51
|
Ratzliff ADH, Santhakumar V, Howard A, Soltesz I. Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends Neurosci 2002; 25:140-4. [PMID: 11852145 DOI: 10.1016/s0166-2236(00)02122-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mossy cells are bi-directionally connected through a positive feedback loop to granule cells, the principal cells of the dentate gyrus. This recurrent circuit is strategically placed between the entorhinal cortex and the hippocampal CA3 region. In spite of their potentially pro-convulsive arrangement with granule cells, mossy cells have not been seriously considered to promote seizures, because mossy cells, allegedly one of the most vulnerable cell types in the entire mammalian brain, have long been 'known' to die en masse in epilepsy. However, new data suggest that rumors of the rapid demise of the mossy cells might have been greatly exaggerated.
Collapse
Affiliation(s)
- Annad d H Ratzliff
- Dept of Anatomy and Neurobiology, University of California, Irvine 92697-1280, USA
| | | | | | | |
Collapse
|
52
|
André V, Marescaux C, Nehlig A, Fritschy JM. Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus 2002; 11:452-68. [PMID: 11530850 DOI: 10.1002/hipo.1060] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reorganization of excitatory and inhibitory circuits in the hippocampal formation following seizure-induced neuronal loss has been proposed to underlie the development of chronic seizures in temporal lobe epilepsy (TLE). Here, we investigated whether specific morphological alterations of the GABAergic system can be related to the onset of spontaneous recurrent seizures (SRS) in the rat lithium-pilocarpine model of TLE. Immunohistochemical staining for markers of interneurons and their projections, including parvalbumin (PV), calretinin (CR), calbindin (CB), glutamic acid decarboxylase (GAD), and type 1 GABA transporter (GAT1), was performed in brain sections of rats treated with lithium-pilocarpine and sacrificed after 24 h, during the silent phase (6 and 12 days), or after the onset of SRS (10-18 days after treatment). Semiquantitative analysis revealed a selective loss of interneurons in the stratum oriens of CA1, associated with a reduction of GAT1 staining in the stratum radiatum and stratum oriens. In contrast, interneurons in CA3 were largely preserved, although GAT1 staining was also reduced. These changes occurred within 6 days after treatment and were therefore insufficient to cause SRS. In the dentate gyrus, extensive cell loss occurred in the hilus. The pericellular innervation of granule cells by PV-positive axons was markedly reduced, although the loss of PV-interneurons was only partial. Most strikingly, the density of GABAergic axons, positive for both GAD and GAT1, was dramatically increased in the inner molecular layer. This change emerged during the silent period, but was most marked in animals with SRS. Finally, supernumerary CB-positive neurons were detected in the hilus, selectively in rats with SRS. These findings suggest that alterations of GABAergic circuits occur early after lithium-pilocarpine-induced status epilepticus and contribute to epileptogenesis. In particular, the reorganization of GABAergic axons in the dentate gyrus might contribute to synchronize hyperexcitability induced by the interneuron loss during the silent period, leading to the onset of chronic seizures.
Collapse
Affiliation(s)
- V André
- INSERM U398, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
53
|
Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I. Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 2001; 50:708-17. [PMID: 11761468 DOI: 10.1002/ana.1230] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Head injury is a causative factor in the development of temporal lobe epilepsy. However, whether a single episode of concussive head trauma causes a persistent increase in neuronal excitability in the limbic system has not been unequivocally determined. This study used the rodent fluid percussion injury (FPI) model, in combination with electrophysiological and histochemical techniques, to investigate the early (1 week) and long-term (1 month or longer) changes in the hippocampus after head trauma. Low-frequency, single-shock stimulation of the perforant path revealed an early granule cell hyperexcitability in head-injured animals that returned to control levels by 1 month. However, there was a persistent decrease in threshold to induction of seizure-like electrical activity in response to high-frequency tetanic stimulation in the hippocampus after head injury. Timm staining revealed both early- and long-term mossy fiber sprouting at low to moderate levels in the dentate gyrus of animals that experienced FPI. There was a long-lasting increase in the frequency of spontaneous inhibitory postsynaptic currents in dentate granule cells after FPI, and ionotropic glutamate receptor antagonists selectively decreased the spontaneous inhibitory postsynaptic current frequency in the head-injured animals. These results demonstrate that a single episode of experimental closed head trauma induces long-lasting alterations in the hippocampus. These persistent structural and functional alterations in inhibitory and excitatory circuits are likely to influence the development of hyperexcitable foci in posttraumatic limbic circuits.
Collapse
Affiliation(s)
- V Santhakumar
- Department of Anatomy and Neurobiology, University of California, Irvine 92697-1280, USA.
| | | | | | | | | |
Collapse
|
54
|
Abstract
A discrete model of biological neural networks is used to find out how synchronized firing of neurons emerges in a randomly connected neural population. The objective is to understand the mechanisms underlying brain waves and to find and characterize conditions which support spontaneous switching from disordered to rhythmic population activity as in case of an epileptic seizure. The model is kept as simple as possible to achieve on one hand a fast performance of computer simulations of networks with up to 10,000 neurons and to keep on the other hand an overview of parameter dependences. Dynamics of the model can be classified into different regimes: random fluctuations, rhythmic oscillations and silence. When the ratio of the inhibitory/excitatory connectivity is raised the system crosses from the fluctuating regime through the rhythmic oscillating region to the silence regime. Close to the boundary between the fluctuating and the oscillating regimes the network shows spontaneous bursting of high amplitude rhythmic oscillations, which is characteristic of epileptiform behavior. The simulation results are in agreement with recent theories saying that focal epilepsy after injury of the brain could result from axonal sprouting of GABAergic neurons in the injured region.
Collapse
Affiliation(s)
- D Volk
- Institute for Theoretical Physics, Cologne University, 50937, Cologne, Germany.
| |
Collapse
|
55
|
Karnup S, Stelzer A. Seizure-like activity in the disinhibited CA1 minislice of adult guinea-pigs. J Physiol 2001; 532:713-30. [PMID: 11313441 PMCID: PMC2278566 DOI: 10.1111/j.1469-7793.2001.0713e.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2000] [Accepted: 12/20/2000] [Indexed: 11/28/2022] Open
Abstract
Spontaneous activity was monitored during pharmacological blockade of GABA(A) receptor function in the CA1 minislice (CA3 was cut off). Synaptic inhibition was blocked by competitive GABA(A) antagonists bicuculline-methiodide (Bic) or GABAZINE (GBZ) and the chloride channel blocker picrotoxin (PTX). Extra- and intracellular recordings using sharp electrodes were carried out in stratum radiatum and pyramidale. At low antagonist concentrations (Bic, GBZ: 1-10 microM; PTX: < 100 microM), synchronized bursts (< 500 ms in duration, interictal activity) were seen as described previously. However, in the presence of high concentrations (Bic, GBZ: 50-100 microM; PTX: 100-200 microM), seizure-like, ictal events (duration 4-17 s) were observed in 67 of 88 slices. No other experimental measures to increase excitability were applied: cation concentrations ([Ca2+]o = 2 mM, [Mg2+]o = 1.7 mM, [K+]o = 3 mM) and recording temperature (30-32 degrees C) were standard and GABA(B)-mediated inhibition was intact. In whole-slice recordings prominent interictal activity, but fewer ictal events were observed. A reduced ictal activity was also observed when interictal-like responses were evoked by afferent stimulation. Ictal activity was reversibly blocked by antagonists of excitatory transmission, CNQX (40 microM) or D-AP5 (50 microM). Disinhibition-induced ictal development did not rely on group I mGluR activation as it was not prevented in the presence of group I mGluR antagonists (AIDA or 4CPG). (RS)-3,5-DHPG prevented the induction and reversed the tertiary component of the ictal event through a group I mGluR-independent mechanism.
Collapse
Affiliation(s)
- S Karnup
- Department of Physiology and Pharmacology, Box 29, State University of New York, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | |
Collapse
|
56
|
Volk D. Spiking behavior and epileptiform oscillations in a discrete model of cortical neural networks. Theory Biosci 2001. [DOI: 10.1007/s12064-001-0030-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
57
|
Cossart R, Tyzio R, Dinocourt C, Esclapez M, Hirsch JC, Ben-Ari Y, Bernard C. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron 2001; 29:497-508. [PMID: 11239438 DOI: 10.1016/s0896-6273(01)00221-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report that kainate receptors are present on presynaptic GABAergic terminals contacting interneurons and that their activation increases GABA release. Application of kainate increased the frequency of miniature inhibitory postsynaptic currents recorded in CA1 interneurons. Local applications of glutamate but not of AMPA or NMDA also increased GABA quantal release. Application of kainate as well as synaptically released glutamate reduced the number of failures of GABAergic neurotransmission between interneurons. Thus, activation of presynaptic kainate receptors increases the probability of GABA release at interneuron-interneuron synapses. Glutamate may selectively control the communication between interneurons by increasing their mutual inhibition.
Collapse
Affiliation(s)
- R Cossart
- INMED, INSERM U29, Parc scientifique de Luminy, B.P. 13, 13273, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
58
|
Baldy-Moulinier M, Crespel A. [Pathophysiology of epileptic seizures and status epilepticus]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2001; 20:97-107. [PMID: 11270245 DOI: 10.1016/s0750-7658(00)00280-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary and secondary epileptogenesis involves multiple genetic and acquired factors. Epileptogenesis is a complex result of combined factors including membrane factors, neurotransmitter and environmental factors. Ion channel-related diseases, GABA and glutamate dysfunction, and glial reaction intervene in different epileptic conditions. The understanding of the mechanisms which emphasize initiation and maintenance of status epilepticus (SE) are in progress. Prognosis of SE is related to the duration of epileptic activity and to the acute cerebral and systemic consequences. Delayed cellular and molecular alterations after SE are responsible for secondary epileptogenesis. Glutamate receptor activation is the main key point leading to an excessive intraneuronal accumulation of ionic calcium by which a cascade of reactions is induced. Apoptotic neuronal death, glial reaction axonal sprouting and neurogenesis contribute to a state of hyperexcitability and hypersynchrony. A better understanding of underlying mechanisms of epileptogenesis may serve the development of new drugs with both anticonvulsant and antiepileptic (prevention or neuroprotection) actions.
Collapse
Affiliation(s)
- M Baldy-Moulinier
- Service explorations neurologiques et épileptologie, hôpital Gui-de-Chauliac, 34295 Montpellier, France.
| | | |
Collapse
|
59
|
Gabel LA, LoTurco JJ. Electrophysiological and morphological characterization of neurons within neocortical ectopias. J Neurophysiol 2001; 85:495-505. [PMID: 11160488 DOI: 10.1152/jn.2001.85.2.495] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal developmental abnormalities in neocortex, including ectopic collections of neurons in layer I (ectopias), have been associated with behavioral and neurological deficits. In this study, we used infrared differential interference contrast microscopy and whole cell patch-clamp to complete the first characterization of neurons within and surrounding neocortical ectopias. Current-clamp recordings revealed that neurons within ectopias display multiple types of action potential firing patterns, and biocytin labeling indicated that approximately 20% of the cells in neocortical ectopias can be classified as nonpyramidal cells and the rest as atypically oriented pyramidal cells. All cells had spontaneous excitatory (glutamatergic) and inhibitory (GABAergic) postsynaptic currents. Exhibitory postsynaptic currents consisted of both N-methyl-D-aspartate (NMDA) receptor-mediated and AMPA/kainate (A/K) receptor-mediated currents. The NMDA receptor-mediated component had decay time constants of 15.35 +/- 2.2 (SE) ms, while the A/K component had faster decay kinetics of 7.6 +/- 1.7 ms at -20 mV. GABA(A) receptor-mediated synaptic currents in ectopic cells reversed at potentials near the Cl- equilibrium potential and had decay kinetics of 16.65 +/- 1.3 ms at 0 mV. Furthermore we show that cells within ectopias receive direct excitatory and inhibitory input from adjacent normatopic cortex and can display a form of epileptiform activity.
Collapse
Affiliation(s)
- L A Gabel
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
60
|
Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben-Ari Y, Esclapez M, Bernard C. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 2001; 4:52-62. [PMID: 11135645 DOI: 10.1038/82900] [Citation(s) in RCA: 406] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Impaired inhibition is thought to be important in temporal lobe epilepsy (TLE), the most common form of epilepsy in adult patients. We report that, in experimental TLE, spontaneous GABAergic inhibition was increased in the soma but reduced in the dendrites of pyramidal neurons. The former resulted from the hyperactivity of somatic projecting interneurons, whereas the latter was probably due to the degeneration of a subpopulation of dendritic projecting interneurons. A deficit in dendritic inhibition could reduce seizure threshold, whereas enhanced somatic inhibition would prevent the continuous occurrence of epileptiform activity.
Collapse
Affiliation(s)
- R Cossart
- INMED, INSERM Unité 29, Avenue de Luminy, B.P. 13, 13 273 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Jacobs KM, Graber KD, Kharazia VN, Parada I, Prince DA. Postlesional epilepsy: the ultimate brain plasticity. Epilepsia 2000; 41 Suppl 6:S153-61. [PMID: 10999537 DOI: 10.1111/j.1528-1157.2000.tb01574.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lesions that occur either during fetal development or after postnatal brain trauma often result in seizures that are difficult to treat. We used two animal models to examine epileptogenic mechanisms associated with lesions that occur either during cortical development or in young adults. Results from these experiments suggest that there are three general ways that injury may induce hyperexcitability. Direct injury to cortical pyramidal neurons causes changes in membrane ion channels that make these cells more responsive to excitatory inputs, including increases in input resistance and a reduction in calcium-activated potassium conductances that regulate the rate of action potential discharge. The connectivity of cortical circuits is also altered after injury, as shown by axonal sprouting within pyramidal cell intracortical arbors. Enhanced excitatory connections may increase recurrent excitatory loops within the epileptogenic zone. Hyperinnervation attributable to reorganization of thalamocortical, callosal, and intracortical circuitry, and failure to prune immature connections, may be prominent when lesions affect the developing neocortex. Finally, focal injury can produce widespread changes in gamma-aminobutyric acid and glutamate receptors, particularly in the developing brain. All of these factors may contribute to epileptogenesis.
Collapse
Affiliation(s)
- K M Jacobs
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, California 94305, USA.
| | | | | | | | | |
Collapse
|
62
|
Santhakumar V, Bender R, Frotscher M, Ross ST, Hollrigel GS, Toth Z, Soltesz I. Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. J Physiol 2000; 524 Pt 1:117-34. [PMID: 10747187 PMCID: PMC2269864 DOI: 10.1111/j.1469-7793.2000.00117.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Cytochemical and in vitro whole-cell patch clamp techniques were used to investigate granule cell hyperexcitability in the dentate gyrus 1 week after fluid percussion head trauma. 2. The percentage decrease in the number of hilar interneurones labelled with either GAD67 or parvalbumin mRNA probes following trauma was not different from the decrease in the total population of hilar cells, indicating no preferential survival of interneurones with respect to the non-GABAergic hilar cells, i.e. the mossy cells. 3. Dentate granule cells following trauma showed enhanced action potential discharges, and longer-lasting depolarizations, in response to perforant path stimulation, in the presence of the GABAA receptor antagonist bicuculline. 4. There was no post-traumatic alteration in the perforant path-evoked monosynaptic excitatory postsynaptic currents (EPSCs), or in the intrinsic properties of granule cells. However, after trauma, the monosynaptic EPSC was followed by late, polysynaptic EPSCs, which were not present in controls. 5. The late EPSCs in granule cells from fluid percussion-injured rats were not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were eliminated by both the non-NMDA glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the AMPA receptor antagonist GYKI 53655. 6. In addition, the late EPSCs were not present in low (0.5 mM) extracellular calcium, and they were also eliminated by the removal of the dentate hilus from the slice. 7. Mossy hilar cells in the traumatic dentate gyrus responded with significantly enhanced, prolonged trains of action potential discharges to perforant path stimulation. 8. These data indicate that surviving mossy cells play a crucial role in the hyperexcitable responses of the post-traumatic dentate gyrus.
Collapse
Affiliation(s)
- V Santhakumar
- Department of Anatomy and Neurobiology and Reeve-Irvine Research Center, University of California, Irvine, CA 92697-1280, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Nissinen J, Halonen T, Koivisto E, Pitkänen A. A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 2000; 38:177-205. [PMID: 10642046 DOI: 10.1016/s0920-1211(99)00088-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneous seizures are the hallmark of human epilepsy but they do not occur in most of the epilepsy models that are used to investigate the mechanisms of epilepsy or to test new antiepileptic compounds. This study was designed to develop a new focal epilepsy model that mimics different aspects of human temporal lobe epilepsy (TLE), including the occurrence of spontaneous seizures. Self-sustained status epilepticus (SSSE) lasting for 6-20 h was induced by a 20-30 min stimulation of the lateral nucleus of the amygdala (100 ms train of 1 ms, 60 Hz bipolar pulses, 400 microA, every 0.5 s). Stimulated rats (n = 16) were monitored with a video-EEG recording system every other day (24 h/day) for 6 months, and every other video-EEG recording was analyzed. Spontaneous epileptic seizures (total number 3698) were detected in 13 of the 15 animals (88%) after a latency period of 6 to 85 days (median 33 days). Four animals (31%) had frequent (697-1317) seizures and 9 animals (69%) had occasional seizures (1-107) during the 6-months follow-up period. Fifty-seven percent of the seizures occurred during daytime (lights on 07:00-19:00 h). At the end of the follow-up period, epileptic animals demonstrated impaired spatial memory in the Morris water-maze. Histologic analysis indicated neuronal loss in the amygdala, hippocampus, and surrounding cortical areas, and mossy fiber sprouting in the dentate gyrus. The present data indicate that focal stimulation of the amygdala initiates a cascade of events that lead to the development of spontaneous seizures in rats. This model provides a new tool to better mimic different aspects of human TLE for investigation of the pathogenesis of TLE or the effects of new antiepileptic compounds on status epilepticus, epileptogenesis, and spontaneous seizures.
Collapse
Affiliation(s)
- J Nissinen
- Epilepsy Research Laboratory, AI Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | | | | | | |
Collapse
|
64
|
|