51
|
Real F, Florentino PTV, Reis LC, Ramos-Sanchez EM, Veras PST, Goto H, Mortara RA. Cell-to-cell transfer of Leishmania amazonensis amastigotes is mediated by immunomodulatory LAMP-rich parasitophorous extrusions. Cell Microbiol 2014; 16:1549-64. [PMID: 24824158 PMCID: PMC4353215 DOI: 10.1111/cmi.12311] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
The last step of Leishmania intracellular life cycle is the egress of amastigotes from the host cell and their uptake by adjacent cells. Using multidimensional live imaging of long-term-infected macrophage cultures we observed that Leishmania amazonensis amastigotes were transferred from cell to cell when the donor host macrophage delivers warning signs of imminent apoptosis. They were extruded from the macrophage within zeiotic structures (membrane blebs, an apoptotic feature) rich in phagolysosomal membrane components. The extrusions containing amastigotes were selectively internalized by vicinal macrophages and the rescued amastigotes remain viable in recipient macrophages. Host cell apoptosis induced by micro-irradiation of infected macrophage nuclei promoted amastigotes extrusion, which were rescued by non-irradiated vicinal macrophages. Using amastigotes isolated from LAMP1/LAMP2 knockout fibroblasts, we observed that the presence of these lysosomal components on amastigotes increases interleukin 10 production. Enclosed within host cell membranes, amastigotes can be transferred from cell to cell without full exposure to the extracellular milieu, what represents an important strategy developed by the parasite to evade host immune system.
Collapse
Affiliation(s)
- Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP)São Paulo, Brasil
| | - Pilar Tavares Veras Florentino
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP)São Paulo, Brasil
| | - Luiza Campos Reis
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São PauloSão Paulo, Brasil
| | - Eduardo M Ramos-Sanchez
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São PauloSão Paulo, Brasil
| | - Patricia Sampaio Tavares Veras
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT – DT), Fundação Oswaldo Cruz (FIOCRUZ)Bahia, Brasil
| | - Hiro Goto
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São PauloSão Paulo, Brasil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São PauloSão Paulo, Brasil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP)São Paulo, Brasil
| |
Collapse
|
52
|
Roy S, Kumar GA, Jafurulla M, Mandal C, Chattopadhyay A. Integrity of the Actin Cytoskeleton of Host Macrophages is Essential for Leishmania donovani Infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2011-8. [DOI: 10.1016/j.bbamem.2014.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/19/2014] [Accepted: 04/18/2014] [Indexed: 12/16/2022]
|
53
|
Uezato H, Kato H, Kayo S, Hagiwara K, Bhutto AM, Katakura K, Nonaka S, Hashiguchi Y. The Attachment and Entry ofLeishmania (Leishmania) Majorinto Macrophages: Observation by Scanning Electron Microscope. J Dermatol 2014; 32:534-40. [PMID: 16335868 DOI: 10.1111/j.1346-8138.2005.tb00795.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leishmaniasis, a zoonotic protozoan disease, starts with the inoculation of the Leishmania promastigotes into the skin at the time of blood ingestion by a female sandfly. The infection of leishmaniasis is established when the Leishmania organisms start their own intracellular multiplication after having been phagocytized by the host's macrophages. In the earliest stage of the infection, therefore, the attachment of the promastigates to the macrophages is essential. We incubated a mixed culture of macrophages (JM774-1A) and Leishmania (Leishmania) major for 6 hours in vitro and observed the process of the attachment between the parasite and host cell by scanning electron microscope. We found for the first time that the attachment between the two occurred at the site of the parasite body, in addition to the previously reported sites of the flagellar tip, flagellar base, and aflagellar tip (posterior pole).
Collapse
Affiliation(s)
- Hiroshi Uezato
- Department of Dermatology, Ryukyu University School of Medicine, Okinawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S. Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. Cochrane Database Syst Rev 2014; 2014:CD009135. [PMID: 24947503 PMCID: PMC4468926 DOI: 10.1002/14651858.cd009135.pub2] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The diagnosis of visceral leishmaniasis (VL) in patients with fever and a large spleen relies on showing Leishmania parasites in tissue samples and on serological tests. Parasitological techniques are invasive, require sophisticated laboratories, consume time, or lack accuracy. Recently, rapid diagnostic tests that are easy to perform have become available. OBJECTIVES To determine the diagnostic accuracy of rapid tests for diagnosing VL in patients with suspected disease presenting at health services in endemic areas. SEARCH METHODS We searched MEDLINE, EMBASE, LILACS, CIDG SR, CENTRAL, SCI-expanded, Medion, Arif, CCT, and the WHO trials register on 3 December 2013, without applying language or date limits. SELECTION CRITERIA This review includes original, phase III, diagnostic accuracy studies of rapid tests in patients clinically suspected to have VL. As reference standards, we accepted: (1) direct smear or culture of spleen aspirate; (2) composite reference standard based on one or more of the following: parasitology, serology, or response to treatment; and (3) latent class analysis. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed quality of included studies using the QUADAS-2 tool. Discrepancies were resolved by a third author. We carried out a meta-analysis to estimate sensitivity and specificity of rapid tests, using a bivariate normal model with a complementary log-log link function. We analysed each index test separately. As possible sources of heterogeneity, we explored: geographical area, commercial brand of index test, type of reference standard, disease prevalence, study size, and risk of bias (QUADAS-2). We also undertook a sensitivity analysis to assess the influence of imperfect reference standards. MAIN RESULTS Twenty-four studies containing information about five index tests (rK39 immunochromatographic test (ICT), KAtex latex agglutination test in urine, FAST agglutination test, rK26 ICT, and rKE16 ICT) recruiting 4271 participants (2605 with VL) were included. We carried out a meta-analysis for the rK39 ICT (including 18 studies; 3622 participants) and the latex agglutination test (six studies; 1374 participants). The results showed considerable heterogeneity. For the rK39 ICT, the overall sensitivity was 91.9% (95% confidence interval (95% CI) 84.8 to 96.5) and the specificity 92.4% (95% CI 85.6 to 96.8). The sensitivity was lower in East Africa (85.3%; 95% CI 74.5 to 93.2) than in the Indian subcontinent (97.0%; 95% CI 90.0 to 99.5). For the latex agglutination test, overall sensitivity was 63.6% (95% CI 40.9 to 85.6) and specificity 92.9% (95% CI 76.7 to 99.2). AUTHORS' CONCLUSIONS The rK39 ICT shows high sensitivity and specificity for the diagnosis of visceral leishmaniasis in patients with febrile splenomegaly and no previous history of the disease, but the sensitivity is notably lower in east Africa than in the Indian subcontinent. Other rapid tests lack accuracy, validation, or both.
Collapse
Affiliation(s)
| | | | | | | | | | - Francois Chappuis
- Geneva University HospitalsDivision of International and Humanitarian MedicineRue Gabrielle‐Perret‐Gentil, 61211GenevaSwitzerland14
| | - Suman Rijal
- BP Koirala Institute of Health SciencesDepartment of Internal MedicineGhopaDharanSunsariNepal056700
| | | |
Collapse
|
55
|
Chaubey P, Patel RR, Mishra B. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Expert Opin Drug Deliv 2014; 11:1163-81. [DOI: 10.1517/17425247.2014.917076] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
56
|
An historical perspective on how advances in microscopic imaging contributed to understanding the Leishmania Spp. and Trypanosoma cruzi host-parasite relationship. BIOMED RESEARCH INTERNATIONAL 2014; 2014:565291. [PMID: 24877115 PMCID: PMC4022312 DOI: 10.1155/2014/565291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/10/2014] [Indexed: 12/15/2022]
Abstract
The literature has identified complex aspects of intracellular host-parasite relationships, which require systematic, nonreductionist approaches and spatial/temporal information. Increasing and integrating temporal and spatial dimensions in host cell imaging have contributed to elucidating several conceptual gaps in the biology of intracellular parasites. To access and investigate complex and emergent dynamic events, it is mandatory to follow them in the context of living cells and organs, constructing scientific images with integrated high quality spatiotemporal data. This review discusses examples of how advances in microscopy have challenged established conceptual models of the intracellular life cycles of Leishmania spp. and Trypanosoma cruzi protozoan parasites.
Collapse
|
57
|
Yamamoto ES, Campos BLS, Laurenti MD, Lago JHG, Grecco SDS, Corbett CEP, Passero LFD. Treatment with triterpenic fraction purified from Baccharis uncinella leaves inhibits Leishmania (Leishmania) amazonensis spreading and improves Th1 immune response in infected mice. Parasitol Res 2014; 113:333-9. [PMID: 24173812 DOI: 10.1007/s00436-013-3659-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
Abstract
The current medications used to treat leishmaniasis have many side effects for patients; in addition, some cases of the disease are refractory to treatment. Therefore, the search for new leishmanicidal compounds is indispensable. Recently, it was demonstrated that oleanolic- and ursolic-containing fraction from Baccharis uncinella leaves eliminated the promastigote and amastigote forms of Leishmania (Leishmania) amazonensis and L. (Viannia) braziliensis without causing toxic effects for J774 macrophages. Thus, the aim of the present work was to characterize the therapeutic effect of the triterpenic fraction in L. (L.) amazonensis-infected BALB/c mice. Oleanolic- and ursolic acid-containing fraction was extracted from B. uncinella leaves using organic solvents and chromatographic procedures. L. (L.) amazonensis-infected BALB/c mice were treated intraperitoneally with triterpenic fraction during five consecutive days with 1.0 and 5.0 mg/kg of triterpenic fraction, or with 10.0 mg/kg of amphotericin B drug. Groups of mice treated with the triterpenic fraction, presented with decreased lesion size and low parasitism of the skin-both of which were associated with high amounts of interleukin-12 and interferon gamma. The curative effect of this fraction was similar to amphotericin B-treated mice; however, the final dose, required to eliminate amastigotes, was lesser than amphotericin B. Moreover, triterpenic fraction did not cause microscopic alterations in liver, spleen, heart, lung, and kidney of experimental groups. This work suggests that this fraction possesses compounds that are characterized by leishmanicidal and immunomodulatory activities. From this perspective, the triterpenic fraction can be explored as a new therapeutic agent for use against American Tegumentar Leishmaniasis.
Collapse
Affiliation(s)
- Eduardo Seiji Yamamoto
- Laboratório de Patologia de Moléstias Infeciosas, Departamento de Patologia da Faculdade de Medicina, da Universidade de São Paulo, Av. Dr. Arnaldo, 455, Cerqueira César, 01246-000, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
58
|
Homology modeling of LmxMPK4 of Leishmania mexicana and virtual screening of potent inhibitors against it. Interdiscip Sci 2013; 5:136-44. [DOI: 10.1007/s12539-013-0164-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 01/11/2013] [Accepted: 02/17/2013] [Indexed: 10/26/2022]
|
59
|
Elcicek S, Bagirova M, Allahverdiyev AM. Generation of avirulent Leishmania parasites and induction of nitric oxide production in macrophages by using polyacrylic acid. Exp Parasitol 2013; 133:237-42. [DOI: 10.1016/j.exppara.2012.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 12/22/2022]
|
60
|
Inhibition of dendritic cell apoptosis by Leishmania mexicana amastigotes. Parasitol Res 2013; 112:1755-62. [PMID: 23420408 DOI: 10.1007/s00436-013-3334-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022]
Abstract
Macrophages (Mφ) and dendritic cells are the major target cell populations of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. Leishmania promastigotes have been shown to protect Mφ, neutrophils, and dendritic cells from both natural and induced apoptosis. Nevertheless, the effect of the infection with Leishmania amastigotes in the apoptosis of these cell populations has not been established, which results are very important since amastigotes persist in cells for many days and are responsible for sustaining infection in the host. As shown in this study, apoptosis of monocyte-derived dendritic cells (moDC) induced by treatment with camptothecin was downregulated by infection with L. mexicana amastigotes from 42.48 to 36.92% as detected by Annexin-V binding to phosphatidylserine. Also, the infection of moDC with L. mexicana amastigotes diminished the fragmentation of DNA as detected by terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling assay, and changes in cell morphology were analyzed by electron microscopy. The observed antiapoptotic effect was found to be associated with an 80% reduction in the presence of active caspase-3 in infected moDC. The capacity of L. mexicana amastigotes to delay apoptosis induction in the infected moDC may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.
Collapse
|
61
|
Human hepatic stellate cells in primary culture are safe targets forLeishmania donovani. Parasitology 2012; 140:471-81. [DOI: 10.1017/s0031182012001965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SUMMARYLeishmaniaparasites can escape the immune response by invading cell types lacking leishmanicidal mechanisms. Silent persistence ofLeishmaniaparasites in the host organism is responsible for asymptomatic carriage and relapses after cured leishmaniasis. Here, we studied the interaction between Hepatic Stellate Cells (HSC) andLeishmania.An original model of human HSC in primary culture infected withL. donovaniwas developed. The presence of intracellular parasites was studied and quantified using optical and confocal microscopy. HSC characteristics were studied using microscopy, methylene blue assay, long-term cultures and qPCR. We showed for the first time that human HSC are permissive toL. donovaniinfection, with no modification of HSC survival, growth rate and proinflammatory and fibrogenic characteristics. Intracellular parasites did not replicate but HSC had no effect on their survival. Indeed, after a 40-day culture, infected HSC cultures transferred on NNN medium yielded new promastigotes that were able to proliferate and efficiently infect new cells. HSC are permissive toL. donovani, with neither parasite killing nor apparent cell damage. Thus, HSC could act as potent sanctuary cells forLeishmaniain the liver, which could partially explain parasite reactivation after an asymptomatic carriage or a cured visceral leishmaniasis.
Collapse
|
62
|
Peltan A, Briggs L, Matthews G, Sweeney ST, Smith DF. Identification of Drosophila gene products required for phagocytosis of Leishmania donovani. PLoS One 2012; 7:e51831. [PMID: 23272175 PMCID: PMC3521716 DOI: 10.1371/journal.pone.0051831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 11/13/2012] [Indexed: 01/07/2023] Open
Abstract
The identity and function of host factors required for efficient phagocytosis and intracellular maintenance of the protozoan parasite Leishmania donovani are poorly understood. Utilising the phagocytic capability of Drosophila S2 cells, together with available tools for modulating gene expression by RNAi, we have developed an experimental system in which to identify host proteins of this type on a genome-wide scale. We have shown that L. donovani amastigotes can be phagocytosed by S2 cells, in which they replicate and are maintained in a compartment with features characteristic of mammalian phagolysosomes. Screening with dsRNAs from 1920 conserved metazoan genes has identified transcripts that, when reduced in expression, cause either increased or decreased phagocytosis. Focussing on genes in the latter class, RNAi-mediated knockdown of the small GTPase Rab5, the prenylated SNARE protein YKT6, one sub-unit of serine palmitoyltransferase (spt2/lace), the Rac1-associated protein Sra1 and the actin cytoskeleton regulatory protein, SCAR, all lead to a significant reduction in parasite phagocytosis. A role for the lace mammalian homologue in amastigote uptake by mammalian macrophages has been verified using the serine palmitoyltransferase inhibitor, myriocin. These observations suggest that this experimental approach has the potential to identify a large number of host effectors required for efficient parasite uptake and maintenance.
Collapse
Affiliation(s)
- Adam Peltan
- Centre for Immunology and Infection, University of York, York, United Kingdom
- Department of Biology, Hull-York Medical School, University of York, York, United Kingdom
| | - Laura Briggs
- Department of Biology, Hull-York Medical School, University of York, York, United Kingdom
| | - Gareth Matthews
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, Hull-York Medical School, University of York, York, United Kingdom
| | - Deborah F. Smith
- Centre for Immunology and Infection, University of York, York, United Kingdom
- Department of Biology, Hull-York Medical School, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Delgado-Ortega M, Marc D, Dupont J, Trapp S, Berri M, Meurens F. SOCS proteins in infectious diseases of mammals. Vet Immunol Immunopathol 2012; 151:1-19. [PMID: 23219158 PMCID: PMC7112700 DOI: 10.1016/j.vetimm.2012.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 10/31/2012] [Accepted: 11/13/2012] [Indexed: 12/17/2022]
Abstract
As for most biological processes, the immune response to microbial infections has to be tightly controlled to remain beneficial for the host. Inflammation is one of the major consequences of the host's immune response. For its orchestration, this process requires a fine-tuned interplay between interleukins, endothelial cells and various types of recruited immune cells. Suppressors of cytokine signalling (SOCS) proteins are crucially involved in the complex control of the inflammatory response through their actions on various signalling pathways including the JAK/STAT and NF-κB pathways. Due to their cytokine regulatory functions, they are frequent targets for exploitation by infectious agents trying to escape the host's immune response. This review article aims to summarize our current knowledge regarding SOCS family members in the different mammalian species studied so far, and to display their complex molecular interactions with microbial pathogens.
Collapse
Affiliation(s)
- Mario Delgado-Ortega
- Institut National de la Recherche Agronomique (INRA), UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
64
|
Farias LHS, Rodrigues APD, Silveira FT, Seabra SH, DaMatta RA, Saraiva EM, Silva EO. Phosphatidylserine Exposure and Surface Sugars in Two Leishmania (Viannia) braziliensis Strains Involved in Cutaneous and Mucocutaneous Leishmaniasis. J Infect Dis 2012; 207:537-43. [DOI: 10.1093/infdis/jis689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
65
|
von Stebut E, Schleicher U, Bogdan C. [Cutaneous leishmaniasis as travelers' disease. Clinical presentation, diagnostics and therapy]. Hautarzt 2012; 63:233-46; quiz 247-8. [PMID: 22422121 DOI: 10.1007/s00105-012-2327-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Leishmaniasis is a disease with worldwide increasing incidence, which in Germany is almost exclusively observed in patients who have travelled to classical endemic regions such as the Mediterranean basin. Cause of the disease is an infection with protozoan parasites of the genus Leishmania, which are transmitted by sand flies and replicate intracellularly within mammalian hosts. Depending on the inoculated parasite (sub-) species and the immune status of the host, a local cutaneous, diffuse cutaneous, mucocutaneous or visceral form of leishmaniasis will develop. Cutaneous leishmaniasis, which frequently appears only weeks after the bite of a sand fly, starts with the formation of a papule, which subsequently can turn into a skin ulcer. The latter may heal spontaneously after months leaving behind a scar or persist as chronic, non-healing cutaneous leishmaniasis. If cutaneous leishmaniasis is suspected, a sterile skin biopsy followed by appropriate diagnostic measures in a specialized laboratory to identify the pathogen should be performed. For the decision on the type of therapy, several clinical parameters (e.g. number and localization of lesions, immune status) and, most importantly, the underlying parasite (sub-) species need to be considered. Therapy can consist of a variety of topical measures or systemic drug treatment. A modern and safe vaccine does not yet exist.
Collapse
Affiliation(s)
- E von Stebut
- Hautklinik, Universitätsmedizin Mainz, Johannes Gutenberg Universität, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| | | | | |
Collapse
|
66
|
Santarém N, Silvestre R, Tavares J, Silva M, Cabral S, Maciel J, Cordeiro-da-Silva A. Immune response regulation by leishmania secreted and nonsecreted antigens. J Biomed Biotechnol 2012; 2007:85154. [PMID: 17710243 PMCID: PMC1940321 DOI: 10.1155/2007/85154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/06/2007] [Accepted: 04/29/2007] [Indexed: 11/17/2022] Open
Abstract
Leishmania infection consists in two sequential events, the host cell colonization followed by the proliferation/dissemination of the parasite. In this review, we discuss the importance of two distinct sets of molecules, the secreted and/or surface and the nonsecreted antigens. The importance of the immune response against secreted and surface antigens is noted in the establishment of the infection and we dissect the contribution of the nonsecreted antigens in the immunopathology associated with leishmaniasis, showing the importance of these panantigens during the course of the infection. As a further example of proteins belonging to these two different groups, we include several laboratorial observations on Leishmania Sir2 and LicTXNPx as excreted/secreted proteins and LmS3arp and
LimTXNPx as nonsecreted/panantigens. The role of these two groups of antigens in the immune response observed during the infection is discussed.
Collapse
Affiliation(s)
- Nuno Santarém
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Ricardo Silvestre
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Tavares
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Marta Silva
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sofia Cabral
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Maciel
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- *Anabela Cordeiro-da-Silva:
| |
Collapse
|
67
|
Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis 2012; 6:e1667. [PMID: 22679519 PMCID: PMC3367980 DOI: 10.1371/journal.pntd.0001667] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/17/2012] [Indexed: 01/12/2023] Open
Abstract
Background Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. Methods We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. Principal Findings Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. Conclusion Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes. Several hundred million people are exposed to the risk of leishmaniasis, a disease caused by intracellular protozoan parasites of several Leishmania species and transmitted by phlebotomine sand flies. In humans, L. tropica causes cutaneous form of leishmaniasis with painful and long-persisting lesions in the site of the insect bite, but the parasites can also penetrate to internal organs. The relationship between the host genes and development of the disease was demonstrated for numerous infectious diseases. However, the search for susceptibility genes in the human population could be a difficult task. In such cases, animal models may help to discover the role of different genes in interactions between the parasite and the host. Unfortunately, the literature contains only a few publications about the use of animals for L. tropica studies. Here, we report an animal model suitable for genetic, pathological and drug studies in L. tropica infection. We show how the host genotype influences different disease symptoms: skin lesions, parasite dissemination to the lymph nodes, spleen and liver, and increase of levels of chemokines CCL2, CCL3 and CCL5 in serum.
Collapse
|
68
|
Bogdan C. Natural killer cells in experimental and human leishmaniasis. Front Cell Infect Microbiol 2012; 2:69. [PMID: 22919660 PMCID: PMC3417408 DOI: 10.3389/fcimb.2012.00069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/02/2012] [Indexed: 12/27/2022] Open
Abstract
Infections with parasites of the genus Leishmania lead to a rapid, but transient activation of natural killer (NK) cells. In mice activation of NK cells requires a toll-like-receptor 9-dependent stimulation of dendritic cells (DC) which is followed by the production of IL-12. Although NK cells appear to be non-essential for the ultimate control of cutaneous and visceral leishmaniasis (VL) and can exhibit immunosuppressive functions, they form an important source of interferon (IFN)-γ, which elicits antileishmanial activity in macrophages and helps to pave a protective T helper cell response. In contrast, the cytotoxic activity of NK cells is dispensable, because Leishmania-infected myeloid cells are largely resistant to NK-mediated lysis. In human cutaneous and VL, the functional importance of NK cells is suggested by reports that demonstrate (1) a direct activation or inhibition of NK cells by Leishmania promastigotes, (2) the suppression of NK cell numbers or activity during chronic, non-healing infections, and (3) the recovery of NK cell activity following treatment. This review aims to provide an integrated view on the migration, activation, inhibition, function, and therapeutic modulation of NK cells in experimental and human leishmaniasis.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Bavaria, Germany. christian.bogdan@ uk-erlangen.de
| |
Collapse
|
69
|
Oladiran A, Belosevic M. Recombinant glycoprotein 63 (Gp63) of Trypanosoma carassii suppresses antimicrobial responses of goldfish (Carassius auratus L.) monocytes and macrophages. Int J Parasitol 2012; 42:621-33. [PMID: 22584131 DOI: 10.1016/j.ijpara.2012.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 11/19/2022]
Abstract
We previously reported that proteins secreted by Trypanosoma carassii play a role in evasion of fish host immune responses. To further understand how these parasites survive in the host, we cloned and expressed T. carassii glycoprotein 63 (Tcagp63), and generated a rabbit polyclonal antibody to the recombinant protein (rTcagp63). Tcagp63 was similar to gp63 of other trypanosomes and grouped with Trypanosoma cruzi and Trypanosoma brucei gp63 in phylogenetic analysis. We showed that rTcagp63 down-regulated Aeromonas salmonicida and recombinant goldfish TNFα2-induced production of reactive oxygen and nitrogen intermediates. Macrophages treated with rTcagp63 also exhibited significant reduction in the expression of inducible nitric oxide synthase (iNOS)-A, TNFα-1 and TNFα-2. Recombinant Tcagp63 bound to and was internalised by goldfish macrophages. The Tcagp63 may act by altering the signalling events important in downstream monocyte/macrophage antimicrobial and other cytokine-induced functions. We believe that this is the first report on downregulation of antimicrobial responses by trypanosome gp63.
Collapse
Affiliation(s)
- Ayoola Oladiran
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
70
|
Song KJ, Ahn HJ, Nam HW. Anti-apoptotic effects of SERPIN B3 and B4 via STAT6 activation in macrophages after infection with Toxoplasma gondii. THE KOREAN JOURNAL OF PARASITOLOGY 2012; 50:1-6. [PMID: 22451727 PMCID: PMC3309045 DOI: 10.3347/kjp.2012.50.1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with T. gondii through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of T. gondii-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with T. gondii disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that T. gondii induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.
Collapse
Affiliation(s)
- Kyoung Ju Song
- The Catholic Institute of Parasitic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | |
Collapse
|
71
|
Chattopadhyay A, Jafurulla M. Role of membrane cholesterol in leishmanial infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:201-13. [PMID: 22695847 DOI: 10.1007/978-1-4614-3381-1_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
72
|
Chattopadhyay A, Jafurulla M. A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochem Biophys Res Commun 2011; 416:7-12. [PMID: 22100811 DOI: 10.1016/j.bbrc.2011.11.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 11/28/2022]
Abstract
Visceral leishmaniasis (VL) is caused by various species of the genus Leishmania. Internalization of Leishmania into host cells is facilitated by a large number of receptors, and therefore no panacea is available for the treatment of leishmaniasis. We previously demonstrated the requirement of host membrane cholesterol in the entry of Leishmania into macrophages by cholesterol depletion using methyl-β-cyclodextrin (MβCD). We recently showed that leishmanial infection is inhibited upon sequestration of host membrane cholesterol using amphotericin B (AmB), considered as the best existing drug against VL. The reason for the antileishmanial activity of AmB is generally believed to be its ability to bind ergosterol in parasite membranes. Our recent results offer the opportunity to reexamine the mechanism behind the effectiveness of current AmB-based therapeutic strategies to treat leishmaniasis. We propose here a novel mechanism in which the effectiveness of AmB treatment could be partly based on its ability to sequester cholesterol in the host membrane, thereby abrogating macrophage-parasite interaction.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500 007, India.
| | | |
Collapse
|
73
|
Allahverdiyev AM, Bagirova M, Elcicek S, Koc RC, Baydar SY, Findikli N, Oztel ON. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis. Am J Trop Med Hyg 2011; 85:535-9. [PMID: 21896818 DOI: 10.4269/ajtmh.2011.11-0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic.
Collapse
|
74
|
Forestier CL, Machu C, Loussert C, Pescher P, Späth GF. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe 2011; 9:319-30. [PMID: 21501831 DOI: 10.1016/j.chom.2011.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 10/04/2010] [Accepted: 03/14/2011] [Indexed: 12/25/2022]
Abstract
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry.
Collapse
|
75
|
Lopes R, Eleutério CV, Gonçalves LMD, Cruz MEM, Almeida AJ. Lipid nanoparticles containing oryzalin for the treatment of leishmaniasis. Eur J Pharm Sci 2011; 45:442-50. [PMID: 21983568 DOI: 10.1016/j.ejps.2011.09.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 11/26/2022]
Abstract
Oryzalin is a dinitroaniline drug that has attracted recent interest for the treatment of leishmaniasis. Its use as an antiparasitic therapeutic agent is limited by the low water solubility associated with an in vivo rapid clearance, leading to the administration of larger and possibly toxic doses in in vivo studies, and the use of solvents that may lead to undesirable side effects. In the present work oryzalin-containing lipid nanoparticles were produced by a emulsion-solvent evaporation technique using a composition suitable for parenteral administration, i.e., tripalmitin (solid lipid) and a complex mixture of three emulsifying agents (soya lecithin, Tween® 20 and sodium deoxycholate). Physicochemical characterization included the determination of mean particle size, polydispersity index, zeta potential, encapsulation efficiency and DSC studies. Final formulations revealed values of <140 nm (PI<0.2) and zeta potential of ≈-35 mV, as well as encapsulation efficiency >75%. The effects of various processing parameters, such as lipid and surfactant and composition and concentration, as well as the stability during the harsh procedures of autoclaving (121°C/15 min) and freeze-drying were also evaluated. Formulations revealed to be stable throughout freeze-drying and moist-heath sterilization without significant variations on physicochemical properties and no significant oryzalin losses. The use of a complex surfactant mixture proved crucial for preserving formulation stability. Particularly, lecithin appears as a key component in the stabilization of tripalmitin-based oryzalin-containing lipid nanoparticles. Finally, cell viability studies demonstrated that the incorporation of oryzalin in nanoparticles decreases cytotoxicity, thus suggesting this strategy may improve tolerability and therapeutic index of dinitroanilines.
Collapse
Affiliation(s)
- R Lopes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
76
|
Hsiao CHC, Ueno N, Shao JQ, Schroeder KR, Moore KC, Donelson JE, Wilson ME. The effects of macrophage source on the mechanism of phagocytosis and intracellular survival of Leishmania. Microbes Infect 2011; 13:1033-44. [PMID: 21723411 DOI: 10.1016/j.micinf.2011.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 03/28/2011] [Accepted: 05/30/2011] [Indexed: 02/08/2023]
Abstract
Leishmania spp. protozoa are obligate intracellular parasites that replicate in macrophages during mammalian infection. Efficient phagocytosis and survival in macrophages are important determinants of parasite virulence. Macrophage lines differ dramatically in their ability to sustain intracellular Leishmania infantum chagasi (Lic). We report that the U937 monocytic cell line supported the intracellular replication and cell-to-cell spread of Lic during 72 h after parasite addition, whereas primary human monocyte-derived macrophages (MDMs) did not. Electron microscopy and live cell imaging illustrated that Lic promastigotes anchored to MDMs via their anterior ends and were engulfed through symmetrical pseudopods. In contrast, U937 cells bound Lic in diverse orientations, and extended membrane lamellae to reorient and internalize parasites through coiling phagocytosis. Lic associated tightly with the parasitophorous vacuole (PV) membrane in both cell types. PVs fused with LAMP-1-expressing compartments 24 h after phagocytosis by MDMs, whereas U937 cell PVs remained LAMP-1 negative. The expression of one phagocytic receptor (CR3) was higher in MDMs than U937 cells, leading us to speculate that parasite uptake proceeds through dissimilar pathways between these cells. We hypothesize that the mechanism of phagocytosis differs between primary versus immortalized human macrophage cells, with corresponding differences in the subsequent intracellular fate of the parasite.
Collapse
|
77
|
Boelaert M, Chappuis F, Menten J, van Griensven J, Sunyoto T, Rijal S. Rapid diagnostic tests for visceral leishmaniasis. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2011. [DOI: 10.1002/14651858.cd009135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
78
|
Infection of retinal epithelial cells with L. amazonensis impacts in extracellular matrix proteins. Parasitol Res 2011; 109:727-36. [PMID: 21494843 DOI: 10.1007/s00436-011-2369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
One of the manifestations of leishmaniases is eye injuries which main characteristics are the injury of the anterior chamber of the eye and the resistance to specific treatments. The retinal pigment epithelial (RPE) cells participate in pathogen-induced intraocular inflammatory processes. We investigated Leishmania amazonensis-RPE cells relationship and its impact in laminin and fibronectin production. Using RPE cell (ARPE-19), we demonstrated that L. amazonensis adhere to these cells in the first hour of infection, whereas parasite internalization was only observed after 6 h. Seventy-two hours after infection, vacuoles with parasites debris were observed intracellularly, and no parasite were observed intra- or extracellularly at the 96 h, suggesting that Leishmania can infect ARPE-19 cells although this cells are able to clear the infection. Fibronectin and laminin were associated with L. amazonensis-ARPE-19 interaction. Confocal analysis showed no substantial alterations in fibronectin presence in ARPE-19-infected or ARPE-19-noninfected cells, whereas laminin levels increased three times 10 h after L. amazonensis infection. After this time, laminin levels decreased in infected cells. These results suggest that L. amazonensis-ARPE-19 infection induces increased production of laminin in the beginning of infection which may facilitate parasite-host cell interactions.
Collapse
|
79
|
Mizbani A, Taslimi Y, Zahedifard F, Taheri T, Rafati S. Effect of A2 gene on infectivity of the nonpathogenic parasite Leishmania tarentolae. Parasitol Res 2011; 109:793-9. [PMID: 21442256 DOI: 10.1007/s00436-011-2325-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
Several species of protozoan parasites of the genus Leishmania are pathogenic to mammals and cause a wide spectrum of pathologies in human. However, the genus includes some species which infect reptiles. Leishmania tarentolae is a lizard pathogen absolutely nonpathogenic to mammals. Recent studies have shown that among some major virulence factors, A2 is absent in this species. First identified as an amastigote-specific gene in Leishmania donovani, A2 has been proved to play a major role in parasite virulence and visceralization capability. In this study, we have transfected A2 episomally into L. tarentolae and evaluated its effect on infectivity and survival of the parasites, in vitro and in vivo. During infection of in vitro-cultured intraperitoneal macrophages of BALB/c mice, A2-expressing L. tarentolae parasites demonstrated significantly higher level of infectivity in days 3 and 4 post-infection in comparison with the wild-type strain as control. Furthermore, in vivo infection showed that A2 has significantly increased the ability of L. tarentolae to survive in the liver of BALB/c mice. Altogether, our results show that A2 is functional in L. tarentolae, although through an unknown mechanism, and loss of A2 has been one of the factors partly contributing to the loss of virulence of L. tarentolae.
Collapse
Affiliation(s)
- Amir Mizbani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | |
Collapse
|
80
|
Christodoulou V, Messaritakis I, Svirinaki E, Tsatsanis C, Antoniou M. Leishmania infantum and Toxoplasma gondii: Mixed infection of macrophages in vitro and in vivo. Exp Parasitol 2011; 128:279-84. [PMID: 21354140 DOI: 10.1016/j.exppara.2011.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 11/18/2022]
Abstract
Although macrophages have a microbicidal role in the immune system they themselves can be infected by pathogens. Often a simultaneous infection by more than one microbe may occur in a single cell. This is the first report of coinfection of macrophages with Toxoplasma gondii and Leishmania infantum, in vitro and in vivo. L. infantum does not cause severe disease in mice but T. gondii, RH strain, is lethal. Cell culture studies using THP-1 macrophages dually infected in vitro revealed that 4.3% harbored both parasites 24h after infection. When mice were infected with both parasites on the same day 7.3% of the infected cells carried both parasites 7 days later. Yet, if mice were first infected with L. infantum and then with Toxoplasma (5 days post-infection) 18.7% of the macrophages hosted either parasite but concomitant infection could not be found and mice, already harboring L. infantum, survived Toxoplasma's lethal effect.
Collapse
Affiliation(s)
- Vasiliki Christodoulou
- Laboratory of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine, Faculty of Medicine, University of Crete, Crete, Greece
| | | | | | | | | |
Collapse
|
81
|
Tabatabaee PA, Abolhassani M, Mahdavi M, Nahrevanian H, Azadmanesh K. Leishmania major: Secreted antigens of Leishmania major promastigotes shift the immune response of the C57BL/6 mice toward Th2 in vitro. Exp Parasitol 2011; 127:46-51. [DOI: 10.1016/j.exppara.2010.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/04/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
82
|
|
83
|
Barratt JLN, Harkness J, Marriott D, Ellis JT, Stark D. Importance of nonenteric protozoan infections in immunocompromised people. Clin Microbiol Rev 2010; 23:795-836. [PMID: 20930074 PMCID: PMC2952979 DOI: 10.1128/cmr.00001-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
There are many neglected nonenteric protozoa able to cause serious morbidity and mortality in humans, particularly in the developing world. Diseases caused by certain protozoa are often more severe in the presence of HIV. While information regarding neglected tropical diseases caused by trypanosomatids and Plasmodium is abundant, these protozoa are often not a first consideration in Western countries where they are not endemic. As such, diagnostics may not be available in these regions. Due to global travel and immigration, this has become an increasing problem. Inversely, in certain parts of the world (particularly sub-Saharan Africa), the HIV problem is so severe that diseases like microsporidiosis and toxoplasmosis are common. In Western countries, due to the availability of highly active antiretroviral therapy (HAART), these diseases are infrequently encountered. While free-living amoebae are rarely encountered in a clinical setting, when infections do occur, they are often fatal. Rapid diagnosis and treatment are essential to the survival of patients infected with these organisms. This paper reviews information on the diagnosis and treatment of nonenteric protozoal diseases in immunocompromised people, with a focus on patients infected with HIV. The nonenteric microsporidia, some trypanosomatids, Toxoplasma spp., Neospora spp., some free-living amoebae, Plasmodium spp., and Babesia spp. are discussed.
Collapse
Affiliation(s)
- J L N Barratt
- Department of Microbiology, St. Vincent's Hospital, Darlinghurst 2010, NSW, Australia.
| | | | | | | | | |
Collapse
|
84
|
Pattabhi S, Whittle J, Mohamath R, El-Safi S, Moulton GG, Guderian JA, Colombara D, Abdoon AO, Mukhtar MM, Mondal D, Esfandiari J, Kumar S, Chun P, Reed SG, Bhatia A. Design, development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of visceral leishmaniasis. PLoS Negl Trop Dis 2010; 4. [PMID: 20856856 PMCID: PMC2939046 DOI: 10.1371/journal.pntd.0000822] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/16/2010] [Indexed: 12/01/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is diagnosed by microscopic confirmation of the parasite in bone marrow, spleen or lymph node aspirates. These procedures are unsuitable for rapid diagnosis of VL in field settings. The development of rK39-based rapid diagnostic tests (RDT) revolutionized diagnosis of VL by offering high sensitivity and specificity in detecting disease in the Indian subcontinent; however, these tests have been less reliable in the African subcontinent (sensitivity range of 75–85%, specificity of 70–92%). We have addressed limitations of the rK39 with a new synthetic polyprotein, rK28, followed by development and evaluation of two new rK28-based RDT prototype platforms. Methodology/Principal Findings Evaluation of 62 VL-confirmed sera from Sudan provided sensitivities of 96.8% and 93.6% (95% CI = K28: 88.83–99.61%; K39: 84.30–98.21%) and specificities of 96.2% and 92.4% (95% CI = K28: 90.53–98.95%; K39: 85.54–96.65%) for rK28 and rK39, respectively. Of greater interest was the observation that individual VL sera with low rK39 reactivity often had much higher rK28 reactivity. This characteristic of the fusion protein was exploited in the development of rK28 rapid tests, which may prove to be crucial in detecting VL among patients with low rK39 antibody levels. Evaluation of two prototype lateral flow-based rK28 rapid tests on 53 VL patients in Sudan and 73 VL patients in Bangladesh provided promisingly high sensitivities (95.9% [95% CI = 88.46–99.1 in Sudan and 98.1% [95% CI = 89.93–99.95%] in Bangladesh) compared to the rK39 RDT (sensitivities of 86.3% [95% CI = 76.25–93.23%] in Sudan and 88.7% [95% CI = 76.97–95.73%] in Bangladesh). Conclusions/Significance Our study compares the diagnostic accuracy of rK39 and rK28 in detecting active VL cases and our findings indicate that rK28 polyprotein has great potential as a serodiagnostic tool. A new rK28-based RDT will prove to be a valuable asset in simplifying VL disease confirmation at the point-of-care. Visceral Leishmaniasis caused by Leishmania donovani is endemic in several parts of South Asia, East Africa, South and Central America. It is a vector-borne disease transmitted by bites of infected sand flies and often fatal in the absence of chemotherapy. Timely diagnosis is an essential first step in providing proper patient care and in controlling transmission. VL diagnosis in East Africa and Latin America are currently based on microscopic confirmation of parasites in tissue aspirates. The Kalazar Detect rapid test is widely used as a confirmatory test in India with very high accuracy, but sensitivity issues have severely limited its usefulness in the African sub-continent. Direct Agglutination Test is another confirmatory test used widely in East Africa and offers high sensitivity but is not field-friendly. We report on the design of a novel synthetic fusion protein capable of sequestering antibodies against three different Leishmania donovani antigens and the development of point-of-care tests for improving VL diagnosis. We believe the ease of use of these rapid tests and their high accuracy in detecting VL cases could make them useful as a first-line test, thereby eliminating the need for painful biopsies and ensuring better patient care.
Collapse
Affiliation(s)
- Sowmya Pattabhi
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Jacqueline Whittle
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Raodoh Mohamath
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Sayda El-Safi
- Department of Microbiology and Parasitology, Faculty of Medicine, Khartoum University, Khartoum, Sudan
| | - Garner G. Moulton
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Jeffrey A. Guderian
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Danny Colombara
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Asem O. Abdoon
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Maowia M. Mukhtar
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Dinesh Mondal
- Laboratory Sciences Division, International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Javan Esfandiari
- Chembio Diagnostic Systems, Inc., Medford, New York, United States of America
| | - Shailendra Kumar
- Chembio Diagnostic Systems, Inc., Medford, New York, United States of America
| | - Peter Chun
- Ease-Medtrend, Shanghai, People's Republic of China
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Ajay Bhatia
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
85
|
Paila YD, Saha B, Chattopadhyay A. Amphotericin B inhibits entry of Leishmania donovani into primary macrophages. Biochem Biophys Res Commun 2010; 399:429-33. [DOI: 10.1016/j.bbrc.2010.07.099] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/25/2010] [Indexed: 01/10/2023]
|
86
|
Reybier K, Ribaut C, Coste A, Launay J, Fabre PL, Nepveu F. Characterization of oxidative stress in Leishmaniasis-infected or LPS-stimulated macrophages using electrochemical impedance spectroscopy. Biosens Bioelectron 2010; 25:2566-72. [DOI: 10.1016/j.bios.2010.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|
87
|
Gluenz E, Ginger ML, McKean PG. Flagellum assembly and function during the Leishmania life cycle. Curr Opin Microbiol 2010; 13:473-9. [PMID: 20541962 DOI: 10.1016/j.mib.2010.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 11/17/2022]
Abstract
During a complex digenetic life cycle flagellated Leishmania parasites alternate between promastigote and amastigote forms which differ significantly in cellular morphology and flagellum length. Recent studies have provided important new insights into mechanisms by which Leishmania regulate expression of genes required for flagellum assembly, and mechanisms used to modify flagellum length. While the critical role of the promastigote flagellum in parasite biology has long been appreciated, the importance of the amastigote flagellum has often been disregarded. However, recent work suggests that the 'rudimentary' amastigote flagellum may serve indispensable roles in cellular organisation, and/or sensory perception, which are critical for intracellular survival of Leishmania within host macrophages.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
88
|
Choudhury R, Das P, De T, Chakraborti T. Immunolocalization and characterization of two novel proteases in Leishmania donovani: putative roles in host invasion and parasite development. Biochimie 2010; 92:1274-86. [PMID: 20595064 DOI: 10.1016/j.biochi.2010.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Two novel intracellular proteases having identical molecular mass (58 kDa) were purified from virulent Indian strain of Leishmania donovani by a combination of aprotinin-agarose affinity chromatography, ion exchange chromatography and finally continuous elution electrophoresis. Both of these proteases migrate in SDS-PAGE as a single homogeneous bands suggesting monomeric nature of these proteases. The enzyme activity of one of the proteases was inhibited by serine protease inhibitor aprotinin and another one was inhibited by metalloprotease inhibitor 1, 10 phenanthroline. The purified enzymes were thus of serine protease (SP-Ld) and metalloprotease (MP-Ld) type. The optimal pH for protease activity is 8.0 and 7.5 for SP-Ld and MP-Ld respectively. The temperature optimum for SP-Ld is 28 °C and for MP-Ld is 37 °C showing their thermostability upto 60 °C. Broad substrate (both natural and synthetic) specificity and the effect of Ca2+ upon these enzymes suggested novelty of these proteases. Kinetic data indicate that SP-Ld is of trypsin like as BAPNA appears to be the best substrate and MP-Ld seems to be collagenase type as it degrades azocoll with maximum efficiency. Both immunofluorescence and immune-gold electron microscopy studies revealed that the SP-Ld is localized in the flagellar pocket as well as at the surface of the parasite, whereas MP-Ld is located extensively near the flagellar pocket region. This work also suggests that the uses of anti SP-Ld and anti MP-Ld antibodies are quite significant in interfering with the process of parasite invasion and multiplication respectively. Thus the major role of SP-Ld could be predicted in invasion process as it down regulates the phagocytic activity of macrophages, and MP-Ld appears to play important roles in parasitic development.
Collapse
Affiliation(s)
- Rajdeep Choudhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | |
Collapse
|
89
|
Leishmania mexicana promastigotes secrete a protein tyrosine phosphatase. Parasitol Res 2010; 107:309-15. [DOI: 10.1007/s00436-010-1863-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/28/2010] [Indexed: 10/19/2022]
|
90
|
Messaritakis I, Mazeris A, Koutala E, Antoniou M. Leishmania donovani s.l.: evaluation of the proliferation potential of promastigotes using CFSE staining and flow cytometry. Exp Parasitol 2010; 125:384-8. [PMID: 20303953 DOI: 10.1016/j.exppara.2010.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Leishmania infantum causes visceral leishmaniasis in all countries in the Mediterranean basin. It uses Phlebotomine sandflies as vectors where the promastigote stage develops, reproduces and becomes infective. Therefore the reproductive power of the promastigotes determines the inoculum size of the isolate. Ten Leishmania strains from Cyprus: two Leishmania donovani and eight L. infantum were used to study the proliferation capacity of the promastigotes. Population increase during a 6-day culture period was assessed quantitatively, by haematocytometer enumeration, and qualitatively by following the division history of each population during the same period by CFSE staining and flow cytometry. The strains exhibited different proliferation rates with L. infantum showing higher multiplication rates than L. donovani. These differences may represent their fitness capabilities and their ability to synchronize the multiplication activity of individual members in the population for the production of a sizeable inoculum in time for the vector's blood meal.
Collapse
Affiliation(s)
- I Messaritakis
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses, and Geographical Medicine, Faculty of Medicine, University of Crete, Voutes, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
91
|
Takahashi HK, Toledo MS, Suzuki E, Tagliari L, Straus AH. Current relevance of fungal and trypanosomatid glycolipids and sphingolipids: studies defining structures conspicuously absent in mammals. AN ACAD BRAS CIENC 2010; 81:477-88. [PMID: 19722017 DOI: 10.1590/s0001-37652009000300012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 02/20/2009] [Indexed: 01/30/2023] Open
Abstract
Recently, glycosphingolipids have been attracting attention due to their role on biological systems as second messengers or modulators of signal transduction, affecting several events, which range from apoptosis to regulation of the cell cycle. In pathogenic fungi, glycolipids are expressed in two classes: neutral monohexosylceramides (glucosyl-or galactosylceramide) and acidic glycosylinositol phosphorylceramides (the latter class carries longer glycan chains). It is worth to mention that monohexosylceramides exhibit significant structural differences in their lipid moieties compared to their mammalian counterparts, whereas the glycosylinositol phosphorylceramides exhibit remarkable structural differences in their carbohydrate moieties in comparison to mammal glycosphingolipids counterpart. We observed that glycosylinositol phosphorylceramides are capable of promoting immune response in infected humans. In addition, inhibiting fungal glycosphingolipid biosynthetic pathways leads to an inhibition of colony formation, spore germination, cell cycle, dimorphism and hyphal growth. Other pathogens, such as trypanosomatids, also present unique glycolipids, which may have an important role for the parasite development and/or disease establishment. Regarding host-pathogen interaction, cell membrane rafts, which are enriched in sphingolipids and sterols, participate in parasite/fungal infection. In this review, it is discussed the different biological roles of (glyco) (sphingo)lipids of pathogenic/opportunistic fungi and trypanosomatids.
Collapse
Affiliation(s)
- Helio K Takahashi
- Setor de Imunoquímica de Glicoconjugados, Departamento de Bioquímica, Ed. J.L. Prado, Rua Botucatu, 862, 04023-900 São Paulo, SP, Brasil
| | | | | | | | | |
Collapse
|
92
|
Kodama Y, Fujishima M. Secondary symbiosis between Paramecium and Chlorella cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:33-77. [PMID: 20797676 DOI: 10.1016/s1937-6448(10)79002-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each symbiotic Chlorella species of Paramecium bursaria is enclosed in a perialgal vacuole (PV) membrane derived from the host digestive vacuole (DV) membrane. Algae-free paramecia and symbiotic algae are capable of growing independently and paramecia can be reinfected experimentally by mixing them. This phenomenon provides an excellent model for studying cell-to-cell interaction and the evolution of eukaryotic cells through secondary endosymbiosis between different protists. However, the detailed algal infection process remains unclear. Using pulse labeling of the algae-free paramecia with the isolated symbiotic algae and chase method, we found four necessary cytological events for establishing endosymbiosis. (1) At about 3 min after mixing, some algae show resistance to the host lysosomal enzymes in the DVs, even if the digested ones are present. (2) At about 30 min after mixing, the alga starts to escape from the DVs as the result of the budding of the DV membrane into the cytoplasm. (3) Within 15 min after the escape, the DV membrane enclosing a single green alga differentiates to the PV membrane, which provides protection from lysosomal fusion. (4) The alga localizes at the primary lysosome-less host cell surface by affinity of the PV to unknown structures of the host. At about 24 h after mixing, the alga multiplies by cell division and establishes endosymbiosis. Infection experiments with infection-capable and infection-incapable algae indicate that the infectivity of algae is based on their ability to localize beneath the host surface after escaping from the DVs. This algal infection process differs from known infection processes of other symbiotic or parasitic organisms to their hosts.
Collapse
Affiliation(s)
- Yuuki Kodama
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | | |
Collapse
|
93
|
Jain R, Ghoshal A, Mandal C, Shaha C. Leishmania cell surface prohibitin: role in host-parasite interaction. Cell Microbiol 2009; 12:432-52. [PMID: 19888987 DOI: 10.1111/j.1462-5822.2009.01406.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95-100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host-parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild-type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI-link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti-prohibitin antibodies during macrophage-Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania-host interaction.
Collapse
Affiliation(s)
- Rohit Jain
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi-110067, India
| | | | | | | |
Collapse
|
94
|
Saridomichelakis MN. Advances in the pathogenesis of canine leishmaniosis: epidemiologic and diagnostic implications. Vet Dermatol 2009; 20:471-89. [DOI: 10.1111/j.1365-3164.2009.00823.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
95
|
Laurenti MD, dos Santos Silveira VM, Costa Secundino NF, Corbett CEP, Pimenta PPF. Saliva of laboratory-reared Lutzomyia longipalpis exacerbates Leishmania (Leishmania) amazonensis infection more potently than saliva of wild-caught Lutzomyia longipalpis. Parasitol Int 2009; 58:220-6. [DOI: 10.1016/j.parint.2009.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/06/2009] [Accepted: 05/09/2009] [Indexed: 11/26/2022]
|
96
|
Mitroulis I, Kourtzelis I, Papadopoulos VP, Mimidis K, Speletas M, Ritis K. In vivo induction of the autophagic machinery in human bone marrow cells during Leishmania donovani complex infection. Parasitol Int 2009; 58:475-7. [PMID: 19591960 DOI: 10.1016/j.parint.2009.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 12/19/2022]
Abstract
Autophagy is a homeostatic process promoting cell survival in periods of stress. The induction of the autophagic machinery has also been implicated in both innate and adaptive immunity. Leishmania donovani, which is the causative pathogen of visceral leishmaniasis, is an intracellular parasite that invades and multiplies in bone marrow macrophages. We describe the induction of host cell autophagic machinery during acute natural bone marrow infection by L. donovani complex, detected by LC3B immunoblot. The successful treatment with liposomal amphotericin B resulted in the resolution of this phenomenon. Even though the role of autophagy in parasite biology has been previously studied, our findings show for the first time the in vivo host cell LC3B conversion as a marker of the induction of the autophagic machinery during infection with Leishmania parasite in real time conditions.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | |
Collapse
|
97
|
Chakour R, Allenbach C, Desgranges F, Charmoy M, Mauel J, Garcia I, Launois P, Louis J, Tacchini-Cottier F. A new function of the Fas-FasL pathway in macrophage activation. J Leukoc Biol 2009; 86:81-90. [PMID: 19380712 DOI: 10.1189/jlb.1008590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Upon infection with the protozoan parasite Leishmania major, susceptible BALB/c mice develop unhealing lesions associated with the maturation of CD4(+)Th2 cells secreting IL-4. In contrast, resistant C57BL/6 mice heal their lesions, because of expansion and secretion of IFN-gamma of CD4(+) Th1 cells. The Fas-FasL pathway, although not involved in Th cell differentiation, was reported to be necessary for complete resolution of lesions. We investigate here the role of IFN-gamma and IL-4 on Fas-FasL nonapoptotic signaling events leading to the modulation of macrophage activation. We show that addition of FasL and IFN-gamma to BMMø led to their increased activation, as reflected by enhanced secretion of TNF, IL-6, NO, and the induction of their microbicidal activity, resulting in the killing of intracellular L. major. In contrast, the presence of IL-4 decreased the synergy of IFN-gamma/FasL significantly on macrophage activation and the killing of intracellular L. major. These results show that FasL synergizes with IFN-gamma to activate macrophages and that the tight regulation by IFN-gamma and/or IL-4 of the nonapoptotic signaling events triggered by the Fas-FasL pathway affects significantly the activation of macrophages to a microbicidal state and may thus contribute to the pathogenesis of L. major infection.
Collapse
Affiliation(s)
- Reza Chakour
- World Health Organization Immunology Research and Training Centre, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Samanovic M, Molina-Portela MP, Chessler ADC, Burleigh BA, Raper J. Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection. PLoS Pathog 2009; 5:e1000276. [PMID: 19165337 PMCID: PMC2622765 DOI: 10.1371/journal.ppat.1000276] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 12/17/2008] [Indexed: 11/19/2022] Open
Abstract
Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF) is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system. Innate immunity (present from birth) is the first line of defense against microorganisms and provides an initial barrier against disease. Here we show that a minor sub-fraction of human high-density lipoprotein (the good cholesterol), known as Trypanosome Lytic Factor (TLF), not only kills the parasite Trypanosoma brucei, but is also a more broadly acting antimicrobial component of the innate immune system in humans. As TLF is activated under acidic conditions, we evaluated the activity of TLF against the intracellular parasite Leishmania, which infects and grows within acidic compartments of macrophages, cells in our blood that normally destroy invading microorganisms. Here we show that TLF acts directly on Leishmania parasites, causing them to swell, thereby decreasing their infectivity. Furthermore, microscopy of macrophages infected with Leishmania reveal that TLF is taken up and delivered to the same compartment as Leishmania, concomitant with a reduction in the intracellular parasite number. Finally, we made mice that expressed the genes for human TLF; these mice reduced the pathogen burden and thereby controlled the Leishmania infection better than unmodified mice. In contrast, TLF mice were not protected from infection by Trypanosoma cruzi, a related parasite, which transiently passes through acidic compartments within cells.
Collapse
Affiliation(s)
- Marie Samanovic
- Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
| | - Maria Pilar Molina-Portela
- Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
| | - Anne-Danielle C. Chessler
- Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Barbara A. Burleigh
- Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jayne Raper
- Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
99
|
Eschenlauer SCP, Faria MS, Morrison LS, Bland N, Ribeiro-Gomes FL, DosReis GA, Coombs GH, Lima APCA, Mottram JC. Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with Leishmania major. Cell Microbiol 2009; 11:106-20. [PMID: 19016791 PMCID: PMC2659362 DOI: 10.1111/j.1462-5822.2008.01243.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/12/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Abstract
Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major. Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas ISP2 is also expressed in the mammalian amastigote stage. Recombinant ISP2 inhibited neutrophil elastase, trypsin and chymotrypsin with K(i)s between 7.7 and 83 nM. L. major ISP2-ISP3 double null mutants (Deltaisp2/3) were created. These grew normally as promastigotes, but were internalized by macrophages more efficiently than wild-type parasites due to the upregulation of phagocytosis by a mechanism dependent on serine peptidase activity. Deltaisp2/3 promastigotes transformed to amastigotes, but failed to divide for 48 h. Intracellular multiplication of Deltaisp2/3 was similar to wild-type parasites when serine peptidase inhibitors were present, suggesting that defective intracellular growth results from the lack of serine peptidase inhibition during promastigote uptake. Deltaisp2/3 mutants were more infective than wild-type parasites to BALB/c mice at the early stages of infection, but became equivalent as the infection progressed. These data support the hypothesis that ISPs of L. major target host serine peptidases and influence the early stages of infection of the mammalian host.
Collapse
Affiliation(s)
- Sylvain C P Eschenlauer
- Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| | - Marilia S Faria
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, RJ 21949-900, Brazil
| | - Lesley S Morrison
- Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| | - Nicolas Bland
- Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| | - Flavia L Ribeiro-Gomes
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, RJ 21949-900, Brazil
| | - George A DosReis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, RJ 21949-900, Brazil
| | - Graham H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of StrathclydeGlasgow G4 0NR, UK
| | - Ana Paula C A Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, RJ 21949-900, Brazil
| | - Jeremy C Mottram
- Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| |
Collapse
|
100
|
Ng LG, Hsu A, Mandell MA, Roediger B, Hoeller C, Mrass P, Iparraguirre A, Cavanagh LL, Triccas JA, Beverley SM, Scott P, Weninger W. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog 2008; 4:e1000222. [PMID: 19043558 PMCID: PMC2583051 DOI: 10.1371/journal.ppat.1000222] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Galpha(i) protein-coupled receptor-dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.
Collapse
Affiliation(s)
- Lai Guan Ng
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Alice Hsu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael A. Mandell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ben Roediger
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Christoph Hoeller
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Paulus Mrass
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Amaya Iparraguirre
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Lois L. Cavanagh
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - James A. Triccas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wolfgang Weninger
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
- Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|