51
|
The Rcs-Regulated Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar Typhimurium. mBio 2017; 8:mBio.00808-17. [PMID: 28588134 PMCID: PMC5461412 DOI: 10.1128/mbio.00808-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. Colanic acid is a negatively charged polysaccharide capsule produced by Escherichia coli, Salmonella, and other gammaproteobacteria. Research conducted over the 50 years since the discovery of colanic acid suggests that this exopolysaccharide plays an important role for bacteria living in biofilms. However, a precise physiological role for colanic acid has not been defined. In this study, we provide evidence that colanic acid maintains the transmembrane potential and proton motive force during envelope stress. This work provides a new and fundamental insight into bacterial physiology.
Collapse
|
52
|
Takekawa N, Kojima S, Homma M. Mutational analysis and overproduction effects of MotX, an essential component for motor function of Na+-driven polar flagella of Vibrio. J Biochem 2017; 161:159-166. [PMID: 28173168 DOI: 10.1093/jb/mvw061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial flagellar motor is a rotary motor complex composed of various proteins. The motor contains a central rod, multiple ring-like structures and stators. The Na+-driven polar flagellar motor of the marine bacterium Vibrio alginolyticus has a specific ring, called the ‘T-ring’, which consists of two periplasmic proteins, MotX and MotY. The T-ring is essential for assembly of the torque-generating unit, the PomA/PomB stator complex, into the motor. To investigate the role of the T-ring for motor function, we performed random mutagenesis of the motX gene on a plasmid. The isolated MotX mutants showed nonmotile, slow-motile, and up-motile phenotypes by the expression from the plasmid. Deletion analysis indicated that the C-terminal region and the signal peptide in MotX are not always essential for flagellar motor function. We also found that overproduction of MotX caused the delay of growth and aberrant cell shape. MotX might have unexpected roles not only in flagellar motor function but also in cell morphology control.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
53
|
Vincent MS, Canestrari MJ, Leone P, Stathopulos J, Ize B, Zoued A, Cambillau C, Kellenberger C, Roussel A, Cascales E. Characterization of the Porphyromonas gingivalis Type IX Secretion Trans-envelope PorKLMNP Core Complex. J Biol Chem 2017; 292:3252-3261. [PMID: 28057754 DOI: 10.1074/jbc.m116.765081] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Indexed: 02/03/2023] Open
Abstract
The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts.
Collapse
Affiliation(s)
- Maxence S Vincent
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Mickaël J Canestrari
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Julien Stathopulos
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Bérengère Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Abdelrahim Zoued
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
54
|
Dopson M, Holmes DS, Lazcano M, McCredden TJ, Bryan CG, Mulroney KT, Steuart R, Jackaman C, Watkin ELJ. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions. Front Microbiol 2017; 7:2132. [PMID: 28111571 PMCID: PMC5216662 DOI: 10.3389/fmicb.2016.02132] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022] Open
Abstract
Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - David S Holmes
- Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Genome Biology, Fundacion Ciencia y VidaSantiago, Chile
| | - Marcelo Lazcano
- Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Genome Biology, Fundacion Ciencia y VidaSantiago, Chile
| | - Timothy J McCredden
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Christopher G Bryan
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Kieran T Mulroney
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Robert Steuart
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Connie Jackaman
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Elizabeth L J Watkin
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| |
Collapse
|
55
|
Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, Barnard TJ, Cramer WA, Lloubes R, Buchanan SK. Structural insight into the role of the Ton complex in energy transduction. Nature 2016; 538:60-65. [PMID: 27654919 PMCID: PMC5161667 DOI: 10.1038/nature19757] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Abstract
In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron-electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.
Collapse
Affiliation(s)
- Hervé Celia
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Stanislav D. Zakharov
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Enrica Bordignon
- Fachbereich Physik, Freie Universität, 14195 Berlin, Germany,Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 45810 Bochum, Germany
| | - Istvan Botos
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Monica Santamaria
- Departamento de Cirugia Experimental, Instituto de Investigacion Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Travis J. Barnard
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - William A. Cramer
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Roland Lloubes
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Susan K. Buchanan
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| |
Collapse
|
56
|
Navarro R, Bornet O, Houot L, Lloubes R, Guerlesquin F, Nouailler M. (1)H, (15)N and (13)C resonance assignments of the C-terminal domain of Vibrio cholerae TolA protein. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:311-313. [PMID: 27436120 DOI: 10.1007/s12104-016-9690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Vibrio cholerae is the bacterial causative agent of the human disease cholera. Non-pathogenic bacterium can be converted to pathogenic following infection by a filamentous phage, CTXΦ, that carries the cholera toxin encoding genes. A crucial step during phage infection requires a direct interaction between the CTXΦ minor coat protein (pIII(CTX)) and the C-terminal domain of V. cholerae TolA protein (TolAIIIvc). In order to get a better understanding of TolA function during the infection process, we have initiated a study of the V. cholerae TolAIII domain by 2D and 3D heteronuclear NMR. With the exception of the His-tag (H123-H128), 97 % of backbone (1)H, (15)N and (13)C resonances were assigned and the side chain assignments for 92 % of the protein were obtained (BMRB deposit with accession number 25689).
Collapse
Affiliation(s)
- Romain Navarro
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS, Aix-Marseille Université, Marseille, France
| | - Olivier Bornet
- Institut de Microbiologie de la Méditerranée, FR 3479, CNRS, Aix-Marseille Université, Marseille, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS, Aix-Marseille Université, Marseille, France
| | - Roland Lloubes
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS, Aix-Marseille Université, Marseille, France
| | - Françoise Guerlesquin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS, Aix-Marseille Université, Marseille, France
| | - Matthieu Nouailler
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
57
|
Doumith M, Mushtaq S, Livermore DM, Woodford N. New insights into the regulatory pathways associated with the activation of the stringent response in bacterial resistance to the PBP2-targeted antibiotics, mecillinam and OP0595/RG6080. J Antimicrob Chemother 2016; 71:2810-4. [DOI: 10.1093/jac/dkw230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/13/2016] [Indexed: 11/13/2022] Open
|
58
|
Kowata H, Tochigi S, Kusano T, Kojima S. Quantitative measurement of the outer membrane permeability in Escherichia coli lpp and tol-pal mutants defines the significance of Tol-Pal function for maintaining drug resistance. J Antibiot (Tokyo) 2016; 69:863-870. [PMID: 27168313 DOI: 10.1038/ja.2016.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 02/05/2023]
Abstract
Ensuring the stability of the outer membrane permeability barrier is crucial for maintaining drug resistance in Gram-negative bacteria. Lpp protein and Tol-Pal complex are responsible for this function and are widely distributed among Gram-negative bacteria. Thus, these proteins are potential targets to permeabilize the outer membrane barrier. Although deleting these proteins is known to impair the outer membrane stability, the effect of the deletion on the outer membrane barrier property and on the drug resistance has not been fully characterized and evaluated in a quantitative manner. Here, we determined the outer membrane permeability of Escherichia coli Δlpp and Δtol-pal mutants by the assay using intact cells and liposomes reconstituted with the outer membrane proteins. We determined that there was 3- to 5-fold increase of the permeability in Δtol-pal mutants, but not in Δlpp mutant, compared with that in the parental strain. The permeability increase in Δtol-pal mutants occurred without affecting the function of outer membrane diffusion channels, and was most pronounced in the cells at exponential growth phase. The impact of tol-pal deletion on the drug resistance was revealed to be almost comparable with that of deletion of acrAB, a major multidrug efflux transporter of E. coli that makes a predominant contribution to drug resistance. Our observations highlight the importance of Tol-Pal as a possible target to combat multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Hikaru Kowata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Saeko Tochigi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Seiji Kojima
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
59
|
Abstract
Francisella tularensis is a facultative intracellular bacterium causing tularemia, a zoonotic disease. Francisella replicates in the macrophage cytosol and eventually triggers cytosolic immune responses. In murine macrophages, Francisella novicida and Francisella tularensis live vaccine strain lyse in the host cytosol and activate the cytosolic DNA receptor Aim2. Here, we review the mechanisms leading or contributing to Aim2 inflammasome activation, including the role of TLRs and of IFN signaling and the implication of the guanylate-binding proteins 2 and 5 in triggering cytosolic bacteriolysis. Furthermore, we present how this cytosolic Gram-negative bacterium escapes recognition by caspase-11 but can trigger a non-canonical caspase-8 inflammasome. In addition, we highlight the differences in inflammasome activation in murine and human cells with pyrin, NLRP3, and AIM2 involved in sensing Francisella in human phagocytes. From a bacterial prospective, we describe the hiding strategy of Francisella to escape recognition by innate sensors and to resist to bacteriolysis in the host cytosol. Finally, we discuss the inability of the inflammasome sensors to detect F. tularensis subspecies tularensis strains, making them highly pathogenic stealth microbes.
Collapse
|
60
|
Toyofuku M, Tashiro Y, Hasegawa Y, Kurosawa M, Nomura N. Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications. Adv Colloid Interface Sci 2015; 226:65-77. [PMID: 26422802 DOI: 10.1016/j.cis.2015.08.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022]
Abstract
Phospholipid vesicles play important roles in biological systems. Bacteria are one of the most abundant organisms on Earth, and bacterial membrane vesicles (MVs) were first observed 50 years ago. Many bacteria release MVs to the environment that mainly consist of the cell membrane and typically range from 20 to 400 nm in size. Bacterial MVs are involved in several biological functions, such as delivery of cargo, virulence and gene transfer. MVs can be isolated from laboratory culture and directly from the environment, indicating their high abundance in and impact on ecosystems. Many colloidal particles in the environment ranging in size from 1 nm to 1 μm have been reported but not characterized at the molecular level, and MVs remain to be explored. Hence, MVs can be considered terra incognita in environmental colloid research. Although MV biogenesis and biological roles are yet to be fully understood, the accumulation of knowledge has opened new avenues for their applications. Via genetic engineering, the MV yield can be greatly increased, and the components of MVs can be tailored. Recent studies have demonstrated that MVs have promising potential for applications such as drug delivery systems and nanobiocatalysts. For instance, MV vaccines have been extensively studied and have already been approved in Europe. Recent MV studies have evoked great interest in the fields of biology and biotechnology, but fundamental questions, such as their transport in the environment or physicochemical features of MVs, remain to be addressed. In this review, we present the current understanding of bacterial MVs and environmental perspectives and further introduce their applications.
Collapse
Affiliation(s)
- Masanori Toyofuku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yosuke Tashiro
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Yusuke Hasegawa
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Masaharu Kurosawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
61
|
Finn S, Rogers L, Händler K, McClure P, Amézquita A, Hinton JCD, Fanning S. Exposure of Salmonella enterica Serovar Typhimurium to Three Humectants Used in the Food Industry Induces Different Osmoadaptation Systems. Appl Environ Microbiol 2015; 81:6800-11. [PMID: 26209672 PMCID: PMC4561688 DOI: 10.1128/aem.01379-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022] Open
Abstract
Common salt (NaCl) is frequently used by the food industry to add flavor and to act as a humectant in order to reduce the water content of a food product. The improved health awareness of consumers is leading to a demand for food products with reduced salt content; thus, manufacturers require alternative water activity-reducing agents which elicit the same general effects as NaCl. Two examples include KCl and glycerol. These agents lower the water activity of a food matrix and also contribute to limit the growth of the microbiota, including foodborne pathogens. Little is currently known about how foodborne pathogens respond to these water activity-lowering agents. Here we examined the response of Salmonella enterica serovar Typhimurium 4/74 to NaCl, KCl, and glycerol at three time points, using a constant water activity level, compared with the response of a control inoculum. All conditions induced the upregulation of gluconate metabolic genes after 6 h of exposure. Bacteria exposed to NaCl and KCl demonstrated the upregulation of the osmoprotective transporter mechanisms encoded by the proP, proU, and osmU (STM1491 to STM1494) genes. Glycerol exposure elicited the downregulation of these osmoadaptive mechanisms but stimulated an increase in lipopolysaccharide and membrane protein-associated genes after 1 h. The most extensive changes in gene expression occurred following exposure to KCl. Because many of these genes were of unknown function, further characterization may identify KCl-specific adaptive processes that are not stimulated by NaCl. This study shows that the response of S. Typhimurium to different humectants does not simply reflect reduced water activity and likely involves systems that are linked to specific humectants.
Collapse
Affiliation(s)
- Sarah Finn
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa Rogers
- Conway Institute, UCD School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Kristian Händler
- Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Peter McClure
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Alejandro Amézquita
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Jay C D Hinton
- Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
62
|
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle. J Bacteriol 2015; 197:3433-45. [PMID: 26283773 DOI: 10.1128/jb.00484-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The TonB system actively transports large, scarce, and important nutrients through outer membrane (OM) transporters of Gram-negative bacteria using the proton gradient of the cytoplasmic membrane (CM). In Escherichia coli, the CM proteins ExbB and ExbD harness and transfer proton motive force energy to the CM protein TonB, which spans the periplasmic space and cyclically binds OM transporters. TonB has two activity domains: the amino-terminal transmembrane domain with residue H20 and the periplasmic carboxy terminus, through which it binds to OM transporters. TonB is inactivated by all substitutions at residue H20 except H20N. Here, we show that while TonB trapped as a homodimer through its amino-terminal domain retained full activity, trapping TonB through its carboxy terminus inactivated it by preventing conformational changes needed for interaction with OM transporters. Surprisingly, inactive TonB H20A had little effect on homodimerization through the amino terminus and instead decreased TonB carboxy-terminal homodimer formation prior to reinitiation of an energy transduction cycle. That result suggested that the TonB carboxy terminus ultimately interacts with OM transporters as a monomer. Our findings also suggested the existence of a separate equimolar pool of ExbD homodimers that are not in contact with TonB. A model is proposed where interaction of TonB homodimers with ExbD homodimers initiates the energy transduction cycle, and, ultimately, the ExbD carboxy terminus modulates interactions of a monomeric TonB carboxy terminus with OM transporters. After TonB exchanges its interaction with ExbD for interaction with a transporter, ExbD homodimers undergo a separate cycle needed to re-energize them. IMPORTANCE Canonical mechanisms of active transport across cytoplasmic membranes employ ion gradients or hydrolysis of ATP for energy. Gram-negative bacterial outer membranes lack these resources. The TonB system embodies a novel means of active transport across the outer membrane for nutrients that are too large, too scarce, or too important for diffusion-limited transport. A proton gradient across the cytoplasmic membrane is converted by a multiprotein complex into mechanical energy that drives high-affinity active transport across the outer membrane. This system is also of interest since one of its uses in pathogenic bacteria is for competition with the host for the essential element iron. Understanding the mechanism of the TonB system will allow design of antibiotics targeting iron acquisition.
Collapse
|
63
|
Persson G, Bojesen AM. Bacterial determinants of importance in the virulence of Gallibacterium anatis in poultry. Vet Res 2015; 46:57. [PMID: 26063044 PMCID: PMC4462078 DOI: 10.1186/s13567-015-0206-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/11/2015] [Indexed: 11/12/2022] Open
Abstract
Gallibacterium anatis, a member of the Pasteurellaceae family, constitute a part of the normal micro-flora of the upper respiratory tract and the lower genital tract in chickens. However, increasing evidence indicate that G. anatis is also associated with a wide range of pathological changes, particularly in the reproductive organs, which leads to decreased egg production, lowered animal welfare and increased mortality. As a recently defined opportunistic pathogen limited focus has been placed on the pathogenesis and putative virulence factors permitting G. anatis to cause disease. One of the most studied virulence determinants is a large RTX-like toxin (GtxA), which has been demonstrated to induce a strong leukotoxic effect on avian macrophages. A number of fimbria of different sizes and shapes has been described. Particularly fimbriae belonging to the F17-like family appears to be common in a diverse selection of G. anatis strains. Mutants lacking the FlfA fimbria were severely attenuated in experimentally infected chickens. Additional characteristics including the ability to express capsular material possibly involved in serum resistance; secretion of metalloproteases capable of degrading immunoglobulins, and hemagglutinins, which may promote biofilm formation are all factors likely linked to the virulence of G. anatis. A major advantage for the study of how G. anatis interact with its host is the ability to perform biologically relevant experimental infections where natural routes of exposure allows reproduction of lesions observed during spontaneous infections. This review summarizes the current understanding of the G. anatis pathogenesis and discusses the contribution of the established and putative virulence factors described for this bacterium to date.
Collapse
Affiliation(s)
- Gry Persson
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Anders M Bojesen
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
64
|
Santos CA, Janissen R, Toledo MAS, Beloti LL, Azzoni AR, Cotta MA, Souza AP. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1372-81. [PMID: 26049080 DOI: 10.1016/j.bbapap.2015.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development.
Collapse
Affiliation(s)
- Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Richard Janissen
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A S Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Adriano R Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Monica A Cotta
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
65
|
Gray AN, Egan AJF, Van't Veer IL, Verheul J, Colavin A, Koumoutsi A, Biboy J, Altelaar AFM, Damen MJ, Huang KC, Simorre JP, Breukink E, den Blaauwen T, Typas A, Gross CA, Vollmer W. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. eLife 2015; 4. [PMID: 25951518 PMCID: PMC4458516 DOI: 10.7554/elife.07118] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/06/2015] [Indexed: 02/04/2023] Open
Abstract
To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division. DOI:http://dx.doi.org/10.7554/eLife.07118.001 All bacterial cells are surrounded by a membrane, which forms a protective barrier around the cell. Most bacteria also have a wall surrounding the membrane, which provides structural support. When a bacterial cell divides to produce two daughter cells, it produces a belt-like structure around the middle of the cell. This brings the membrane and cell wall on each side together to a ‘pinch-point’ until the two halves of the cell have been separated. This process must be carefully controlled to ensure that the cell does not burst open at any point. Some bacteria known as ‘Gram-negative’ bacteria have a second membrane on the other side of the cell wall. These cells divide in the same way as other bacteria, but the need to coordinate the movement of three structures instead of two makes it more complicated. Many proteins are known to be involved. For example, one group (or ‘complex’) of proteins—which includes a protein called PBP1B—helps to produce new cell wall material. Another complex called the Tol system provides the energy needed for the outer membrane to be pulled inwards towards the pinch point. However, it has not been clear how these complexes work together to allow the cell to divide. Here, Gray, Egan et al. searched for proteins that can interact with PBP1B during cell division in the Gram-negative bacterium E. coli. The experiments found that a protein called CpoB interacts with both PBP1B and the Tol system. CpoB is found in a band around the middle of the cell, and it regulates the activity of PBP1B in response to signals from the Tol system. If the activity of CpoB is disrupted, cell wall production and the movement of the outer membrane are no longer coordinated, and the membrane falls apart, leading to the death of the bacteria. Gray, Egan et al.'s findings show how the production of new cell wall material can be linked to the inwards movement of the outer membrane during cell division. The next challenges are to understand the precise details of how these processes are coordinated by CpoB and to find out whether CpoB also plays the same role in other bacteria. DOI:http://dx.doi.org/10.7554/eLife.07118.002
Collapse
Affiliation(s)
- Andrew N Gray
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Inge L Van't Veer
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, The Netherlands
| | - Jolanda Verheul
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Alexandra Koumoutsi
- Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Mirjam J Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | | - Jean-Pierre Simorre
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, The Netherlands
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
66
|
Phosphate Limitation Induces Drastic Physiological Changes, Virulence-Related Gene Expression, and Secondary Metabolite Production in Pseudovibrio sp. Strain FO-BEG1. Appl Environ Microbiol 2015; 81:3518-28. [PMID: 25769826 DOI: 10.1128/aem.04167-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
Abstract
Phosphorus is a vital nutrient for living organisms and is obtained by bacteria primarily via phosphate uptake. However, phosphate is often scarcely accessible in nature, and there is evidence that in many areas of the ocean, its concentration limits bacterial growth. Surprisingly, the phosphate starvation response has been extensively investigated in different model organisms (e.g., Escherichia coli), but there is a dearth of studies on heterotrophic marine bacteria. In this work, we describe the response of Pseudovibrio sp. strain FO-BEG1, a metabolically versatile alphaproteobacterium and potential symbiont of marine sponges, to phosphate limitation. We compared the physiology, protein expression, and secondary metabolite production under phosphate-limited conditions to those under phosphate surplus conditions. We observed that phosphate limitation had a pleiotropic effect on the physiology of the strain, triggering cell elongation, the accumulation of polyhydroxyalkanoate, the degradation of polyphosphate, and the exchange of membrane lipids in favor of phosphorus-free lipids such as sulfoquinovosyl diacylglycerols. Many proteins involved in the uptake and degradation of phospho-organic compounds were upregulated, together with subunits of the ABC transport system for phosphate. Under conditions of phosphate limitation, FO-BEG1 secreted compounds into the medium that conferred an intense yellow coloration to the cultures. Among these compounds, we identified the potent antibiotic tropodithietic acid. Finally, toxin-like proteins and other proteins likely involved in the interaction with the eukaryotic host were also upregulated. Altogether, our data suggest that phosphate limitation leads to a pronounced reorganization of FO-BEG1 physiology, involving phosphorus, carbon, and sulfur metabolism; cell morphology; secondary metabolite production; and the expression of virulence-related genes.
Collapse
|
67
|
Vikram A, Lipus D, Bibby K. Produced water exposure alters bacterial response to biocides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13001-13009. [PMID: 25279933 DOI: 10.1021/es5036915] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity.
Collapse
Affiliation(s)
- Amit Vikram
- Department of Civil and Environmental Engineering, and §Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | |
Collapse
|
68
|
Lo Sciuto A, Fernández-Piñar R, Bertuccini L, Iosi F, Superti F, Imperi F. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa. PLoS One 2014; 9:e103784. [PMID: 25093328 PMCID: PMC4122361 DOI: 10.1371/journal.pone.0103784] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/05/2014] [Indexed: 01/09/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.
Collapse
Affiliation(s)
- Alessandra Lo Sciuto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Regina Fernández-Piñar
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Lucia Bertuccini
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Francesca Iosi
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Fabiana Superti
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Francesco Imperi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
69
|
Santos TMA, Lin TY, Rajendran M, Anderson SM, Weibel DB. Polar localization of Escherichia coli chemoreceptors requires an intact Tol-Pal complex. Mol Microbiol 2014; 92:985-1004. [PMID: 24720726 DOI: 10.1111/mmi.12609] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 11/29/2022]
Abstract
Subcellular biomolecular localization is critical for the metabolic and structural properties of the cell. The functional implications of the spatiotemporal distribution of protein complexes during the bacterial cell cycle have long been acknowledged; however, the molecular mechanisms for generating and maintaining their dynamic localization in bacteria are not completely understood. Here we demonstrate that the trans-envelope Tol-Pal complex, a widely conserved component of the cell envelope of Gram-negative bacteria, is required to maintain the polar positioning of chemoreceptor clusters in Escherichia coli. Localization of the chemoreceptors was independent of phospholipid composition of the membrane and the curvature of the cell wall. Instead, our data indicate that chemoreceptors interact with components of the Tol-Pal complex and that this interaction is required to polarly localize chemoreceptor clusters. We found that disruption of the Tol-Pal complex perturbs the polar localization of chemoreceptors, alters cell motility, and affects chemotaxis. We propose that the E. coli Tol-Pal complex restricts mobility of the chemoreceptor clusters at the cell poles and may be involved in regulatory mechanisms that co-ordinate cell division and segregation of the chemosensory machinery.
Collapse
Affiliation(s)
- Thiago M A Santos
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | | | | | | | | |
Collapse
|
70
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
71
|
Miajlovic H, Smith SG. Bacterial self-defence: how Escherichia coli evades serum killing. FEMS Microbiol Lett 2014; 354:1-9. [PMID: 24617921 DOI: 10.1111/1574-6968.12419] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/19/2022] Open
Abstract
The ability to survive the bactericidal action of serum is advantageous to extraintestinal pathogenic Escherichia coli that gain access to the bloodstream. Evasion of the innate defences present in serum, including complement and antimicrobial peptides, involves multiple factors. Serum resistance mechanisms utilized by E. coli include the production of protective extracellular polysaccharide capsules and expression of factors that inhibit or interfere with the complement cascade. Recent studies have also highlighted the importance of structural integrity of the cell envelope in serum survival. These survival strategies are outlined in this review with particular attention to novel findings and recent insights into well-established resistance mechanisms.
Collapse
Affiliation(s)
- Helen Miajlovic
- Department of Clinical Microbiology, Sir Patrick Dun Research Laboratory, School of Medicine, Trinity College, Dublin, Ireland
| | | |
Collapse
|
72
|
A genome-wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism. PLoS Genet 2014; 10:e1004056. [PMID: 24391520 PMCID: PMC3879167 DOI: 10.1371/journal.pgen.1004056] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a formidable barrier that is difficult for antimicrobial drugs to penetrate. Thus, the list of treatments effective against these organisms is small and with the rise of new resistance mechanisms is shrinking rapidly. New therapies to treat Gram-negative bacterial infections are therefore sorely needed. This goal will be greatly aided by a detailed mechanistic understanding of envelope assembly. Although excellent progress in the identification of essential envelope biogenesis systems has been made in recent years, many aspects of the process remain to be elucidated. We therefore developed a simple, quantitative, and high-throughput assay for mutants with envelope biogenesis defects and used it to screen an ordered single-gene deletion library of Escherichia coli. The screen was robust and correctly identified numerous mutants known to be involved in envelope assembly. Importantly, the screen also implicated 102 genes of unknown function as encoding factors that likely impact envelope biogenesis. As a proof of principle, one of these factors, ElyC (YcbC), was characterized further and shown to play a critical role in the metabolism of the essential lipid carrier used for the biogenesis of cell wall and other bacterial surface polysaccharides. Further analysis of the function of ElyC and other hits identified in our screen is likely to uncover a wealth of new information about the biogenesis of the Gram-negative envelope and the vulnerabilities in the system suitable for drug targeting. Moreover, the screening assay described here should be readily adaptable to other organisms to study the biogenesis of different envelope architectures. Bacteria are surrounded by complex structures called cell envelopes that play an essential role in maintaining cellular integrity. Organisms classified as Gram-negative have especially complicated envelopes that consist of two membranes with a tough cell wall exoskeleton sandwiched between them. This envelope architecture is extremely proficient at preventing drug molecules from entering the cell. Gram-negative bacteria are therefore intrinsically resistant to many antibiotics, limiting the therapeutic options for treating infections caused by these organisms. To reveal new weaknesses in the Gram-negative envelope for drug targeting, we developed a quantitative, high-throughput assay for mutants with envelope biogenesis defects and used it to screen an ordered single-gene deletion library of the model Gram-negative bacterium Escherichia coli. Importantly, the screen implicated 102 genes of previously unknown function as encoding factors that likely participate in envelope biogenesis. As a proof of principle, one of these factors, ElyC (YcbC), was characterized further and shown to play a critical role in the metabolism of the essential lipid carrier used for cell wall synthesis. Further study of ElyC function and that of other factors identified in our screen is likely to reveal novel ways to disrupt the envelope assembly process for therapeutic purposes.
Collapse
|
73
|
Wille T, Wagner C, Mittelstädt W, Blank K, Sommer E, Malengo G, Döhler D, Lange A, Sourjik V, Hensel M, Gerlach RG. SiiA and SiiB are novel type I secretion system subunits controlling SPI4-mediated adhesion ofSalmonella enterica. Cell Microbiol 2013; 16:161-78. [DOI: 10.1111/cmi.12222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Thorsten Wille
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Carolin Wagner
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
- Abt. Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | | - Kathrin Blank
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Erik Sommer
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Gabriele Malengo
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Daniela Döhler
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
| | - Anna Lange
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Viktor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Michael Hensel
- Abt. Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | |
Collapse
|
74
|
Proteomic approach to Pseudomonas aeruginosa adaptive resistance to benzalkonium chloride. J Proteomics 2013; 89:273-9. [DOI: 10.1016/j.jprot.2013.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022]
|
75
|
Teleha MA, Miller AC, Larsen RA. Overexpression of the Escherichia coli TolQ protein leads to a null-FtsN-like division phenotype. Microbiologyopen 2013; 2:618-32. [PMID: 23818486 PMCID: PMC3831626 DOI: 10.1002/mbo3.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022] Open
Abstract
Mutations involving the Tol-Pal complex of Escherichia coli result in a subtle phenotype in which cells chain when grown under low-salt conditions. Here, the nonpolar deletion of individual genes encoding the cytoplasmic membrane-associated components of the complex (TolQ, TolR, TolA) produced a similar phenotype. Surprisingly, the overexpression of one of these proteins, TolQ, resulted in a much more overt phenotype in which cells occurred as elongated rods coupled in long chains when grown under normal salt conditions. Neither TolR nor TolA overexpression produced a phenotype, nor was the presence of either protein required for the TolQ-dependent phenotype. Consistent with their native membrane topology, the amino-terminal domain of TolQ specifically associated in vivo with the periplasmic domain of FtsN in a cytoplasm-based two-hybrid analysis. Further, the concomitant overexpression of FtsN rescued the TolQ-dependent phenotype, suggesting a model wherein the overexpression of TolQ sequesters FtsN, depleting this essential protein from the divisome during Gram-negative cell division. The role of the Tol-Pal system in division is discussed. Over-expression of the cytoplasmic membrane protein TolQ resulted in a division phenotype similar to that seen in cells depleted for FtsN. Two hybrid analysis suggested that TolQ and FtsN physically interact through domains that localize in the periplasmic space; while the concurrent over-expression of FtsN alleviated the TolQ over-expression phenotype. Together these results suggest a model wherein over-expressed TolQ sequesters FtsN, disrupting normal cell division.
Collapse
Affiliation(s)
- Mary A Teleha
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, 43403; Division of Science and Math, Lorain County Community College, Elyria, Ohio, 44035
| | | | | |
Collapse
|
76
|
|
77
|
Energetics of colicin import revealed by genetic cross-complementation between the Tol and Ton systems. Biochem Soc Trans 2012; 40:1480-5. [DOI: 10.1042/bst20120181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colicins are bacterial toxins that parasitize OM (outer membrane) receptors to bind to the target cells, use an import system to translocate through the cell envelope and then kill sensitive cells. Colicins classified as group A (colicins A, E1–E9, K and N) use the Tol system (TolA, TolB, TolQ and TolR), whereas group B colicins (colicins B, D, Ia, M and 5) use the ExbB–ExbD–TonB system. Genetic evidence has suggested that TolQ and ExbB, as well as TolR and ExbD, are interchangeable, whereas this is not possible with TolA and TonB. Early reports indicated that group B colicin uptake requires energy input, whereas no energy was necessary for the uptake of the pore-forming colicin A. Furthermore, energy is required to dissociate the complex formed with colicin E9 and its cognate immunity protein during the import process. In the present paper, we detail the functional phenotypes and colicin-sensitivity results obtained in tolQ and exbB mutants and cross-complementation data of amino acid substitutions that lie within ExbB or TolQ TMHs (transmembrane helices). We also discuss on a specific phenotype that corresponds to group A colicin-sensitivity associated with a non-functional Tol system.
Collapse
|
78
|
Identification and biochemical evidence of a medium-chain-length polyhydroxyalkanoate depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol 2012; 78:6017-26. [PMID: 22706067 DOI: 10.1128/aem.01099-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate predator Bdellovibrio bacteriovorus HD100 shows a large set of proteases and other hydrolases as part of its hydrolytic arsenal needed for its predatory life cycle. We present genetic and biochemical evidence that open reading frame (ORF) Bd3709 of B. bacteriovorus HD100 encodes a novel medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase (PhaZ(Bd)). The primary structure of PhaZ(Bd) suggests that this enzyme belongs to the α/β-hydrolase fold family and has a typical serine hydrolase catalytic triad (serine-histidine-aspartic acid) in agreement with other PHA depolymerases and lipases. PhaZ(Bd) has been extracellularly produced using different hypersecretor Tol-pal mutants of Escherichia coli and Pseudomonas putida as recombinant hosts. The recombinant PhaZ(Bd) has been characterized, and its biochemical properties have been compared to those of other PHA depolymerases. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. It is also affected by the reducing agent dithiothreitol and nonionic detergents like Tween 80. PhaZ(Bd) is an endoexohydrolase that cleaves both large and small PHA molecules, producing mainly dimers but also monomers and trimers. The enzyme specifically degrades mcl-PHA and is inactive toward short-chain-length polyhydroxyalkanoates (scl-PHA) like polyhydroxybutyrate (PHB). These studies shed light on the potentiality of these predators as sources of new biocatalysts, such as an mcl-PHA depolymerase, for the production of enantiopure hydroxyalkanoic acids and oligomers as building blocks for the synthesis of biobased polymers.
Collapse
|
79
|
Li C, Zhang Y, Vankemmelbeke M, Hecht O, Aleanizy FS, Macdonald C, Moore GR, James R, Penfold CN. Structural evidence that colicin A protein binds to a novel binding site of TolA protein in Escherichia coli periplasm. J Biol Chem 2012; 287:19048-57. [PMID: 22493500 PMCID: PMC3365938 DOI: 10.1074/jbc.m112.342246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA53–107). The interface region of the TA53–107-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375–Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58–Lys-368, Tyr-90–Lys-379, Phe-94–Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA53–107 binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.
Collapse
Affiliation(s)
- Chan Li
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Rigel NW, Silhavy TJ. Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Curr Opin Microbiol 2012; 15:189-93. [PMID: 22221898 DOI: 10.1016/j.mib.2011.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/06/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is an essential organelle that serves as a selective permeability barrier by keeping toxic compounds out of the cell while allowing vital nutrients in. How the OM and its constituent lipid and protein components are assembled remains an area of active research. In this review, we describe our current understanding of how outer membrane proteins (OMPs) are delivered to and then assembled in the OM of the model Gram-negative organism Escherichia coli.
Collapse
Affiliation(s)
- Nathan W Rigel
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | | |
Collapse
|
81
|
Ihnatko R, Shaw E, Toman R. Proteome of Coxiella burnetii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:105-30. [DOI: 10.1007/978-94-007-4315-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
82
|
Wang X, Yue J, Ren X, Wang Y, Tan M, Li B, Liang L. Modularity analysis based on predicted protein-protein interactions provides new insights into pathogenicity and cellular process of Escherichia coli O157:H7. Theor Biol Med Model 2011; 8:47. [PMID: 22188601 PMCID: PMC3275473 DOI: 10.1186/1742-4682-8-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/22/2011] [Indexed: 12/19/2022] Open
Abstract
Background With the development of experimental techniques and bioinformatics, the quantity of data available from protein-protein interactions (PPIs) is increasing exponentially. Functional modules can be identified from protein interaction networks. It follows that the investigation of functional modules will generate a better understanding of cellular organization, processes, and functions. However, experimental PPI data are still limited, and no modularity analysis of PPIs in pathogens has been published to date. Results In this study, we predict and analyze the functional modules of E. coli O157:H7 systemically by integrating several bioinformatics methods. After evaluation, most of the predicted modules are found to be biologically significant and functionally homogeneous. Six pathogenicity-related modules were discovered and analyzed, including novel modules. These modules provided new information on the pathogenicity of O157:H7. The modularity of cellular function and cooperativity between modules are also discussed. Moreover, modularity analysis of O157:H7 can provide possible candidates for biological pathway extension and clues for discovering new pathways of cross-talk. Conclusions This article provides the first modularity analysis of a pathogen and sheds new light on the study of pathogens and cellular processes. Our study also provides a strategy for applying modularity analysis to any sequenced organism.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|
83
|
Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 2011; 93:319-29. [DOI: 10.1007/s00253-011-3731-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
|
84
|
Zhang Y, Ducret A, Shaevitz J, Mignot T. From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol Rev 2011; 36:149-64. [PMID: 22091711 DOI: 10.1111/j.1574-6976.2011.00307.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/23/2011] [Accepted: 09/02/2011] [Indexed: 01/05/2023] Open
Abstract
In bird flocks, fish schools, and many other living organisms, regrouping among individuals of the same kin is frequently an advantageous strategy to survive, forage, and face predators. However, these behaviors are costly because the community must develop regulatory mechanisms to coordinate and adapt its response to rapid environmental changes. In principle, these regulatory mechanisms, involving communication between individuals, may also apply to cellular systems which must respond collectively during multicellular development. Dissecting the mechanisms at work requires amenable experimental systems, for example, developing bacteria. Myxococcus xanthus, a Gram-negative delatproteobacterium, is able to coordinate its motility in space and time to swarm, predate, and grow millimeter-size spore-filled fruiting bodies. A thorough understanding of the regulatory mechanisms first requires studying how individual cells move across solid surfaces and control their direction of movement, which was recently boosted by new cell biology techniques. In this review, we describe current molecular knowledge of the motility mechanism and its regulation as a lead-in to discuss how multicellular cooperation may have emerged from several layers of regulation: chemotaxis, cell-cell signaling, and the extracellular matrix. We suggest that Myxococcus is a powerful system to investigate collective principles that may also be relevant to other cellular systems.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratoire de Chimie Bactérienne - CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Université Aix-marseille, Marseille Cedex, France
| | | | | | | |
Collapse
|
85
|
Luciano J, Agrebi R, Le Gall AV, Wartel M, Fiegna F, Ducret A, Brochier-Armanet C, Mignot T. Emergence and modular evolution of a novel motility machinery in bacteria. PLoS Genet 2011; 7:e1002268. [PMID: 21931562 PMCID: PMC3169522 DOI: 10.1371/journal.pgen.1002268] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
Bacteria glide across solid surfaces by mechanisms that have remained largely mysterious despite decades of research. In the deltaproteobacterium Myxococcus xanthus, this locomotion allows the formation stress-resistant fruiting bodies where sporulation takes place. However, despite the large number of genes identified as important for gliding, no specific machinery has been identified so far, hampering in-depth investigations. Based on the premise that components of the gliding machinery must have co-evolved and encode both envelope-spanning proteins and a molecular motor, we re-annotated known gliding motility genes and examined their taxonomic distribution, genomic localization, and phylogeny. We successfully delineated three functionally related genetic clusters, which we proved experimentally carry genes encoding the basal gliding machinery in M. xanthus, using genetic and localization techniques. For the first time, this study identifies structural gliding motility genes in the Myxobacteria and opens new perspectives to study the motility mechanism. Furthermore, phylogenomics provide insight into how this machinery emerged from an ancestral conserved core of genes of unknown function that evolved to gliding by the recruitment of functional modules in Myxococcales. Surprisingly, this motility machinery appears to be highly related to a sporulation system, underscoring unsuspected common mechanisms in these apparently distinct morphogenic phenomena. Motility over solid surfaces (gliding) is an important bacterial mechanism that allows complex social behaviours and pathogenesis. Conflicting models have been suggested to explain this locomotion in the deltaproteobacterium Myxococcus xanthus: propulsion by polymer secretion at the rear of the cells as opposed to energized nano-machines distributed along the cell body. However, in absence of characterized molecular machinery, the exact mechanism of gliding could not be resolved despite several decades of research. In this study, using a combination of experimental and computational approaches, we showed for the first time that the motility machinery is composed of large macromolecular assemblies periodically distributed along the cell envelope. Furthermore, the data suggest that the motility machinery derived from an ancient gene cluster also found in several non-gliding bacterial lineages. Intriguingly, we find that most of the components of the gliding machinery are closely related to a sporulation system, suggesting unsuspected links between these two apparently distinct biological processes. Our findings now pave the way for the first molecular studies of a long mysterious motility mechanism.
Collapse
Affiliation(s)
- Jennifer Luciano
- Institut de Microbiologie de la Méditerranée (IFR88)–Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Rym Agrebi
- Institut de Microbiologie de la Méditerranée (IFR88)–Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Anne Valérie Le Gall
- Institut de Microbiologie de la Méditerranée (IFR88)–Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Morgane Wartel
- Institut de Microbiologie de la Méditerranée (IFR88)–Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Francesca Fiegna
- Institut de Microbiologie de la Méditerranée (IFR88)–Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Adrien Ducret
- Institut de Microbiologie de la Méditerranée (IFR88)–Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Céline Brochier-Armanet
- Institut de Microbiologie de la Méditerranée (IFR88)–Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Marseille, France
- Aix-Marseille University, Marseille, France
- * E-mail: (CB-A); (TM)
| | - Tâm Mignot
- Institut de Microbiologie de la Méditerranée (IFR88)–Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Marseille, France
- Aix-Marseille University, Marseille, France
- * E-mail: (CB-A); (TM)
| |
Collapse
|
86
|
Zhang XYZ, Goemaere EL, Seddiki N, Célia H, Gavioli M, Cascales E, Lloubes R. Mapping the interactions between Escherichia coli TolQ transmembrane segments. J Biol Chem 2011; 286:11756-64. [PMID: 21285349 DOI: 10.1074/jbc.m110.192773] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tolQRAB-pal operon is conserved in Gram-negative genomes. The TolQRA proteins of Escherichia coli form an inner membrane complex in which TolQR uses the proton-motive force to regulate TolA conformation and the in vivo interaction of TolA C-terminal region with the outer membrane Pal lipoprotein. The stoichiometry of the TolQ, TolR, and TolA has been estimated and suggests that 4-6 TolQ molecules are associated in the complex, thus involving interactions between the transmembrane helices (TMHs) of TolQ, TolR, and TolA. It has been proposed that an ion channel forms at the interface between two TolQ and one TolR TMHs involving the TolR-Asp(23), TolQ-Thr(145), and TolQ-Thr(178) residues. To define the organization of the three TMHs of TolQ, we constructed epitope-tagged versions of TolQ. Immunodetection of in vivo and in vitro chemically cross-linked TolQ proteins showed that TolQ exists as multimers in the complex. To understand how TolQ multimerizes, we initiated a cysteine-scanning study. Results of single and tandem cysteine substitution suggest a dynamic model of helix interactions in which the hairpin formed by the two last TMHs of TolQ change conformation, whereas the first TMH of TolQ forms intramolecular interactions.
Collapse
Affiliation(s)
- Xiang Y-Z Zhang
- Laboratoire d'Ingénierie des Systèmes Macromoleculaires UPR9027, CNRS, Aix-Marseille Université, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
87
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Interaction of the colicin K bactericidal toxin with components of its import machinery in the periplasm of Escherichia coli. J Bacteriol 2010; 192:5934-42. [PMID: 20870776 DOI: 10.1128/jb.00936-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are bacterial antibiotic toxins produced by Escherichia coli cells and are active against E. coli and closely related strains. To penetrate the target cell, colicins bind to an outer membrane receptor at the cell surface and then translocate their N-terminal domain through the outer membrane and the periplasm. Once fully translocated, the N-terminal domain triggers entry of the catalytic C-terminal domain by an unknown process. Colicin K uses the Tsx nucleoside-specific receptor for binding at the cell surface, the OmpA protein for translocation through the outer membrane, and the TolABQR proteins for the transit through the periplasm. Here, we initiated studies to understand how the colicin K N-terminal domain (KT) interacts with the components of its transit machine in the periplasm. We first produced KT fused to a signal sequence for periplasm targeting. Upon production of KT in wild-type strains, cells became partly resistant to Tol-dependent colicins and sensitive to detergent, released periplasmic proteins, and outer membrane vesicles, suggesting that KT interacts with and titrates components of its import machine. Using a combination of in vivo coimmunoprecipitations and in vitro pulldown experiments, we demonstrated that KT interacts with the TolA, TolB, and TolR proteins. For the first time, we also identified an interaction between the TolQ protein and a colicin translocation domain.
Collapse
|
89
|
Krachler AM, Sharma A, Cauldwell A, Papadakos G, Kleanthous C. TolA modulates the oligomeric status of YbgF in the bacterial periplasm. J Mol Biol 2010; 403:270-85. [PMID: 20816983 DOI: 10.1016/j.jmb.2010.08.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/18/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
The trans-envelope Tol complex of Gram-negative bacteria is recruited to the septation apparatus during cell division where it is involved in stabilizing the outer membrane. The last gene in the tol operon, ybgF, is highly conserved, yet does not seem to be required for Tol function. We have addressed this anomaly by characterizing YbgF from Escherichia coli and its interaction with TolA, which, based on previous yeast two-hybrid data, is the only known physical link between YbgF and the Tol system. We show that the stable YbgF trimer undergoes a marked change in oligomeric state on binding TolA, forming a one-to-one complex with the Tol protein. Through a combination of pull-down assays, deletion analysis, and isothermal titration calorimetry, we map the TolA-YbgF interface to the C-terminal tetratricopeptide repeat domain of YbgF and 31 residues at the C-terminal end of TolA domain II (TolA(280-313)). We show that TolB, which binds TolA domain III close to the YbgF binding site, has no impact on the YbgF-TolA association. We also report the crystal structures of the two component domains of YbgF, the N-terminal coiled coil from E. coli YbgF, which forms a stable trimer and controls the oligomeric status of YbgF, and the monomeric tetratricopeptide repeat domain from Xanthomonas campestris YbgF, which is also able to trimerize. Although the coiled coil is not directly involved in TolA binding, we demonstrate that the regular hydrophilic patterning of its otherwise hydrophobic core is a prerequisite for the TolA-induced oligomeric-state transition of YbgF. We postulate that rather than YbgF affecting Tol function, it is the change in YbgF oligomeric status (with an accompanying change in its function) that likely explains the necessity for tight co-regulation of the ybgF and tol genes in Gram-negative bacteria.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Biology, University of York, Heslington, PO Box 373, York YO10 5YW, UK
| | | | | | | | | |
Collapse
|
90
|
The caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J Bacteriol 2010; 192:4847-58. [PMID: 20693330 DOI: 10.1128/jb.00607-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell division in Caulobacter crescentus involves constriction and fission of the inner membrane (IM) followed about 20 min later by fission of the outer membrane (OM) and daughter cell separation. In contrast to Escherichia coli, the Caulobacter Tol-Pal complex is essential. Cryo-electron microscopy images of the Caulobacter cell envelope exhibited outer membrane disruption, and cells failed to complete cell division in TolA, TolB, or Pal mutant strains. In wild-type cells, components of the Tol-Pal complex localize to the division plane in early predivisional cells and remain predominantly at the new pole of swarmer and stalked progeny upon completion of division. The Tol-Pal complex is required to maintain the position of the transmembrane TipN polar marker, and indirectly the PleC histidine kinase, at the cell pole, but it is not required for the polar maintenance of other transmembrane and membrane-associated polar proteins tested. Coimmunoprecipitation experiments show that both TolA and Pal interact directly or indirectly with TipN. We propose that disruption of the trans-envelope Tol-Pal complex releases TipN from its subcellular position. The Caulobacter Tol-Pal complex is thus a key component of cell envelope structure and function, mediating OM constriction at the final step of cell division as well as the positioning of a protein localization factor.
Collapse
|
91
|
Aschtgen MS, Gavioli M, Dessen A, Lloubès R, Cascales E. The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol 2010; 75:886-99. [PMID: 20487285 DOI: 10.1111/j.1365-2958.2009.07028.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Type VI secretion systems (T6SS) are multi-component machines encoded within the genomes of most Gram-negative bacteria that associate with plant, animal and/or human cells, and therefore are considered as potential virulence factors. We recently launched a study on the Sci-1 T6SS of enteroaggregative Escherichia coli (EAEC). The Sci-1 T6SS is composed of all or a subset of the 21 gene products encoded within the cluster, 13 of which are shared by all T6SS identified so far. In the present work, we focussed our attention on the SciZ protein. We first showed that SciZ is required for the release of the Hcp protein in the culture supernatant and for efficient biofilm formation, demonstrating that SciZ is necessary for EAEC T6SS function. Indeed, SciZ forms a complex with SciP, SciS and SciN, three core components of the transport apparatus. Fractionation and topology studies showed that SciZ is a polytopic inner membrane protein with three trans-membrane segments. Computer analyses identified a motif shared by peptidoglycan binding proteins of the OmpA family in the SciZ periplasmic domain. Using in vivo and in vitro binding assays, we showed that this motif anchors the SciZ protein to the cell wall and is required for T6SS function.
Collapse
Affiliation(s)
- Marie-Stéphanie Aschtgen
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Université de la Méditerranée - Aix-Marseille II, CNRS - UPR 9027, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
92
|
Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem J 2009; 424:129-41. [PMID: 19702577 DOI: 10.1042/bj20090980] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using the Keio collection of gene-disrupted mutants of Escherichia coli, we have recently carried out a genome-wide screening of the genes affecting glycogen metabolism. Among the mutants identified in the study, Delta mgtA, Delta phoP and Delta phoQ cells, all lacking genes that are induced under low extracellular Mg2+ conditions, displayed glycogen-deficient phenotypes. In this work we show that these mutants accumulated normal glycogen levels when the culture medium was supplemented with submillimolar Mg2+ concentrations. Expression analyses conducted in wild-type, Delta phoP and Delta phoQ cells showed that the glgCAP operon is under PhoP-PhoQ control in the submillimolar Mg2+ concentration range. Subsequent screening of the Keio collection under non-limiting Mg2+ allowed the identification of 183 knock-out mutants with altered glycogen levels. The stringent and general stress responses, end-turnover of tRNA, intracellular AMP levels, and metabolism of amino acids, iron, carbon and sulfur were major determinants of glycogen levels. glgC::lacZY expression analyses using mutants representing different functional categories revealed that the glgCAP operon belongs to the RelA regulon. We propose an integrated metabolic model wherein glycogen metabolism is (a) tightly controlled by the energy and nutritional status of the cell and (b) finely regulated by changes in environmental Mg2+ occurring at the submillimolar concentration range.
Collapse
|
93
|
Zhang Y, Li C, Vankemmelbeke MN, Bardelang P, Paoli M, Penfold CN, James R. The crystal structure of the TolB box of colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins. Mol Microbiol 2009; 75:623-36. [PMID: 19627502 PMCID: PMC2821528 DOI: 10.1111/j.1365-2958.2009.06808.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interaction of the TolB box of Group A colicins with the TolB protein in the periplasm of Escherichia coli cells promotes transport of the cytotoxic domain of the colicin across the cell envelope. The crystal structure of a complex between a 107-residue peptide (TA1–107) of the translocation domain of colicin A (ColA) and TolB identified the TolB box as a 12-residue peptide that folded into a distorted hairpin within a central canyon of the β-propeller domain of TolB. Comparison of this structure with that of the colicin E9 (ColE9) TolB box–TolB complex, together with site-directed mutagenesis of the ColA TolB box residues, revealed important differences in the interaction of the two TolB boxes with an overlapping binding site on TolB. Substitution of the TolB box residues of ColA with those of ColE9 conferred the ability to competitively recruit TolB from Pal but reduced the biological activity of the mutant ColA. This datum explains (i) the difference in binding affinities of ColA and ColE9 with TolB, and (ii) the inability of ColA, unlike ColE9, to competitively recruit TolB from Pal, allowing an understanding of how these two colicins interact in a different way with a common translocation portal in E. coli cells.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
94
|
Tamang DG, Rabus R, Barabote RD, Saier MH. Comprehensive analyses of transport proteins encoded within the genome of "Aromatoleum aromaticum" strain EbN1. J Membr Biol 2009; 229:53-90. [PMID: 19506936 DOI: 10.1007/s00232-009-9168-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
The denitrifying bacterium "Aromatoleum aromaticum" strain EbN1 is specialized for the aerobic utilization of aromatic compounds including crude oil constituents. We here report whole-genome analyses for potential transport proteins in A. aromaticum strain EbN1. This organism encodes very few transporters for simple sugars and most other common carbon sources. However, up to 28% of its putative transporters may act on fairly hydrophobic aromatic and aliphatic compounds. We categorize the putative transporters encoded within the genome, assign them to recognized families, and propose their preferred substrates. The bioinformatic data are correlated with available metabolic information to obtain an integrated view of the metabolic network of A. aromaticum strain EbN1. The results thus indicate that this organism possesses a disproportionately large percentage of transporters for the uptake and efflux of hydrophobic and amphipathic aromatic and aliphatic compounds compared with previously analyzed organisms. We predict that these findings will have important implications for our ecophysiological understanding of bioremediation.
Collapse
Affiliation(s)
- Dorjee G Tamang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
95
|
Godlewska R, Wiśniewska K, Pietras Z, Jagusztyn-Krynicka EK. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett 2009; 298:1-11. [PMID: 19519769 DOI: 10.1111/j.1574-6968.2009.01659.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The protein Pal (peptidoglycan-associated lipoprotein) is anchored in the outer membrane (OM) of Gram-negative bacteria and interacts with Tol proteins. Tol-Pal proteins form two complexes: the first is composed of three inner membrane Tol proteins (TolA, TolQ and TolR); the second consists of the TolB and Pal proteins linked to the cell's OM. These complexes interact with one another forming a multiprotein membrane-spanning system. It has recently been demonstrated that Pal is essential for bacterial survival and pathogenesis, although its role in virulence has not been clearly defined. This review summarizes the available data concerning the structure and function of Pal and its role in pathogenesis.
Collapse
Affiliation(s)
- Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
96
|
Vankemmelbeke M, Zhang Y, Moore GR, Kleanthous C, Penfold CN, James R. Energy-dependent immunity protein release during tol-dependent nuclease colicin translocation. J Biol Chem 2009; 284:18932-41. [PMID: 19458090 PMCID: PMC2707214 DOI: 10.1074/jbc.m806149200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nuclease colicins bind their target receptor in the outer membrane of sensitive cells in the form of a high affinity complex with their cognate immunity proteins. Upon cell entry the immunity protein is lost from the complex by means that are poorly understood. We have developed a sensitive fluorescence assay that has enabled us to study the molecular requirements for immunity protein release. Nuclease colicins use members of the tol operon for their translocation across the outer membrane. We have demonstrated that the amino-terminal 80 residues of the colicin E9 molecule, which is the region that interacts with TolB, are essential for immunity protein release. Using tol deletion strains we analyzed the cellular components necessary for immunity protein release and found that in addition to a requirement for tolB, the tolA deletion strain was most affected. Complementation studies showed that the mutation H22A, within the transmembrane segment of TolA, abolishes immunity protein release. Investigation of the energy requirements demonstrated that the proton motive force of the cytoplasmic membrane is critical. Taken together these results demonstrate for the first time a clear energy requirement for the uptake of a nuclease colicin complex and suggest that energy transduced from the cytoplasmic membrane to the outer membrane by TolA could be the driving force for immunity protein release and concomitant translocation of the nuclease domain.
Collapse
Affiliation(s)
- Mireille Vankemmelbeke
- School of Molecular Medical Sciences and Institute of Infection, Immunity, and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
97
|
Hizukuri Y, Morton JF, Yakushi T, Kojima S, Homma M. The peptidoglycan-binding (PGB) domain of the Escherichia coli pal protein can also function as the PGB domain in E. coli flagellar motor protein MotB. J Biochem 2009; 146:219-29. [PMID: 19364805 DOI: 10.1093/jb/mvp061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bacterial flagellar stator proteins, MotA and MotB, form a complex and are thought to be anchored to the peptidoglycan by the C-terminal conserved peptidoglycan-binding (PGB) motif of MotB. To clarify the role of the C-terminal region, we performed systematic cysteine mutagenesis and constructed a chimeric MotB protein which was replaced with the peptidoglycan-associated lipoprotein Pal. Although this chimera could not restore motility to a motB strain, we were able to isolate two motile revertants. One was F172V in the Pal region and the other was P159L in the MotB region. Furthermore, we attempted to map the MotB Cys mutations in the crystal structure of Escherichia coli Pal. We found that the MotB mutations that affected motility nearly overlapped with the predicted PG-binding residues of Pal. Our results indicate that, although the functions of MotB and Pal are very different, the PGB region of Pal is interchangeable with the PGB region of MotB.
Collapse
|
98
|
Angelini A, Cendron L, Goncalves S, Zanotti G, Terradot L. Structural and enzymatic characterization of HP0496, a YbgC thioesterase from Helicobacter pylori. Proteins 2009; 72:1212-21. [PMID: 18338382 DOI: 10.1002/prot.22014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
YbgC proteins are bacterial acyl-CoA thioesterases associated with the Tol-Pal system. This system is important for cell envelope integrity and is part of the cell division machinery. In E. coli, YbgC associates with the cell membrane and is part of a protein network involved in lipid biogenesis. In the human pathogen Helicobacter pylori, a putative homologue of YbgC, named HP0496, was found to interact with the cytotoxin CagA by two different studies. We have determined its crystal structure and characterized its enzymatic activity. The structure of HP0496 shows that it is a member of the hot-dog family of proteins, with a epsilongamma tetrameric arrangement. Finally, enzymatic assays performed with the purified protein showed that HP0496 is an acyl-CoA thioesterase that favors long-chain substrates.
Collapse
Affiliation(s)
- Alessandro Angelini
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, B.P. 220, 6 rue Jules Horowitz, F-38043 Grenoble Cedex, France
| | | | | | | | | |
Collapse
|
99
|
Paterson GK, Northen H, Cone DB, Willers C, Peters SE, Maskell DJ. Deletion of tolA in Salmonella Typhimurium generates an attenuated strain with vaccine potential. Microbiology (Reading) 2009; 155:220-228. [DOI: 10.1099/mic.0.021576-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The Gram-negative Tol-Pal system of envelope proteins plays a key role in maintaining outer membrane integrity and contributes to the virulence of several pathogens. We have investigated the role of one of these proteins, TolA, in the biology of Salmonella enterica serovar Typhimurium. Deletion of tolA rendered strain SL1344 more susceptible to killing by bile and human serum. In addition the mutant had impaired membrane integrity and displayed alterations in LPS production. The tolA mutant was highly attenuated in mouse infections via the oral and intravenous routes. Importantly, each phenotype displayed by the mutant was complemented by provision of tolA
in trans. The tolA gene therefore contributes to virulence, membrane integrity, LPS production and bile and serum resistance in S. enterica serovar Typhimurium SL1344. Finally, immunization with the tolA mutant provided significant protection against subsequent challenge with wild-type SL1344. The Tol-Pal system is therefore a potential target in the development of novel attenuated live vaccines against Salmonella and other Gram-negative pathogens.
Collapse
Affiliation(s)
- G. K. Paterson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - H. Northen
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - D. B. Cone
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - C. Willers
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - S. E. Peters
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - D. J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
100
|
Zhang XYZ, Goemaere EL, Thomé R, Gavioli M, Cascales E, Lloubès R. Mapping the interactions between escherichia coli tol subunits: rotation of the TolR transmembrane helix. J Biol Chem 2008; 284:4275-82. [PMID: 19075020 DOI: 10.1074/jbc.m805257200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TolQRA proteins of Escherichia coli form an inner membrane complex involved in the maintenance of the outer membrane stability and in the late stages of cell division. The TolQR complex uses the proton motive force to regulate TolA conformation and its interaction with the outer membrane Pal lipoprotein. It has been proposed that an ion channel forms at the TolQR transmembrane helix (TMH) interface. This complex assembles with a minimal TolQ:TolR ratio of 4-6:2 and therefore involves 14-20 TMHs. To define the organization of the transmembrane helices in the membrane within the TolQR complex, we initiated a cysteine scanning study. In this study, we report results for the systematic replacement of each residue of the TolR TMH. Phenotypic analyses first showed that most of the mutants are functional. Three mutants, TolR L22C, D23C, and V24C, were shown to affect TolQR functioning. Disulfide bond complex formation further showed that two TolR anchors are close enough to interact. Two substitutions, L22C and V24C, form high level of dimers, suggesting that the TolR helix rotates as molecular gears between these two positions and that disulfide bond formation between these residues blocked the rotary motion. Mutations of critical residues located within the TolQ TMH2 and TMH3 and the TolR TMH and proposed to form the ion pathway prevent rotation between these two residues. TolR anchors may form molecular gears that oscillate in response to proton motive force to regulate channel activity.
Collapse
Affiliation(s)
- Xiang Y-Z Zhang
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 13402 Marseille, France
| | | | | | | | | | | |
Collapse
|