51
|
Larocca D, Jensen-Pergakes K, Burg MA, Baird A. Receptor-targeted gene delivery using multivalent phagemid particles. Mol Ther 2001; 3:476-84. [PMID: 11319907 DOI: 10.1006/mthe.2001.0284] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although growth factor- and antibody-targeted filamentous phage have recently been demonstrated to transduce mammalian cells, there is a significant need to increase transduction efficiency so as to improve the usefulness of targeted phage vectors for gene therapy and ligand discovery. Here, we describe the use of multivalent phagemid vectors that are specifically designed for ligand-targeted mammalian cell transduction. This phagemid system has certain advantages over phage vectors, such as larger insert size and vector stability, and it retains the multivalent display necessary for efficient cell binding and internalization. Immunoblotting revealed that the most efficient multivalent display (exceeding that of a phage vector) was achieved in the phagemid system when epidermal growth factor (EGF) was fused to the C-terminal domain of the pIII coat protein. We compared phagemid particles displaying EGF at high or low valence by rescuing the vector with R408d3 (pIII deleted) or wild-type R408 helper phage, respectively. More efficient display of EGF correlated with increased internalization, vector potency, and transduction efficiency ( approximately 9%). The findings described here support our original hypothesis that phage-based vectors can be modified for more efficient gene transfer and suggest that directed evolution may be applied to increase their potential even further.
Collapse
Affiliation(s)
- D Larocca
- Selective Genetics, Inc., 11035 Roselle Street, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
52
|
Abstract
In recent years, the use of surface-display vectors for displaying polypeptides on the surface of bacteriophage and bacteria, combined with in vitro selection technologies, has transformed the way in which we generate and manipulate ligands, such as enzymes, antibodies and peptides. Phage display is based on expressing recombinant proteins or peptides fused to a phage coat protein. Bacterial display is based on expressing recombinant proteins fused to sorting signals that direct their incorporation on the cell surface. In both systems, the genetic information encoding for the displayed molecule is physically linked to its product via the displaying particle. Using these two complementary technologies, we are now able to design repertoires of ligands from scratch and use the power of affinity selection to select those ligands having the desired (biological) properties from a large excess of irrelevant ones. With phage display, tailor-made proteins (fused peptides, antibodies, enzymes, DNA-binding proteins) may be synthesized and selected to acquire the desired catalytic properties or affinity of binding and specificity for in vitro and in vivo diagnosis, for immunotherapy of human disease or for biocatalysis. Bacterial surface display has found a range of applications in the expression of various antigenic determinants, heterologous enzymes, single-chain antibodies, and combinatorial peptide libraries. This review explains the basis of phage and bacterial surface display and discusses the contributions made by these two leading technologies to biotechnological applications. This review focuses mainly on three areas where phage and cell display have had the greatest impact, namely, antibody engineering, enzyme technology and vaccine development.
Collapse
Affiliation(s)
- I Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Green Building, Room 202, Tel-Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
53
|
Abstract
Major histocompatibility complex class I (MHC-I) molecules sample peptides from the intracellular environment and present them to cytotoxic T cells (CTL). To establish a selection system, and, thereby, enable a library approach to identify the specificities involved (that of the MHC-I for peptides and subsequently that ot the T cell receptor for peptide-MHC-I complex), we have fused a single chain peptide-MHC-I complex to the phage minor coat protein, gpIII, and displayed it on filamentous phage. Expression of peptide-MHC-I complexes was shown with relevant conformation-specific monoclonal antibodies and, more importantly, with a unique "T cell receptor-like" (i. e. peptide-specific, MHC-I-restricted) antibody. Thus, properly assembled and folded peptide-MHC-I complexes can be displayed on filamentous phage. Despite the successful display, interaction with T cells could not be demonstrated.
Collapse
Affiliation(s)
- N Vest Hansen
- Institut of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
54
|
Rondot S, Koch J, Breitling F, Dübel S. A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 2001; 19:75-8. [PMID: 11135557 DOI: 10.1038/83567] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We show here that the number of single-chain antibody fragments (scFv) presented on filamentous phage particles generated with antibody display phagemids can be increased by more than two orders of magnitude by using a newly developed helper phage (hyperphage). Hyperphage have a wild-type pIII phenotype and are therefore able to infect F(+) Escherichia coli cells with high efficiency; however, their lack of a functional pIII gene means that the phagemid-encoded pIII-antibody fusion is the sole source of pIII in phage assembly. This results in an considerable increase in the fraction of phage particles carrying an antibody fragment on their surface. Antigen-binding activity was increased about 400-fold by enforced oligovalent antibody display on every phage particle. When used for packaging a universal human scFv library, hyperphage improved the specific enrichment factor obtained when panning on tetanus toxin. After two panning rounds, more than 50% of the phage were found to bind to the antigen, compared to 3% when conventional M13KO7 helper phage was used. Thus, hyperphage is particularly useful in stoichiometric situations, when there is little chance that a single phage will locate the desired antigen.
Collapse
Affiliation(s)
- S Rondot
- Molekulargenetisches Labor Prof. Raue, Friedrich-Ebert-Anlage 28, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
55
|
Nilsson N, Malmborg AC, Borrebaeck CA. The phage infection process: a functional role for the distal linker region of bacteriophage protein 3. J Virol 2000; 74:4229-35. [PMID: 10756036 PMCID: PMC111938 DOI: 10.1128/jvi.74.9.4229-4235.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The filamentous bacteriophage infects Escherichia coli by interaction with the F pilus and the TolQRA complex. The virus-encoded protein initiating this process is the gene 3 protein (g3p). The g3p molecule can be divided into three different domains separated by two glycine-rich linker regions. Though there has been extensive evaluation of the importance of the diverse domains of g3p, no proper function has so far been assigned to these linker regions. Through the design of mutated variants of g3p that were displayed on the surface of bacteriophage, we were able to elucidate a possible role for the distal glycine-rich linker region. A phage that displayed a g3p comprised of only the N1 domain, the first linker region, and the C-terminal domain was able to infect cells at almost the same frequency as the wild-type phage. This infection was proven to be dependent on the motif between amino acid residues 68 and 86 (i.e., the first glycine-rich linker region of g3p) and on F-pilus expression.
Collapse
Affiliation(s)
- N Nilsson
- Department of Immunotechnology, Lund University, S-220 07 Lund, Sweden
| | | | | |
Collapse
|
56
|
Feng JN, Model P, Russel M. A trans-envelope protein complex needed for filamentous phage assembly and export. Mol Microbiol 1999; 34:745-55. [PMID: 10564514 DOI: 10.1046/j.1365-2958.1999.01636.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assembly and export of filamentous phage requires four non-capsid proteins: the outer membrane protein, pIV; the inner membrane proteins, pI and pXI; and a cytoplasmic host factor, thioredoxin. Chemical cross-linking of intact cells demonstrates a trans-membrane complex containing pI and pIV. Formation of the complex protects pI from proteolytic cleavage by an endogenous protease. This protection also requires pXI, which is identical to the C-terminal portion of pI. This indicates that pXI, which is required for phage assembly in its own right, is also part of the complex. This complex forms in the absence of any other phage proteins or the DNA substrate; hence, it represents the first preinitiation step of phage morphogenesis. On the basis of protease protection data, we propose that the preinitiation complex is converted to an initiation complex by binding phage DNA, thioredoxin and the initiating minor coat protein(s).
Collapse
Affiliation(s)
- J N Feng
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
57
|
Rakonjac J, Feng JN, Model P. Filamentous phage are released from the bacterial membrane by a two-step mechanism involving a short C-terminal fragment of pIII. J Mol Biol 1999; 289:1253-65. [PMID: 10373366 DOI: 10.1006/jmbi.1999.2851] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Filamentous phage assemble at the membrane of infected cells. The phage filament is released from the membrane at the end of assembly, after four to five copies of the minor proteins, pIII and pVI, have been added to the end of the virion. In the absence of pIII or pVI, phage filaments are not released, but remain associated with the cells. The C-terminal portion of pIII, termed the "C" domain, is required for the release of stable virions. With the use of pIII C-terminal fragments of increasing size, termination of assembly can be divided into various steps. An 83-residue fragment leads to the incorporation of pVI into the assembling phage, but does not release it from the membrane. A slightly longer fragment (93 residues) is sufficient to release the particle into the culture supernatant. However, these released particles are unstable in the detergent, sarkosyl, which does not disrupt wild-type phage. A fragment of >121 residues is needed for the particle to become detergent resistant. Thus, the C-domain can be divided into two subdomains: C2, sufficient for release, and C1, required for virion stability.A model for termination of phage assembly is proposed in which pIII and pVI dock to the membrane-associated filament and form a pre- termination complex. Then, a conformational change involving the C2 domain of pIII disrupts the hydrophobic interactions with the inner membrane, releasing the phage from the cells. The pIII-mediated release of phage from the membranes points to one possible mechanism for excision of membrane-anchored protein complexes from lipid bilayers.
Collapse
Affiliation(s)
- J Rakonjac
- The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | |
Collapse
|
58
|
Beekwilder J, Rakonjac J, Jongsma M, Bosch D. A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins. Gene 1999; 228:23-31. [PMID: 10072755 DOI: 10.1016/s0378-1119(99)00013-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phage display is a powerful tool with which to adapt the specificity of protease inhibitors. To this end, a library of variants of the potato protease inhibitor PI2 was introduced in a canonical phagemid vector. Although PI2 is a natural trypsin inhibitor, we were unable to select trypsin-binding variants from the library. Instead, only mutants carrying deletions or amber stop codons were found. Bacteria carrying these mutations had a much faster growth rate than those carrying the wt PI2-encoding gene, even when the promoter was repressed. To overcome these problems, two new phagemid vectors for g3-mediated phage display were constructed. The first vector has a lower plasmid copy number, as compared to the canonical vector. Bacteria harboring this new vector are much less affected by the presence of the PI2-g3 fusion gene, which appears from a markedly reduced growth retardation. A second vector was equipped with the promoter of the Escherichia coli psp operon, instead of the lac promoter, to control the PI2-g3 gene fusion expression. The psp promoter is induced upon helper phage infection. A phagemid vector with this promoter controlling a PI2-g3 gene fusion did not affect the viability of the host. Furthermore, both new vectors were shown to produce phage particles that display the inhibitor protein and were therefore considered suitable for phage display. The inhibitor library was introduced in both new vectors. Trypsin-binding phages with inhibitory sequences were selected, instead of sequences with stop codons or deletions. This demonstrates the usefulness of these new vectors for phage display of proteins that affect the viability of E. coli.
Collapse
Affiliation(s)
- J Beekwilder
- Centre for Plant Breeding and Reproduction, Wageningen, The Netherlands. /nl
| | | | | | | |
Collapse
|
59
|
Abstract
Filamentous phage protein III (pIII), located at one end of the phage, is required for infectivity and stability of the particle. Cells infected with phage from which gene III has been completely deleted produce particles that are not released into the medium but stay associated at the surface. These particles are much longer than normal phage. They can be released by subsequent expression of pIII. Viewed with the electron microscope, cells infected with gene III deletion phage are decorated with structures that resemble extremely long pili. Surprisingly, such cells are viable and can form colonies. The pIII deficiency can be complemented in trans, but there is a threshold concentration below which assembly does not occur. Above this threshold, pIII is used very efficiently and is incorporated into infectious but longer than unit length phage. As the concentration of pIII is increased, the number of infectious particles increases, and their average length decreases.pIII stabilizes pVI, a second phage protein found at the pIII end of the particle. In the absence of pIII, degradation of pVI is very rapid. pIII is thus not only required for infectivity and particle stability, but to terminate assembly and release the phage from its assembly site.
Collapse
Affiliation(s)
- J Rakonjac
- The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | |
Collapse
|
60
|
Hoogenboom HR, de Bruïne AP, Hufton SE, Hoet RM, Arends JW, Roovers RC. Antibody phage display technology and its applications. IMMUNOTECHNOLOGY : AN INTERNATIONAL JOURNAL OF IMMUNOLOGICAL ENGINEERING 1998; 4:1-20. [PMID: 9661810 DOI: 10.1016/s1380-2933(98)00007-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, the use of display vectors and in vitro selection technologies has transformed the way in which we generate ligands, such as antibodies and peptides, for a given target. Using this technology, we are now able to design repertoires of ligands from scratch and use the power of phage selection to select those ligands having the desired (biological) properties. With phage display, tailor-made antibodies may be synthesized and selected to acquire the desired affinity of binding and specificity for in vitro and in vivo diagnosis, or for immunotherapy of human disease. This review addresses recent progress in the construction of, and selection from phage antibody libraries, together with novel approaches for screening phage antibodies. As the quality of large naïve and synthetic antibody repertoires improves and libraries becomes more generally available, new and exciting applications are pioneered such as the identification of novel antigens using differential selection and the generation of receptor a(nta)gonists. A combination of the design and generation of millions to billions of different ligands, together with phage display for the isolation of binding ligands and with functional assays for identifying (and possibly selecting) bio-active ligands, will open even more challenging applications of this inspiring technology, and provide a powerful tool for drug and target discovery well into the next decade.
Collapse
Affiliation(s)
- H R Hoogenboom
- CESAME, Department of Pathology, University Hospital Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Phage antibody-display is rapidly maturing into a very effective tool for antibody generation. The recent development of large primary antibody libraries enables selection of antibodies against most targets in under two weeks and many of these antibodies have relatively high (nanomolar) affinities. Successful strategies have also been developed to affinity mature these antibodies into the picomolar range if required.
Collapse
|