51
|
Abstract
Name a single-celled eukaryote that boasts a small genome size, is easily cultivated in haploid form, for which a wide variety of molecular genetic tools are available, and that exhibits a simple, polarized secretory apparatus with a well-defined endoplasmic reticulum and Golgi that can serve as a model for understanding secretion. Got it? Now name a cell with all these attributes that contains at least a dozen distinct and morphologically well-defined intracellular organelles, including three distinct types of secretory vesicles and two endosymbiotic organelles. Not so sure anymore?
Collapse
Affiliation(s)
- Keith A Joiner
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
52
|
Shaw MK, Roos DS, Tilney LG. Cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii. Microbes Infect 2002; 4:119-32. [PMID: 11880042 DOI: 10.1016/s1286-4579(01)01520-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of cysteine and serine protease inhibitors blocked the intracellular growth and replication of Toxoplasma gondii tachyzoites. Most of these inhibitors caused only minor alterations to parasite morphology irrespective of the effects on the host cells. However, three, cathepsin inhibitor III, TPCK and subtilisin inhibitor III, caused extensive swelling of the secretory pathway of the parasite (i.e. the ER, nuclear envelope, and Golgi complex), caused the breakdown of the parasite surface membrane, and disrupted rhoptry formation. The disruption of the secretory pathway is consistent with the post-translational processing of secretory proteins in Toxoplasma, and with the role of proteases in the maturation/activation of secreted proteins in general. Interestingly, while all parasites in an individual vacuole (the clonal progeny of a single invading parasite) were similarly affected, parasites in different vacuoles in the same host cell showed different responses to these inhibitors. Such observations imply that there are major differences in the biochemistry/physiology between tachyzoites within different vacuoles and argue that adverse effects on the host cell are not always responsible for changes in the parasite. Treatment of established parasites also leads to an accumulation of abnormal materials in the parasitophorous vacuole implying that materials deposited into the vacuole normally undergo proteolytic modification or degradation. Despite the often extensive morphological changes, nothing resembling lysosomal bodies was seen in any treated parasites, consistent with previous observations showing that mother cell organelles are not recycled by any form of autophagic-lysosomal degradation, although the question of how the parasite recycles these organelles remains unanswered.
Collapse
Affiliation(s)
- Michael K Shaw
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | |
Collapse
|
53
|
Meissner M, Reiss M, Viebig N, Carruthers VB, Toursel C, Tomavo S, Ajioka JW, Soldati D. A family of transmembrane microneme proteins ofToxoplasma gondiicontain EGF-like domains and function as escorters. J Cell Sci 2002; 115:563-74. [PMID: 11861763 DOI: 10.1242/jcs.115.3.563] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TgMIC6, TgMIC7, TgMIC8 and TgMIC9 are members of a novel family of transmembrane proteins localized in the micronemes of the protozoan parasite Toxoplasma gondii. These proteins contain multiple epidermal growth factor-like domains, a putative transmembrane spanning domain and a short cytoplasmic tail. Sorting signals to the micronemes are encoded in this short tail. We established previously that TgMIC6 serves as an escorter for two soluble adhesins, TgMIC1 and TgMIC4. Here, we present the characterization of TgMIC6 and three additional members of this family, TgMIC7, -8 and -9. Consistent with having sorting signals localized in its C-terminal tail,TgMIC6 exhibits a classical type I membrane topology during its transport along the secretory pathway and during storage in the micronemes. TgMIC6 is processed at the N-terminus, probably in the trans-Golgi network, and the cleavage site has been precisely mapped. Additionally, like other members of the thrombospondin-related anonymous protein family, TgMIC2, TgMIC6 and TgMIC8 are proteolytically cleaved near their C-terminal domain upon discharge by micronemes. We also provide evidence that TgMIC8 escorts another recently described soluble adhesin, TgMIC3. This suggests that the existence of microneme protein complexes is not an exception but rather the rule. TgMIC6 and TgMIC8 are expressed in the rapidly dividing tachyzoites, while TgMIC7 and TgMIC9 genes are predominantly expressed in bradyzoites, where they presumably also serve as escorters.
Collapse
Affiliation(s)
- Markus Meissner
- Imperial College of Science, Technology and Medicine, Department of Biology, Sir Alexander Fleming Building, Imperial College Road, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Miller SA, Binder EM, Blackman MJ, Carruthers VB, Kim K. A conserved subtilisin-like protein TgSUB1 in microneme organelles of Toxoplasma gondii. J Biol Chem 2001; 276:45341-8. [PMID: 11564738 DOI: 10.1074/jbc.m106665200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolytic processing plays a significant role in the process of invasion by the obligate intracellular parasite Toxoplasma gondii. We have cloned a gene, TgSUB1, encoding for a subtilisin-type serine protease found in T. gondii tachyzoites. TgSUB1 protein is homologous to other Apicomplexan and bacterial subtilisins and is processed within the secretory pathway of the parasite. Initial cleavage occurs in the endoplasmic reticulum, after which the protein is transported to micronemes, vesicles that secrete early during host cell invasion. Upon stimulation of microneme secretion, TgSUB1 is cleaved into smaller products that are secreted from the parasite. This secondary processing is inhibited by brefeldin A and serine protease inhibitors. TgSUB1 is a candidate processing enzyme for several microneme proteins cleaved within the secretory pathway or during invasion.
Collapse
Affiliation(s)
- S A Miller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
55
|
Meissner M, Brecht S, Bujard H, Soldati D. Modulation of myosin A expression by a newly established tetracycline repressor-based inducible system in Toxoplasma gondii. Nucleic Acids Res 2001; 29:E115. [PMID: 11713335 PMCID: PMC92585 DOI: 10.1093/nar/29.22.e115] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a control system for regulating gene activation in Toxoplasma gondii. The elements of this system are derived from the Escherichia coli tetracycline resistance operon, which has been widely used to tightly control gene expression in eukaryotes. The tetracycline repressor (tetR) interferes with transcription initiation while the chimeric transactivator, composed of the tetR fused to the activating domain of VP16 transcriptional factor, allows tet-dependent transcription. Accordingly, tetracycline derivatives such as anhydrotetracycline, which we found to be well tolerated by T.gondii, can serve as effector molecules, allowing control of gene expression in a reversible manner. As a prerequisite to functionally express the tetR in T.gondii, we used a synthetic gene with change of codon frequency. Whereas no activation of transcription was achieved using the synthetic tetracycline-controlled transactivator, tTA2(s), the TetR(s )modulates parasite transcription over a range of approximately 15-fold as measured for several reporter genes. We show here that the tetR-dependent induction of the T.gondii myosin A transgene expression drastically down-regulates the level of endogenous MyoA. This myosin is under the control of a tight feedback mechanism, which occurs at the protein level.
Collapse
Affiliation(s)
- M Meissner
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69102 Heidelberg, Germany
| | | | | | | |
Collapse
|
56
|
Delbac F, Sänger A, Neuhaus EM, Stratmann R, Ajioka JW, Toursel C, Herm-Götz A, Tomavo S, Soldati T, Soldati D. Toxoplasma gondii myosins B/C: one gene, two tails, two localizations, and a role in parasite division. J Cell Biol 2001; 155:613-23. [PMID: 11706051 PMCID: PMC2198869 DOI: 10.1083/jcb.200012116] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In apicomplexan parasites, actin-disrupting drugs and the inhibitor of myosin heavy chain ATPase, 2,3-butanedione monoxime, have been shown to interfere with host cell invasion by inhibiting parasite gliding motility. We report here that the actomyosin system of Toxoplasma gondii also contributes to the process of cell division by ensuring accurate budding of daughter cells. T. gondii myosins B and C are encoded by alternatively spliced mRNAs and differ only in their COOH-terminal tails. MyoB and MyoC showed distinct subcellular localizations and dissimilar solubilities, which were conferred by their tails. MyoC is the first marker selectively concentrated at the anterior and posterior polar rings of the inner membrane complex, structures that play a key role in cell shape integrity during daughter cell biogenesis. When transiently expressed, MyoB, MyoC, as well as the common motor domain lacking the tail did not distribute evenly between daughter cells, suggesting some impairment in proper segregation. Stable overexpression of MyoB caused a significant defect in parasite cell division, leading to the formation of extensive residual bodies, a substantial delay in replication, and loss of acute virulence in mice. Altogether, these observations suggest that MyoB/C products play a role in proper daughter cell budding and separation.
Collapse
Affiliation(s)
- F Delbac
- Zentrum für Molekulare Biologie, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ramírez JR, Gilchrist K, Robledo S, Sepúlveda JC, Moll H, Soldati D, Berberich C. Attenuated Toxoplasma gondii ts-4 mutants engineered to express the Leishmania antigen KMP-11 elicit a specific immune response in BALB/c mice. Vaccine 2001; 20:455-61. [PMID: 11672909 DOI: 10.1016/s0264-410x(01)00341-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to test recombinant Toxoplasma as adjuvant and live vaccine carrier in the infectious disease model of murine experimental leishmaniasis, we engineered the attenuated, temperature-sensitive Toxoplasma gondii strain ts-4 to express the heterologous Leishmania antigen kinetoplastid membrane protein-11 (KMP-11). Transgenic ts-4 clones were obtained which express KMP-11 as cytoplasmatic protein or target it to the secretory pathway of the tachyzoites. Immunization of BALB/c mice with these stably transformed parasites elicited proliferative responses to both T. gondii antigen and recombinant KMP-11. When challenged with Leishmania major, we observed significant protection in animals that had been vaccinated with the KMP-11-expressing ts-4 mutants. The adjuvant attenuated only the onset of the Leishmania infection, but animals were ultimately not able to control the disease. Thus, our findings demonstrate that recombinant Toxoplasma has the potential to serve as an efficient vaccine carrier for cutaneous leishmaniasis. Furthermore, they establish a protective role for the antigen KMP-11 when given in such a vaccine formulation.
Collapse
Affiliation(s)
- J R Ramírez
- Programa de Estudio y Control de Enfermedades Tropicales, Universidad de Antioquia, A.A. 1225 Medellín, Colombia
| | | | | | | | | | | | | |
Collapse
|
58
|
Blackman MJ, Bannister LH. Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Mol Biochem Parasitol 2001; 117:11-25. [PMID: 11551628 DOI: 10.1016/s0166-6851(01)00328-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The apical organelles are characteristic secretory vesicles of Plasmodium, Toxoplasma, Cryptosporidium and other apicomplexan organisms. They consist of rhoptries, micronemes and dense granules. Recent research has provided much new data concerning their structure, contents, functions and development. All of these organelles contain complex mixtures of proteins, with broad homologies as well as differences in molecular structure between species and genera. Many of the proteins interact with host cell membranes, and are thought to mediate selective adhesion to host cells as well as membrane modification during intracellular invasion. Micronemal proteins are important in the initial selection of host cells, and in enabling gliding motility of the parasites, while rhoptries appear to be more important in parasitophorous vacuole formation. Dense granules are involved predominantly in modifying the host cell after invasion. Research into apical organellar composition and function depends on accurate assignment of molecular identity. This requires the simultaneous application of several complementary approaches including immunolocalisation by light- and electron-microscopy, subcellular fractionation, and transgene expression. The merits and limitations of these different types of approach are discussed, and the importance of cell fractionation methods in characterising apical organelle proteins is stressed.
Collapse
Affiliation(s)
- M J Blackman
- Division of Parasitology, National Institute for Medical Research, Mill Hill, NW7 1AA, London, UK.
| | | |
Collapse
|
59
|
Abstract
The rhoptries of Toxoplasma gondii are regulated secretory organelles involved in the invasion of host cells. Rhoptry proteins are synthesised as pre-pro-proteins that are processed first to pro-proteins upon entrance into the secretory pathway, then processed again to their mature forms late in the secretory pathway. The pro-mature processing site of the rhoptry protein ROP1 has been determined, paving the way for understanding the role of the pro region in rhoptry protein function. We demonstrate here that the ROP1 pro region is sufficient for targeting a reporter protein (amino acids 34-471 of the Trypanosoma brucei VSG117 protein) to the rhoptries. These results, together with our previous work showing that rhoptry targeting is unaffected by deletion of the pro region, indicate that the ROP1 protein contains at least two signals that can function in rhoptry targeting.
Collapse
Affiliation(s)
- P J Bradley
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | | |
Collapse
|
60
|
Rabenau KE, Sohrabi A, Tripathy A, Reitter C, Ajioka JW, Tomley FM, Carruthers VB. TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Mol Microbiol 2001; 41:537-47. [PMID: 11532123 DOI: 10.1046/j.1365-2958.2001.02513.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Like other members of the medically important phylum Apicomplexa, Toxoplasma gondii is an obligate intracellular parasite that secretes several classes of proteins involved in the active invasion of target host cells. Proteins in apical secretory organelles known as micronemes have been strongly implicated in parasite attachment to host cells. TgMIC2 is a microneme protein with multiple adhesive domains that bind target cells and is mobilized onto the parasite surface during parasite attachment. Here, we describe a novel parasite protein, TgM2AP, which is physically associated with TgMIC2. TgM2AP complexes with TgMIC2 within 15 min of synthesis and remains associated with TgMIC2 in the micronemes, on the parasite surface during invasion and in the culture medium after release from the parasite plasma membrane. TgM2AP is proteolytically processed initially when its propeptide is removed during transit through the golgi and later while it occupies the parasite surface after discharge from the micronemes. We show that TgM2AP is a member of a protein family expressed by coccidian parasites including Neospora caninum and Eimeria tenella. This phylogenic conservation and association with a key adhesive protein suggest that TgM2AP is a fundamental component of the T. gondii invasion machinery.
Collapse
Affiliation(s)
- K E Rabenau
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
He CY, Striepen B, Pletcher CH, Murray JM, Roos DS. Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. J Biol Chem 2001; 276:28436-42. [PMID: 11319231 DOI: 10.1074/jbc.m102000200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The apicoplast is a distinctive organelle associated with apicomplexan parasites, including Plasmodium sp. (which cause malaria) and Toxoplasma gondii (the causative agent of toxoplasmosis). This unusual structure (acquired by the engulfment of an ancestral alga and retention of the algal plastid) is essential for long-term parasite survival. Similar to other endosymbiotic organelles (mitochondria, chloroplasts), the apicoplast contains proteins that are encoded in the nucleus and post-translationally imported. Translocation across the four membranes surrounding the apicoplast is mediated by an N-terminal bipartite targeting sequence. Previous studies have described a recombinant "poison" that blocks plastid segregation during mitosis, producing parasites that lack an apicoplast and siblings containing a gigantic, nonsegregating plastid. To learn more about this remarkable phenomenon, we examined the localization and processing of the protein produced by this construct. Taking advantage of the ability to isolate apicoplast segregation mutants, we also demonstrated that processing of the transit peptide of nuclear-encoded apicoplast proteins requires plastid-associated activity.
Collapse
Affiliation(s)
- C Y He
- Department of Biology, Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
62
|
Striepen B, Soldati D, Garcia-Reguet N, Dubremetz JF, Roos DS. Targeting of soluble proteins to the rhoptries and micronemes in Toxoplasma gondii. Mol Biochem Parasitol 2001; 113:45-53. [PMID: 11254953 DOI: 10.1016/s0166-6851(00)00379-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rhoptry and microneme organelles of the protozoan parasite Toxoplasma gondii are closely associated with host cell adhesion/invasion and establishment of the intracellular parasitophorous vacuole. In order to study the targeting of proteins to these specialized secretory organelles, we have engineered green fluorescent protein (GFP) fusions to the rhoptry protein ROP1 and the microneme protein MIC3. Both chimeras are correctly targeted to the appropriate organelles, permitting deletion analysis to map protein subdomains critical for targeting. The propeptide and a central 146 amino acid region of ROP1 are sufficient to target GFP to the rhoptries. More extensive deletions result in a loss of rhoptry targeting; the GFP reporter is diverted into the parasitophorous vacuole via dense granules. Certain MIC3 deletion mutants were also secreted into the parasitophorous vacuole via dense granules, supporting the view that this route constitutes the default pathway in T. gondii, and that specific signals are required for sorting to rhoptries and micronemes. Deletions within the cysteine-rich central region of MIC3 cause this protein to be arrested at various locations within the secretory pathway, presumably due to improper folding. Although correctly targeted to the appropriate organelles in living parasites, ROP1-GFP and MIC3-GFP fusion proteins were not secreted during invasion. GFP fusion proteins were readily secreted from dense granules, however, suggesting that protein secretion from rhoptries and micronemes might involve more than a simple release of organellar contents.
Collapse
Affiliation(s)
- B Striepen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
63
|
He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS. A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 2001; 20:330-9. [PMID: 11157740 PMCID: PMC133478 DOI: 10.1093/emboj/20.3.330] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apicomplexan parasites--including the causative agents of malaria (Plasmodium sp.) and toxoplasmosis (Toxoplasma gondii)--harbor a secondary endosymbiotic plastid, acquired by lateral genetic transfer from a eukaryotic alga. The apicoplast has attracted considerable attention, both as an evolutionary novelty and as a potential target for chemotherapy. We report a recombinant fusion (between a nuclear-encoded apicoplast protein, the green fluorescent protein and a rhoptry protein) that targets to the apicoplast but grossly alters its morphology, preventing organellar segregation during parasite division. Apicoplast-deficient parasites replicate normally in the first infectious cycle and can be isolated by fluorescence-activated cell sorting, but die in the subsequent host cell, confirming the 'delayed death' phenotype previously described pharmacologically, and validating the apicoplast as essential for parasite viability.
Collapse
Affiliation(s)
| | | | - Charles H. Pletcher
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| | - Boris Striepen
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| | | | - David S. Roos
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| |
Collapse
|
64
|
Donahue CG, Carruthers VB, Gilk SD, Ward GE. The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels. Mol Biochem Parasitol 2000; 111:15-30. [PMID: 11087913 DOI: 10.1016/s0166-6851(00)00289-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monoclonal antibody (MAb) has been generated against a novel 63 kDa surface/apical antigen of Toxoplasma gondii tachyzoites which is identified here as TgAMA-1, the Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1). Sequence analysis, phase partitioning in Triton X-114, and labeling of TgAMA-1 with iodonaphthalene azide all suggest that TgAMA-1 is a type I transmembrane protein. There is a high degree of sequence similarity between TgAMA-1 and Plasmodium AMA-1, most notably in the position of conserved cysteine residues within the protein's predicted extracellular domain. In contrast to full length Plasmodium AMA-1, which has previously been localized to the rhoptries, it is shown here by immunofluorescence and immunoelectron microscopy that intracellular TgAMA-1 is found in the micronemes. A 53 kDa N-terminal proteolytic fragment of TgAMA-1 is constitutively secreted from the parasite at 37 degrees C. As is the case with other microneme proteins, the proteolytic processing and secretion of TgAMA-1 is dramatically enhanced in response to treatments which increase intracellular calcium levels.
Collapse
Affiliation(s)
- C G Donahue
- Department of Microbiology and Molecular Genetics, University of Vermont, 214 Stafford Hall, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
65
|
van Dooren GG, Waller RF, Joiner KA, Roos DS, McFadden GI. Traffic jams: protein transport in Plasmodium falciparum. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:421-7. [PMID: 11006473 DOI: 10.1016/s0169-4758(00)01792-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein targeting in malaria parasites is a complex process, involving several cellular compartments that distinguish these cells from more familiar systems, such as yeast or mammals. At least a dozen distinct protein destinations are known. The best studied of these is the vestigial chloroplast (the apicoplast), but new tools promise rapid progress in understanding how Plasmodium falciparum and related apicomplexan parasites traffic proteins to their invasion-related organelles, and how they modify the host by trafficking proteins into its cytoplasm and plasma membrane. Here, Giel van Dooren and colleagues discuss recent insights into protein targeting via the secretory pathway in this fascinating and important system. This topic emerged as a major theme at the Molecular Approaches to Malaria conference, Lorne, Australia, 2-5 February 2000.
Collapse
Affiliation(s)
- G G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
66
|
Kaasch AJ, Joiner KA. Protein-targeting determinants in the secretory pathway of apicomplexan parasites. Curr Opin Microbiol 2000; 3:422-8. [PMID: 10972505 DOI: 10.1016/s1369-5274(00)00115-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Apicomplexan parasites possess a highly specialized secretory apparatus. The timed secretion of proteins from three different organelles--micronemes, rhoptries and dense granules--serves to establish and maintain a parasitophorous vacuole inside the host cell in which the parasites can divide. Recent efforts have identified components that sort apicomplexan proteins to these unusual secretory organelles and have shown that this machinery is evolutionarily conserved across species. Concise amino acid sequences (e.g. tyrosine-based motifs) within the targeted protein determine their destination in Apicomplexa in a way similar to mammalian cells. Additionally, the parasite exploits new or unusual mechanisms of protein targeting (e.g. post-secretory membrane insertion).
Collapse
Affiliation(s)
- A J Kaasch
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA
| | | |
Collapse
|
67
|
Cevallos AM, Zhang X, Waldor MK, Jaison S, Zhou X, Tzipori S, Neutra MR, Ward HD. Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infect Immun 2000; 68:4108-16. [PMID: 10858228 PMCID: PMC101706 DOI: 10.1128/iai.68.7.4108-4116.2000] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cryptosporidium parvum is a significant cause of diarrheal disease worldwide. The specific molecules that mediate C. parvum-host cell interactions and the molecular mechanisms involved in the pathogenesis of cryptosporidiosis are unknown. In this study we have shown that gp40, a mucin-like glycoprotein, is localized to the surface and apical region of invasive stages of the parasite and is shed from its surface. gp40-specific antibodies neutralize infection in vitro, and native gp40 binds specifically to host cells, implicating this glycoprotein in C. parvum attachment to and invasion of host cells. We have cloned and sequenced a gene designated Cpgp40/15 that encodes gp40 as well as gp15, an antigenically distinct, surface glycoprotein also implicated in C. parvum-host cell interactions. Analysis of the deduced amino acid sequence of the 981-bp Cpgp40/15 revealed the presence of an N-terminal signal peptide, a polyserine domain, multiple predicted O-glycosylation sites, a single potential N-glycosylation site, and a hydrophobic region at the C terminus, a finding consistent with what is required for the addition of a GPI anchor. There is a single copy of Cpgp40/15 in the C. parvum genome, and this gene does not contain introns. Our data indicate that the two Cpgp40/15-encoded proteins, gp40 and gp15, are products of proteolytic cleavage of a 49-kDa precursor protein which is expressed in intracellular stages of the parasite. The surface localization of gp40 and gp15 and their involvement in the host-parasite interaction suggest that either or both of these glycoproteins may serve as effective targets for specific preventive or therapeutic measures for cryptosporidiosis.
Collapse
Affiliation(s)
- A M Cevallos
- Division of Geographic Medicine and Infectious Diseases, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Hoppe HC, Ngô HM, Yang M, Joiner KA. Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. Nat Cell Biol 2000; 2:449-56. [PMID: 10878811 DOI: 10.1038/35017090] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracellular parasites of the phylum Apicomplexa contain specialized rhoptry secretory organelles that have a crucial function in host-cell invasion and establishment of the parasitophorous vacuole. Here we show that localization of the Toxoplasma gondii rhoptry protein ROP2 is dependent on a YEQL sequence in the cytoplasmic tail that binds to micro-chain subunits of T. gondii and mammalian adaptors, and conforms to the YXXstraight phi mammalian sorting motif. Chimaeric reporters, containing the transmembrane domains and cytoplasmic tails of the low-density lipoprotein receptor and of Lamp-1, are sorted to the Golgi or the trans-Golgi network (TGN), and partially to apical microneme organelles of the parasite, respectively. Targeting of these reporters is mediated by YXXstraight phi- and NPXY-type signals. This is the first demonstration of tyrosine-dependent sorting in protozoan parasites, indicating that T. gondii proteins may be targeted to, and involved in biogenesis of, morphologically unique organelles through the use of evolutionarily conserved signals and machinery.
Collapse
Affiliation(s)
- H C Hoppe
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| | | | | | | |
Collapse
|
69
|
Noe AR, Fishkind DJ, Adams JH. Spatial and temporal dynamics of the secretory pathway during differentiation of the Plasmodium yoelii schizont. Mol Biochem Parasitol 2000; 108:169-85. [PMID: 10838220 DOI: 10.1016/s0166-6851(00)00198-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A specialized complex of apical organelles facilitates Plasmodium merozoite invasion into the erythrocyte. Even though the apical organelles are crucial to the invasion process, relatively little is known about how they function or their biosynthesis during asexual replication. MAEBL is an erythrocyte binding protein located in the rhoptries and on the surface of mature merozoites and is expressed at the beginning of schizogony before the first nuclear division. Therefore, we have characterized MAEBL as a marker for the biosynthetic pathway of the rhoptry apical organelle during the final phase of intraerythrocytic development and as a marker for the nascent rhoptry vesicle in the immature schizont. An extensive proliferation of the endoplasmic reticulum occurred at the onset of schizogony and was seen as a complex but transient tubule array near the parasite surface. Both the rhoptry protein MAEBL and surface protein MSP-1 appeared to be present in this tubular reticular network together with endoplasmic reticulum markers. MAEBL then transits through Golgi bodies positioned near the parasite plasma membrane, directly adjacent to the network. Rhoptry organelle precursors are seen at the three to four nuclei stage of schizont development, remaining near the plasma membrane throughout schizogony. These studies constitute the first direct evidence that proteins of the rhoptry organelles transit through compartments of the 'classical' secretory pathway.
Collapse
Affiliation(s)
- A R Noe
- Department of Biological Sciences, University of Notre Dame, 46556, Notre Dame, IN, USA
| | | | | |
Collapse
|
70
|
Hettmann C, Herm A, Geiter A, Frank B, Schwarz E, Soldati T, Soldati D. A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Mol Biol Cell 2000; 11:1385-400. [PMID: 10749937 PMCID: PMC14854 DOI: 10.1091/mbc.11.4.1385] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Obligate intracellular parasites of the phylum Apicomplexa exhibit gliding motility, a unique form of substrate-dependent locomotion essential for host cell invasion and shown to involve the parasite actin cytoskeleton and myosin motor(s). Toxoplasma gondii has been shown to express three class XIV myosins, TgM-A, -B, and -C. We identified an additional such myosin, TgM-D, and completed the sequences of a related Plasmodium falciparum myosin, PfM-A. Despite divergent structural features, TgM-A purified from parasites bound actin in an ATP-dependent manner. Isoform-specific antibodies revealed that TgM-A and recombinant mycTgM-A were localized right beneath the plasma membrane, and subcellular fractionation indicated a tight membrane association. Recombinant TgM-D also had a peripheral although not as sharply defined localization. Truncation of their respective tail domains abolished peripheral localization and tight membrane association. Conversely, fusion of the tails to green fluorescent protein (GFP) was sufficient to confer plasma membrane localization and sedimentability. The peripheral localization of TgM-A and of the GFP-tail fusion did not depend on an intact F-actin cytoskeleton, and the GFP chimera did not localize to the plasma membrane of HeLa cells. Finally, we showed that the specific localization determinants were in the very C terminus of the TgM-A tail, and site-directed mutagenesis revealed two essential arginine residues. We discuss the evidence for a proteinaceous plasma membrane receptor and the implications for the invasion process.
Collapse
Affiliation(s)
- C Hettmann
- Zentrum für Molekulare Biologie, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
71
|
Ngô HM, Hoppe HC, Joiner KA. Differential sorting and post-secretory targeting of proteins in parasitic invasion. Trends Cell Biol 2000; 10:67-72. [PMID: 10652517 DOI: 10.1016/s0962-8924(99)01698-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Toxoplasma gondii uses a highly coordinated arsenal of three structurally and biochemically distinct secretory granules to invade and develop in a wide range of host cells. Proteins of these secretory granules are sorted to strategic subcellular locations using distinctive sorting signals and are then triggered differentially for exocytosis. These secreted proteins are subsequently targeted and inserted into membrane domains.
Collapse
Affiliation(s)
- H M Ngô
- Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA
| | | | | |
Collapse
|
72
|
Sajid M, Withers-Martinez C, Blackman MJ. Maturation and specificity of Plasmodium falciparum subtilisin-like protease-1, a malaria merozoite subtilisin-like serine protease. J Biol Chem 2000; 275:631-41. [PMID: 10617661 DOI: 10.1074/jbc.275.1.631] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) is a protein belonging to the subtilisin-like superfamily of serine proteases (subtilases). PfSUB-1 undergoes extensive posttranslational proteolytic processing. The primary translation product is converted in the parasite endoplasmic reticulum to p54. This is further processed to p47, which accumulates in secretory organelles within the merozoite. Here, we present a detailed study of this processing. In vitro translated PfSUB-1 showed no capacity to undergo autocatalytic processing. However, parasite extracts contain a protease that cleaves the in vitro translated proprotein between Asp(219) and Asn(220) to form two products of 31 (p31) and 54 kDa; the latter was indistinguishable from authentic p54 and remained complexed with p31 in a noncovalent interaction characteristic of that between a subtilase prodomain and its cognate catalytic domain. Cross-linking studies showed that this complex also exists in the parasite. Expression of PfSUB-1 in recombinant baculovirus also resulted in processing to p54. Mutation of the predicted active site serine abolished processing. Recombinant p54 was secreted in a complex with p31, and could be further converted to p47 in vitro. Conversion required calcium, was an intramolecular autocatalytic process, and involved a second cleavage between Asp(251) and Ala(252). A decapeptide based on sequence flanking Asp(219) was efficiently cleaved by recombinant PfSUB-1. We conclude that PfSUB-1 is a subtilase with an unusual substrate specificity and that it is activated by two autocatalytic processing steps.
Collapse
Affiliation(s)
- M Sajid
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
73
|
Mattsson JG, Soldati D. MPS1: a small, evolutionarily conserved zinc finger protein from the protozoan Toxoplasma gondii. FEMS Microbiol Lett 1999; 180:235-9. [PMID: 10556717 DOI: 10.1111/j.1574-6968.1999.tb08801.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Within the expressed sequence tag (EST) dataset of Toxoplasma gondii we have identified several ESTs encoding a protein similar to the small zinc finger protein MPS1. In human it is suggested that MPS1 plays a role as a transcriptional mediator in response to various growth factors and it is used as a tumour marker in sera from cancer patients. However, in rat a cDNA sequence homologous to MPS1 encodes ribosomal protein S27. To further characterise MPS1 in T. gondii we transformed tachyzoites with a c-Myc-tagged version of the Toxoplasma MPS1 cDNA, flanked by SAG1 sequences. Western blot analysis showed that the Myc-MPS1 was only poorly expressed in the stable transformants. In contrast, Northern blot analysis demonstrated that the Myc-MPS1 mRNA was abundantly transcribed and that the endogenous level of MPS1 mRNA was not affected.
Collapse
Affiliation(s)
- J G Mattsson
- ZMBH, University of Heidelberg, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany.
| | | |
Collapse
|
74
|
Hettmann C, Soldati D. Cloning and analysis of a Toxoplasma gondii histone acetyltransferase: a novel chromatin remodelling factor in Apicomplexan parasites. Nucleic Acids Res 1999; 27:4344-52. [PMID: 10536141 PMCID: PMC148715 DOI: 10.1093/nar/27.22.4344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The yeast transcriptional adaptor GCN5 functions as a histone acetyltransferase, directly linking chromatin modification to transcriptional regulation. Homologues of yeast GCN5 have been found in Tetrahymena, Drosophila, Arabidopsis and human, suggesting that this pathway of chromatin remodelling is evolutionarily conserved. Consistent with this view, we have identified the Toxoplasma gondii homologue, referred to here as TgGCN5. The gene codes for a protein of 474 amino acids with an estimated molecular mass of 53 kDa. The protein reveals two regions of close similarity with the GCN5 family members, the HAT domain and the bromodomain. Tg GCN5 occurs in a single copy in the T.gondii genome. The introduction of a second copy of TgGCN5 in T.gondii tachyzoites is toxic unless the HAT activity is disrupted by a single point mutation. Full TgGCN5 does not complement the growth defect in a yeast gcn5 (-)mutant strain, but a chimera comprising the T.gondii HAT domain fused to the remainder of yGCN5 does. These data show that T.gondii GNC5 is a histone acetyltransferase attesting to the significance of chromatin remodelling in gene regulation of Apicomplexa.
Collapse
Affiliation(s)
- C Hettmann
- Zentrum für Molekulare Biologie Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | |
Collapse
|
75
|
Brecht S, Erdhart H, Soete M, Soldati D. Genome engineering of Toxoplasma gondii using the site-specific recombinase Cre. Gene 1999; 234:239-47. [PMID: 10395896 DOI: 10.1016/s0378-1119(99)00202-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Site-specific DNA recombinases from bacteriophage and yeasts have been developed as novel tools for genome engineering both in prokaryotes and eukaryotes. The 38kDa Cre protein efficiently produces both inter- and intramolecular recombination between specific 34bp sites called loxP. We report here the in vivo use of Cre recombinase to manipulate the genome of the protozoan parasite Toxoplasma gondii. Cre catalyzes the precise removal of transgenes from T. gondii genome when flanked by two directly repeated loxP sites. The efficiency of excision has been determined using LacZ as reporter and indicates that it can easily be applied to the removal of undesired sequences such as selectable marker genes and to the determination of gene essentiality. We have also shown that the reversibility of the recombination reaction catalyzed by Cre offers the possibility to target site-specific integration of a loxP-containing vector in a chromosomally placed loxP target in the parasite. In mammalian systems, the Cre recombinase can be regulated by hormone and is used for inducible gene targeting. In T. gondii, fusions between Cre recombinase and the hormone-binding domain of steroids are constitutively active, hampering the utilization of this mode of post-translational regulation as inducible gene expression system.
Collapse
Affiliation(s)
- S Brecht
- Zentrum für Molekulare Biologie Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
76
|
Bradley PJ, Boothroyd JC. Identification of the pro-mature processing site of Toxoplasma ROP1 by mass spectrometry. Mol Biochem Parasitol 1999; 100:103-9. [PMID: 10376998 DOI: 10.1016/s0166-6851(99)00035-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rhoptries are specialized secretory organelles that function during host cell invasion in the obligate intracellular parasite Toxoplasma gondii. All T. gondii rhoptry proteins studied to date are synthesized as pro-proteins that are then processed to their mature forms. To understand the role of the pro region in rhoptry protein function, we have precisely defined the processing site of the pro-region of the rhoptry protein ROP1. Efforts to determine such processing sites have been prevented by blocked N-termini of mature proteins isolated from T. gondii. To overcome this problem, we have used an engineered form of ROP1 and mass spectrometry to demonstrate that proROP1 is processed to its mature form between the glutamic acid at position 83 and alanine at position 84. These data also show that mature ROP1 lacks substantial post-translational modifications, a result which has important implications for targeting of rhoptry proteins.
Collapse
Affiliation(s)
- P J Bradley
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5124, USA
| | | |
Collapse
|