) reported a detailed analysis of the turnover of small RNAs during the sexual reproduction of the ciliated protozoan Tetrahymena. The results revealed surprisingly complicated roles played by small RNAs in shaping the communication between the germline and the soma.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
87
|
Zahler AM, Neeb ZT, Lin A, Katzman S. Mating of the stichotrichous ciliate Oxytricha trifallax induces production of a class of 27 nt small RNAs derived from the parental macronucleus. PLoS One 2012; 7:e42371. [PMID: 22900016 PMCID: PMC3416858 DOI: 10.1371/journal.pone.0042371] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/06/2012] [Indexed: 01/04/2023] Open
Abstract
Ciliated protozoans possess two types of nuclei; a transcriptionally silent micronucleus, which serves as the germ line nucleus, and a transcriptionally active macronucleus, which serves as the somatic nucleus. The macronucleus is derived from a new diploid micronucleus after mating, with epigenetic information contributed by the parental macronucleus serving to guide the formation of the new macronucleus. In the stichotrichous ciliate Oxytricha trifallax, the macronuclear DNA is highly processed to yield gene-sized nanochromosomes with telomeres at each end. Here we report that soon after mating of Oxytricha trifallax, abundant 27 nt small RNAs are produced that are not present prior to mating. We performed next generation sequencing of Oxytricha small RNAs from vegetative and mating cells. Using sequence comparisons between macronuclear and micronuclear versions of genes, we found that the 27 nt RNA class derives from the parental macronucleus, not the developing macronucleus. These small RNAs are produced equally from both strands of macronuclear nanochromosomes, but in a highly non-uniform distribution along the length of the nanochromosome, and with a particular depletion in the 30 nt telomere-proximal positions. This production of small RNAs from the parental macronucleus during macronuclear development stands in contrast to the mechanism of epigenetic control in the distantly related ciliate Tetrahymena. In that species, 28-29 nt scanRNAs are produced from the micronucleus and these micronuclear-derived RNAs serve as epigenetic controllers of macronuclear development. Unlike the Tetrahymena scanRNAs, the Oxytricha macronuclear-derived 27 mers are not modified by 2'O-methylation at their 3' ends. We propose models for the role of these "27macRNAs" in macronuclear development.
Collapse
Affiliation(s)
- Alan M Zahler
- Department of Molecular, Cell and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America.
| | | | | | | |
Collapse
|
88
|
Schoeberl UE, Kurth HM, Noto T, Mochizuki K. Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. Genes Dev 2012; 26:1729-42. [PMID: 22855833 PMCID: PMC3418590 DOI: 10.1101/gad.196493.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023]
Abstract
The ciliated protozoan Tetrahymena undergoes extensive programmed DNA elimination when the germline micronucleus produces the new macronucleus during sexual reproduction. DNA elimination is epigenetically controlled by DNA sequences of the parental macronuclear genome, and this epigenetic regulation is mediated by small RNAs (scan RNAs [scnRNAs]) of ∼28-30 nucleotides that are produced and function by an RNAi-related mechanism. Here, we examine scnRNA production and turnover by deep sequencing. scnRNAs are produced exclusively from the micronucleus and nonhomogeneously from a variety of chromosomal locations. scnRNAs are preferentially derived from the eliminated sequences, and this preference is mainly determined at the level of transcription. Despite this bias, a significant fraction of scnRNAs is also derived from the macronuclear-destined sequences, and these scnRNAs are degraded during the course of sexual reproduction. These results indicate that the pattern of DNA elimination in the new macronucleus is shaped by the biased transcription in the micronucleus and the selective degradation of scnRNAs in the parental macronucleus.
Collapse
Affiliation(s)
| | | | | | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| |
Collapse
|
89
|
Lin IT, Chao JL, Yao MC. An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila. Mol Biol Cell 2012; 23:2213-25. [PMID: 22513090 PMCID: PMC3364183 DOI: 10.1091/mbc.e11-11-0952] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Programmed DNA rearrangements are important processes present in many organisms. In the ciliated protozoan Tetrahymena thermophila, DNA rearrangements occur during the sexual conjugation process and lead to the deletion of thousands of specific DNA segments and fragmentation of the chromosomes. In this study, we found that the Ku80 homologue, a conserved component of the nonhomologous end-joining process of DNA repair, was essential for these two processes. During conjugation, TKU80 was highly expressed and localized to the new macronucleus, where DNA rearrangements occur. Homokaryon TKU80-knockout mutants are unable to complete conjugation and produce progeny and are arrested at the two-micronuclei/two-macronuclei stage. Analysis of their DNA revealed failure to complete DNA deletion. However, the DNA-cutting step appeared to have occurred, as evidenced by the presence of circularized excised DNA. Moreover, chromosome breakage or de novo telomere addition was affected. The mutant appears to accumulate free DNA ends detectable by terminal deoxynucleotidyl transferase dUTP nick end labeling assays that led to the degradation of most DNA in the developing macronucleus. These findings suggest that Tku80p may serve an end-protective role after DNA cleavage has occurred. Unexpectedly, the large heterochromatin structures that normally associate with DNA rearrangements failed to form without TKU80. Together the results suggest multiple roles for Tku80p and indicate that a Ku-dependent DNA-repair pathway is involved in programmed DNA rearrangements in Tetrahymena.
Collapse
Affiliation(s)
- I-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 112, Taiwan, Republic of China
| | | | | |
Collapse
|
90
|
Coyne RS, Lhuillier-Akakpo M, Duharcourt S. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell 2012; 104:309-25. [PMID: 22352444 DOI: 10.1111/boc.201100057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
Genomes, like crazy patchwork quilts, are stitched together over evolutionary time from diverse elements, including some unwelcome invaders. To deal with parasitic mobile elements, most eukaryotes employ a genome self-defensive manoeuvre to recognise and silence such elements by homology-dependent interactions with RNA-protein complexes that alter chromatin. Ciliated protozoa employ more 'offensive' tactics by actually unstitching and reassembling their somatic genomes at every sexual generation to eliminate transposons and their remnants, using as patterns the maternal genomes that were rearranged in the previous cycle. Genetic and genomic studies of the distant relatives Paramecium and Tetrahymena have begun to reveal how such events are carried out with remarkable precision. Whole genome, non-coding transcripts from the maternal genome are compared with transcripts from the zygotic genome that are processed through an RNA interference (RNAi)-related process. Sequences found only in the latter are targeted for elimination by the resulting short 'scanRNAs' in many thousand DNA splicing reactions initiated by a domesticated transposase. The involvement of widely conserved mechanisms and protein factors clearly shows the relatedness of these phenomena to RNAi-mediated heterochromatic gene silencing. Such malleability of the genome on a generational time scale also has profound evolutionary implications, possibly including the epigenetic inheritance of acquired adaptive traits.
Collapse
|
91
|
Abstract
Rapid progress in our understanding of chromatin regulation has fueled considerable interest in epigenetic mechanisms governing the stable inheritance of chromatin states. Findings from several systems reveal small RNAs of the RNAi pathway as critical determinants of epigenetic gene silencing. Notably, recent investigations into the mechanisms of RNAi-mediated heterochromatin assembly in the fission yeast Schizosaccharomyces pombe have yielded new insights regarding the roles of RNAi in chromatin regulation and epigenetic inheritance.
Collapse
Affiliation(s)
- Hugh P Cam
- Boston College, Biology Department, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
92
|
Tetrahymena thermophila JMJD3 homolog regulates H3K27 methylation and nuclear differentiation. EUKARYOTIC CELL 2012; 11:601-14. [PMID: 22427430 DOI: 10.1128/ec.05290-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone H3K27me3 modification is an important regulator for development and gene expression. In Tetrahymena thermophila, the complex chromatin dynamics of H3K27me3 marks during nuclear development suggested that an H3K27me3 demethylase might exist. Here, we report an H3K27me3 demethylase homolog, JMJ1, in Tetrahymena. During conjugation, JMJ1 expression is upregulated and the protein is localized first in the parental macronucleus and then in the new macronucleus. In conjugating cells, knockdown of JMJ1 expression resulted in a severe reduction in the production of progeny, suggesting that JMJ1 is essential for Tetrahymena conjugation. Furthermore, knockdown of JMJ1 resulted in increased H3K27 trimethylation in the new macronucleus and reduced transcription of genes related to DNA elimination, while the DNA elimination process was also partially blocked. Knockdown of the H3K27 methyltransferase EZL2 but not that of EZL1 partially restored progeny production in JMJ1-knockdown cells and reduced abnormal H3K27me3 accumulation in the new macronucleus. Taken together, these results demonstrate a critical role for JMJ1 in regulating H3K27me3 during conjugation and the importance of JMJ1 in regulating gene expression in the new macronucleus but not in regulating the formation of heterochromatin associated with programmed DNA deletion.
Collapse
|
93
|
Xiong J, Lu X, Zhou Z, Chang Y, Yuan D, Tian M, Zhou Z, Wang L, Fu C, Orias E, Miao W. Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using Deep RNA sequencing. PLoS One 2012; 7:e30630. [PMID: 22347391 PMCID: PMC3274533 DOI: 10.1371/journal.pone.0030630] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST) database limited the quality of the original genome annotation. METHODOLOGY/PRINCIPAL FINDINGS This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96% of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs) and an updated (larger) size estimate of the T. thermophila transcriptome: 57 Mb, or about 55% of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS) events distributed over 5.2% of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8% of the genes originally predicted by the gene finder, to correct coding sequence boundaries and intron-exon junctions for about a third, and to reassign microarray probes and correct earlier microarray data. CONCLUSIONS/SIGNIFICANCE RNA-seq data significantly improve the genome annotation and provide a fully comprehensive view of the global transcriptome of T. thermophila. To our knowledge, 5.2% of T. thermophila genes with AS is the highest percentage of genes showing AS reported in a unicellular eukaryote. Tetrahymena thus becomes an excellent unicellular model eukaryote in which to investigate mechanisms of alternative splicing.
Collapse
Affiliation(s)
- Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xingyi Lu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhemin Zhou
- Tianjin Economic-Technological Development Area School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Yue Chang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Miao Tian
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhigang Zhou
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lei Wang
- Tianjin Economic-Technological Development Area School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chengjie Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Eduardo Orias
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
94
|
Abstract
Nuclear dualism is a characteristic feature of the ciliated protozoa. Tetrahymena have two different nuclei in each cell. The larger, polyploid, somatic macronucleus (MAC) is the site of transcriptional activity in the vegetatively growing cell. The smaller, diploid micronucleus (MIC) is transcriptionally inactive in vegetative cells, but is transcriptionally active in mating cells and responsible for the genetic continuity during sexual reproduction. Although the MICs and MACs develop from mitotic products of a common progenitor and reside in a common cytoplasm, they are different from one another in almost every respect.
Collapse
Affiliation(s)
- Kathleen M Karrer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
95
|
Abstract
Within the past decade, genomic studies have emerged as essential and highly productive tools to explore the biology of Tetrahymena thermophila. The current major resources, which have been extensively mined by the research community, are the annotated macronuclear genome assembly, transcriptomic data and the databases that house this information. Efforts in progress will soon improve these data sources and expand their scope, including providing annotated micronuclear and comparative genomic sequences. Future studies of Tetrahymena cell and molecular biology, development, physiology, evolution and ecology will benefit greatly from these resources and the advanced genomic technologies they enable.
Collapse
|
96
|
Motl JA, Chalker DL. Zygotic expression of the double-stranded RNA binding motif protein Drb2p is required for DNA elimination in the ciliate Tetrahymena thermophila. EUKARYOTIC CELL 2011; 10:1648-59. [PMID: 22021239 PMCID: PMC3232721 DOI: 10.1128/ec.05216-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/13/2011] [Indexed: 11/20/2022]
Abstract
Double-stranded RNA binding motif (DSRM)-containing proteins play many roles in the regulation of gene transcription and translation, including some with tandem DSRMs that act in small RNA biogenesis. We report the characterization of the genes for double-stranded RNA binding proteins 1 and 2 (DRB1 and DRB2), two genes encoding nuclear proteins with tandem DSRMs in the ciliate Tetrahymena thermophila. Both proteins are expressed throughout growth and development but exhibit distinct peaks of expression, suggesting different biological roles. In support of this, we show that expression of DRB2 is essential for vegetative growth while DRB1 expression is not. During conjugation, Drb1p and Drb2p localize to distinct nuclear foci. Cells lacking all DRB1 copies are able to produce viable progeny, although at a reduced rate relative to wild-type cells. In contrast, cells lacking germ line DRB2 copies, which thus cannot express Drb2p zygotically, fail to produce progeny, arresting late into conjugation. This arrest phenotype is accompanied by a failure to organize the essential DNA rearrangement protein Pdd1p into DNA elimination bodies and execute DNA elimination and chromosome breakage. These results implicate zygotically expressed Drb2p in the maturation of these nuclear structures, which are necessary for reorganization of the somatic genome.
Collapse
Affiliation(s)
- Jason A. Motl
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, Missouri 63130-4899
| | - Douglas L. Chalker
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, Missouri 63130-4899
| |
Collapse
|
97
|
Mochizuki K. Developmentally programmed, RNA-directed genome rearrangement in Tetrahymena. Dev Growth Differ 2011; 54:108-19. [PMID: 22103557 DOI: 10.1111/j.1440-169x.2011.01305.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developmentally programmed genome rearrangement has been observed in a variety of eukaryotes from vertebrates to worms to protists, and it provides an interesting exception to the general rule of the constancy of the genome. DNA elimination in the ciliated protozoan Tetrahymena is one of the most well-characterized programmed genome rearrangement events. DNA elimination in the newly formed macronucleus of Tetrahymena is epigenetically regulated by the DNA sequence of the parental macronucleus. Dicer-produced, Piwi-associated small RNAs mediate this epigenetic regulation, probably through a whole-genome comparison of the germline micronucleus to the somatic macronucleus. However, a correlation between small RNAs and programmed genome rearrangement could not be detected in the worm Ascaris suum. Therefore, different types of eukaryotes may have developed unique solutions to perform genome rearrangement.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
| |
Collapse
|
98
|
Nowacki M, Shetty K, Landweber LF. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu Rev Genomics Hum Genet 2011; 12:367-89. [PMID: 21801022 DOI: 10.1146/annurev-genom-082410-101420] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha's somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
99
|
Abstract
The chromatin organization modifier domain (chromodomain) was first identified as a motif associated with chromatin silencing in Drosophila. There is growing evidence that chromodomains are evolutionary conserved across different eukaryotic species to control diverse aspects of epigenetic regulation. Although originally reported as histone H3 methyllysine readers, the chromodomain functions have now expanded to recognition of other histone and non-histone partners as well as interaction with nucleic acids. Chromodomain binding to a diverse group of targets is mediated by a conserved substructure called the chromobox homology region. This motif can be used to predict methyllysine binding and distinguish chromodomains from related Tudor "Royal" family members. In this review, we discuss and classify various chromodomains according to their context, structure and the mechanism of target recognition.
Collapse
Affiliation(s)
- Bartlomiej J Blus
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | | | | |
Collapse
|
100
|
Schoeberl UE, Mochizuki K. Keeping the soma free of transposons: programmed DNA elimination in ciliates. J Biol Chem 2011; 286:37045-52. [PMID: 21914793 DOI: 10.1074/jbc.r111.276964] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many transposon-related sequences are removed from the somatic macronucleus of ciliates during sexual reproduction. In the ciliate Tetrahymena, an RNAi-related mechanism produces small noncoding RNAs that induce heterochromatin formation, which is followed by DNA elimination. Because RNAi-related mechanisms repress transposon activities in a variety of eukaryotes, the DNA elimination mechanism of ciliates might have evolved from these types of transposon-silencing mechanisms. Nuclear dimorphism allows ciliates to identify any DNA that has invaded the germ-line micronucleus using small RNAs and a whole genome comparison of the micronucleus and the somatic macronucleus.
Collapse
Affiliation(s)
- Ursula E Schoeberl
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | | |
Collapse
|