51
|
Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23:1417-50. [PMID: 16779701 DOI: 10.1007/s11095-006-0284-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 03/01/2006] [Indexed: 01/19/2023]
Abstract
The purpose of this expert review is to discuss the impact of nanotechnology in the treatment of the major health threats including cancer, infections, metabolic diseases, autoimmune diseases, and inflammations. Indeed, during the past 30 years, the explosive growth of nanotechnology has burst into challenging innovations in pharmacology, the main input being the ability to perform temporal and spatial site-specific delivery. This has led to some marketed compounds through the last decade. Although the introduction of nanotechnology obviously permitted to step over numerous milestones toward the development of the "magic bullet" proposed a century ago by the immunologist Paul Ehrlich, there are, however, unresolved delivery problems to be still addressed. These scientific and technological locks are discussed along this review together with an analysis of the current situation concerning the industrial development.
Collapse
Affiliation(s)
- Patrick Couvreur
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Université de Paris Sud, 5 Rue J.B. Clément, 92 296, Chatenay-Malabry Cedex, France
| | | |
Collapse
|
52
|
|
53
|
Sant VP, Smith D, Leroux JC. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release 2005; 97:301-12. [PMID: 15196757 DOI: 10.1016/j.jconrel.2004.03.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 03/25/2004] [Indexed: 11/16/2022]
Abstract
The objective of the present study was to synthesize novel pH-sensitive block copolymers forming supramolecular assemblies and to explore their potential as poorly water-soluble drug carriers for oral delivery. Diblock copolymers of polyethylene glycol and t-butyl methacrylate (tBMA), ethyl acrylate (EA) or n-butyl acrylate (nBA) were synthesized by atom transfer radical polymerization (ATRP). The pH-sensitive polymers obtained by hydrolysis of t-butyl groups were characterized for aggregation behaviour. Poorly water-soluble model drugs, i.e., indomethacin (IND), fenofibrate (FNB) and progesterone (PRG), were incorporated in supramolecular assemblies by dialysis or oil-in-water (O/W) emulsion methods. Process parameters for emulsion method were studied to maximize drug loading. Progesterone release was evaluated in vitro as a function of pH. Polymers with controlled molecular weights and low polydispersities were obtained by ATRP. All polymers exhibited pH-dependent aggregation behaviour and their critical aggregation concentration (CAC) decreased with increase in the hydrophobic block length. Drug loadings of <6% and 6-14% w/w were achieved by the dialysis and emulsion methods, respectively. Polymer composition, drug concentration and solubilization of polymer in water or dichloromethane (DCM) affected the loading. Progesterone release from supramolecular assemblies increased when the pH of the release medium was raised from 1.2 to 7.2. The results suggest that these supramolecular assemblies with high drug loadings and pH-dependent release kinetics can potentially enhance the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Vinayak P Sant
- Canada Research Chair in Drug Delivery, Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, Canada H3C 3J7
| | | | | |
Collapse
|
54
|
Sant VP, Smith D, Leroux JC. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release 2005; 104:289-300. [PMID: 15907580 DOI: 10.1016/j.jconrel.2005.02.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/11/2005] [Accepted: 02/12/2005] [Indexed: 11/18/2022]
Abstract
The purpose of the present study was to determine whether pH-sensitive polymeric micelles could improve the oral bioavailability of a poorly water-soluble drug. Poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid)s were synthesized by atom transfer radical polymerization and the composition of the ionizable polymer block was varied to maximize drug loading and pH-dependent release. Poorly water-soluble model drugs viz. fenofibrate (FNB) and progesterone (PRG) were incorporated in the self-assemblies by the oil-in-water emulsion or film casting methods. The pH-dependent release of several formulations was studied in vitro and the oral bioavailabilities of FNB-loaded micelles, Lipidil Micro and FNB coarse suspension were assessed in Sprague-Dawley rats at a dose of 7.5 mg/kg. Entrapment efficiency (defined as the ratio of experimental drug loading in self-assemblies to the initial amount of drug added) ranged between 55-75% and was dependent on polymer composition and drug-loading method. Hydrophobic chain composition of the polymer had tremendous impact on in vitro release kinetics, with only poly(ethylene glycol)-block-poly(n-butyl acrylate(17)-co-methacrylic acid(17)) micelles showing the desired pH-dependent drug-release profile. The oral bioavailability of FNB from these self-assemblies revealed 156% and 15% increases vs. FNB coarse suspension and Lipidil Micro, respectively. The results suggest that these pH-sensitive self-assemblies have potential for improving the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Vinayak P Sant
- Canada Research Chair in Drug Delivery, Faculty of Pharmacy, University of Montreal, C.P. 6128 Succ. Centre-ville, Montréal, QC, Canada H3C 3J7
| | | | | |
Collapse
|
55
|
Dai J, Nagai T, Wang X, Zhang T, Meng M, Zhang Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int J Pharm 2004; 280:229-40. [PMID: 15265562 DOI: 10.1016/j.ijpharm.2004.05.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Accepted: 05/02/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this work was to improve the oral bioavailability of cyclosporine A (CyA) by preparation the CyA-pH sensitive nanoparticles. The CyA-pH sensitive nanoparticles were prepared by using poly(methacrylic acid and methacrylate) copolymer. The characterization and the dispersion state of CyA at the surface or inside the polymeric matrices of the nanoparticles were investigated. The in vitro release studies were conducted by ultracentrifuge method. The bioavailability of CyA from nanoparticles and Neoral microemulsion was assessed in Sprague-Dawley (SD) rats at a dose of 15 mg/kg. The particle size of the nanoparticles was within the range from 37.4 +/- 5.6 to 106.7 +/- 14.8 nm. The drug entrapped efficiency was very high (from 90.9 to 99.9%) and in all cases the drug was amorphous or molecularly dispersed within the nanoparticles polymeric matrices. In vitro release experiments revealed that the nanoparticles exhibited perfect pH-dependant release profiles. The relative bioavailability of CyA was markedly increased by 32.5% for CyA-S100 nanoparticles (P < 0.05), and by 15.2% and 13.6% for CyA-L100-55 and CyA-L100 nanoparticles respectively, while it was decreased by 5.2% from CyA-E100 nanoparticles when compared with the Neoral microemulsion. With these results, the potential of pH-sensitive nanoparticles for the oral delivery of CyA was confirmed.
Collapse
Affiliation(s)
- Jundong Dai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, 100083 Beijing, China
| | | | | | | | | | | |
Collapse
|
56
|
Pamujula S, Graves RA, Freeman T, Srinivasan V, Bostanian LA, Kishore V, Mandal TK. Oral delivery of spray dried PLGA/amifostine nanoparticles. J Pharm Pharmacol 2004; 56:1119-25. [PMID: 15324480 DOI: 10.1211/0022357044210] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Amifostine (Ethyol, WR-2721) is a cytoprotective drug approved by the US Food & Drug Administration for intravenous administration in cancer patients receiving radiation therapy and certain forms of chemotherapy. The primary objective of this project was to develop orally active amifostine nanoparticles using spray drying technique. Two different nanoparticle formulations (Amifostine-PLGA (0.4:1.0 and 1.0:1.0)) were prepared using a Buchi B191 Mini Spray Dryer. A water-in-oil emulsion of amifostine and PLGA (RG 502) was spray dried using an airflow of 600 L h(-1) and input temperature of 55 degrees C. A tissue distribution study in mice was conducted following oral administration of the formulation containing drug-polymer (0.4:1.0). The efficiency of encapsulation was 90% and 100%, respectively, for the two formulations while the median particle sizes were 257 and 240 nm, with 90% confidence between 182 and 417 nm. Since amifostine is metabolized to its active form, WR-1065, by intracellular alkaline phosphatase, the tissue levels of WR-1065 were measured, instead of WR-2721. WR-1065 was detected in significant amounts in all tissues, including bone marrow, jejunum and the kidneys, and there was some degree of selectivity in its distribution in various tissues. This work demonstrates the feasibility of developing an orally effective formulation of amifostine that can be used clinically.
Collapse
Affiliation(s)
- Sarala Pamujula
- College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125-1098, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Cegnar M, Kos J, Kristl J. Cystatin incorporated in poly(lactide-co-glycolide) nanoparticles: development and fundamental studies on preservation of its activity. Eur J Pharm Sci 2004; 22:357-64. [PMID: 15265505 DOI: 10.1016/j.ejps.2004.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/02/2004] [Accepted: 04/03/2004] [Indexed: 11/26/2022]
Abstract
Preservation of biological activity is still a major challenge for successful formulation and delivery of protein drugs. Cystatin, a potential protein drug in cancer therapy, was incorporated in poly(lactide-co-glycolide) nanoparticles by the water-in-oil-in-water emulsion solvent diffusion technique. In order to preserve the biological activity of cystatin, a specific modification of the method of producing nanoparticles was introduced. The activity of cystatin was strongly influenced by the stirring rate during preparation and, to a lesser extent, by selected organic solvents. A synergistic effect of mechanical stirring and sonication, both at low energy levels, enabled nanoparticles to be formed without denaturing the cystatin. Nanoparticles produced by the optimised method ranged from 300 to 350 nm in diameter with 85% of the starting cystatin activity. The loading efficiency of cystatin depends on polymer type and ranged from 12 to 57%, representing an actual loading of 0.6-2.6% (w/w). Among various cryo-/lyoprotectants bovine serum albumin was identified as the most successful. The use of a protein protectant prior to nanoparticle formation was essential to maintaining the biologically active three-dimensional structure of cystatin. In addition, a specific type of poly(lactide-co-glycolide) polymer, particularly in terms of its functional groups, was identified to be important in retaining cystatin activity. Cystatin incorporated into nanoparticles in this way maintains its structural integrity, making it suitable for effective drug delivery.
Collapse
Affiliation(s)
- Mateja Cegnar
- University of Ljubljana, Faculty of Pharmacy, Askerèeva 7, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
58
|
Koga A, Yonemochi E, Machida M, Aso Y, Ushio H, Terada K. Microscopic molecular mobility of amorphous AG-041R measured by solid-state 13C NMR. Int J Pharm 2004; 275:73-83. [PMID: 15081139 DOI: 10.1016/j.ijpharm.2004.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2003] [Revised: 01/15/2004] [Accepted: 01/20/2004] [Indexed: 11/15/2022]
Abstract
PURPOSE AG-041R is characterized to be stable in amorphous state and difficult to crystallize at normal period of time. In order to investigate the molecular mobility in microscopically, the spin-lattice relaxation time (T1) of AG-041R was investigated by solid-state CP/MAS 13C NMR at temperature below and above glass transition temperature (Tg). METHOD CP/MAS measurement and T1 measurement were performed by means of 13C NMR, where the measurement temperatures were 60, 70, 80, 100, and 110 degrees C. The spin-lattice relaxation time (T1) of AG-041R was calculated from the relaxation curves. RESULTS From the analysis of T1 of amorphous AG-041R, it was clarified that all of the carbons did not start moving drastically at Tg and there were some groups of carbon in terms of temperature dependency of T1. One is a type, such as the carbons in benzene ring: their T1 was drastically changed at Tg. On the other hand, T1 of carbonyl carbons gradually decreased, and above Tg their T1 was still higher than that of the other carbons. There was no significant change of T1 in the methyl carbons around Tg. From the study of IR and 1H NMR in solution, the inter- and intramolecular hydrogen bondings between NH and C=O were found in AG-041R. Due to hydrogen bonding, the inter- and/or intramolecular interaction is considered to retain even at supercooled liquid state. CONCLUSION The structure that contributes glass transition is the main skeleton structure, such as benzene ring, while small group, like methyl, start to move at lower temperature than Tg. On the other hand, for the carbons, such as carbonyl, their structure was restricted by inter- and/or intramolecular interaction, therefore, their molecular mobility was significantly low above Tg.
Collapse
Affiliation(s)
- Akiko Koga
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | | | |
Collapse
|
59
|
Rogers TL, Johnston KP, Williams RO. Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble drug. Pharm Dev Technol 2003; 8:187-97. [PMID: 12760569 DOI: 10.1081/pdt-120018489] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The objective of this study was to investigate the physical stability of micronized powders produced by the spray-freezing into liquid (SFL) particle engineeringtechnology. MATERIALS AND METHODS Danazol was formulated with polyvinyl alcohol (MW 22,000), poloxamer 407, and polyvinylpyrrolidone K-15 to form a cosolvent solution that was SFL processed. The dried micronized SFL powders were sealed in glass vials with desiccant and exposed to 25 degrees C/60% RH for 3 and 6 mo, 40 degrees C/75% RH for 1, 2, 3, and 6 mo, and conditions where the temperature was cycled between -5 and +40 degrees C (6 cycles/24 hr) with constant 75% RH for 1, 2, 3 and 4 wk. The samples were characterized by using Karl-Fisher titration, differential scanning calorimetry, x-ray diffraction, specific surface area, scanning electron microscopy, and dissolution testing. RESULTS Micronized SFL powders consisting of porous aggregates with small-particle domains were characterized as having high surface areas and consisted of amorphous danazol embedded within a hydrophilic excipient matrix. Karl-Fischer titration revealed no moisture absorption over the duration of the stability studies. Differential scanning calorimetry studies demonstrated high degrees of molecular interactions between danazol, PVA, poloxamer, and PVP. Scanning electron microscopy studies confirmed these interactions, especially those between danazol and poloxamer. These interactions facilitated API dissolution in the aqueous media. Powder surface area remained constant during storage at the various stability conditions, and danazol recrystallization did not occur during the entirety of the stability studies. Micronized SFL powders containing danazol dissolved rapidly and completely within 5 min in aqueous media. No differences were observed in the enhanced dissolution profiles of danazol after exposure to the storage conditions investigated. Physically stable micronized powders produced by the SFL particle engineering technology were produced for the purpose of enhancing the dissolution of an insoluble drug. CONCLUSIONS The potential of the SFL particle-engineering technology as a micronization technique for enhancing the dissolution of hydrophobic drugs was demonstrated in this study. The robustness of the micronized SFL powders to withstand stressed storage conditions was shown.
Collapse
Affiliation(s)
- True L Rogers
- College of Pharmacy, University of Texas at Austin, Austin, Texas 78712-1074, USA
| | | | | |
Collapse
|
60
|
Hombreiro-Pérez M, Siepmann J, Zinutti C, Lamprecht A, Ubrich N, Hoffman M, Bodmeier R, Maincent P. Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling. J Control Release 2003; 88:413-28. [PMID: 12644367 DOI: 10.1016/s0168-3659(03)00030-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-degradable microparticles based on ammonio methacrylate copolymers (Eudragit RS:RL 4:1 blends) containing the hydrophilic drug propranolol HCl and/or the lipophilic drug nifedipine were prepared with an oil-in-water (O/W) and a water-in-oil-in-water (W/O/W) solvent evaporation technique. Both drugs were successfully incorporated separately as well as simultaneously. In all cases, the resulting release rate(s) of the drug(s) was/were found to be controlled over periods of at least 8 h. To elucidate the underlying mass transport mechanisms, the microparticles were thoroughly characterized by X-ray powder diffractometry, differential scanning calorimetry, particle size analysis, and determination of the actual drug loading(s). Analytical solutions of Fick's second law of diffusion considering non-steady state conditions were used to describe the release of propranolol HCl. Interestingly, the resistance for drug release within the unstirred liquid boundary layers on the surfaces of the microparticles was found to be negligible compared to the diffusional resistance within the polymeric devices. Importantly, the mathematical theories could be used to normalize the experimentally determined in vitro drug release with respect to the microparticle size. Thus, the effect of the type of preparation method (O/W vs. W/O/W) and device composition (polymer blend plus one drug only vs. polymer blend plus drug combination) on the diffusional resistance within the microparticles could be studied. In addition, further insight into the occurring mass transport processes was gained. For example, the time-dependent evolution of the drug concentration profiles within the microparticles upon exposure to the release medium could be calculated. An interesting practical application of the mathematical theories is the possibility to predict the effect of different formulation parameters on the resulting drug release patterns, e.g. the effect of the microparticle size.
Collapse
Affiliation(s)
- M Hombreiro-Pérez
- Laboratoire de Pharmacie Galénique et Biopharmacie, Université de Nancy I, 5 rue A Lebrun, BP 403, 54001 Nancy, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
De Jaeghere F, Allémann E, Doelker E, Gurny R, Cerny R, Galli B, Steulet AF, Müller I, Schütz H. pH-Dependent dissolving nano- and microparticles for improved peroral delivery of a highly lipophilic compound in dogs. AAPS PHARMSCI 2001; 3:E8. [PMID: 11741259 PMCID: PMC2751240 DOI: 10.1208/ps030108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RR01, a new highly lipophilic drug showing extremely low water solubility and poor oral bioavailability, has been incorporated into pH-dependent dissolving particles made of a poly(methacrylic acid-co-ethylacrylate) copolymer. The physicochemical properties of the particles were determined using laser-light-scattering techniques, scanning electron microscopy, high-performance liquid chromatography, and x-ray powder diffraction. Suspension of the free drug in a solution of hydroxypropylcellulose (reference formulation) and aqueous dispersions of pH-sensitive RR01-loaded nanoparticles or microparticles were administered orally to Beagle dogs according to a 2-block Latin square design (n = 6). Plasma samples were obtained over the course of 48 hours and analyzed by gas chromatography/mass spectrometry. The administration of the reference formulation resulted in a particularly high interindividual variability of pharmacokinetic parameters, with low exposure to compound RR01 (AUC0-48h of 6.5 microg x h/mL and coefficient of variation (CV) of 116%) and much higher Tmax, as compared to both pH-sensitive formulations. With respect to exposure and interindividual variability, nanoparticles were superior to microparticles (AUC0-48h of 27.1 microg x h/mL versus 17.7 microg x h/mL with CV of 19% and 40%, respectively), indicating that the particle size may play an important role in the absorption of compound RR01. The performance of pH-sensitive particles is attributed to their ability to release the drug selectively in the upper part of the intestine in a molecular or amorphous form. In conclusion, pH-dependent dissolving particles have a great potential as oral delivery systems for drugs with low water solubility and acceptable permeation properties.
Collapse
Affiliation(s)
- F. De Jaeghere
- School of Pharmacy, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - E. Allémann
- School of Pharmacy, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - E. Doelker
- School of Pharmacy, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - R. Gurny
- School of Pharmacy, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - R. Cerny
- Crystallography Laboratory, University of Geneva, CH 1211 Geneva 4, Switzerland
| | - B. Galli
- Novartis Pharma AG, CH 4002 Basle, Switzerland
| | | | - I. Müller
- Novartis Pharma AG, CH 4002 Basle, Switzerland
| | - H. Schütz
- Novartis Pharma AG, CH 4002 Basle, Switzerland
| |
Collapse
|