51
|
Schmidt M, Bornscheuer UT. High-throughput assays for lipases and esterases. ACTA ACUST UNITED AC 2005; 22:51-6. [PMID: 15857783 DOI: 10.1016/j.bioeng.2004.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/23/2004] [Accepted: 09/24/2004] [Indexed: 11/21/2022]
Abstract
In the past few years a considerable number of high-throughput screening (HTS) systems have been developed, especially for lipases and esterases. In this review, a range of HTS methods for the directed evolution of these hydrolases are covered. This includes spectrophotometric and fluorimetric formats as well as other approaches to allow for fast, efficient and reliable identification of desired enzyme variants within large mutant libraries. In addition, methods for library creation and application of lipases and esterases are briefly covered.
Collapse
Affiliation(s)
- Marlen Schmidt
- Institute of Chemistry and Biochemistry, Department of Technical Chemistry and Biotechnology, Greifswald University, Soldmannstr. 16, D-17487 Greifswald, Germany
| | | |
Collapse
|
52
|
Bernath K, Magdassi S, Tawfik DS. Directed Evolution of Protein Inhibitors of DNA-nucleases by in Vitro Compartmentalization (IVC) and Nano-droplet Delivery. J Mol Biol 2005; 345:1015-26. [PMID: 15644201 DOI: 10.1016/j.jmb.2004.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 11/07/2004] [Accepted: 11/09/2004] [Indexed: 11/18/2022]
Abstract
In vitro compartmentalization (IVC) uses water-in-oil emulsions to create artificial cell-like compartments in which genes can be individually transcribed and translated. Here, we present a new application of IVC for the selection of DNA-nuclease inhibitors. We developed a nano-droplets delivery system that allows the transport of various solutes, including metal ions, into the emulsion droplets. This transport mechanism was used to regulate the activity of colicin nucleases that were co-compartmentalized with the genes, so that the nucleases were activated by nickel or cobalt ions only after the potential inhibitor genes have been translated. Thus, genes encoding nuclease inhibitors survived the digestion and were subsequently amplified and isolated. Selection is therefore directly for inhibition, and not for binding of the nuclease. The stringency of selection can be easily modulated to give high enrichments (100-500-fold) and recoveries. We demonstrated its utility by selecting libraries of the gene encoding the cognate inhibitor of colicin E9 (immunity protein 9, or Im9) for inhibition of another colicin (ColE7). The in vitro evolved inhibitors show significant inhibition of ColE7 both in vitro and in vivo. These Im9 variants carry mutations into residues that determine the selectivity of the natural counterpart (Im7) while completely retaining the residues that are conserved throughout the family of immunity protein inhibitors. The in vitro evolution process confirms earlier hypotheses regarding the "dual recognition" binding mechanism and the way in which new colicin-immunity pairs diverged from existing ones.
Collapse
Affiliation(s)
- Kalia Bernath
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
53
|
Roguska M, Kaymakcalan Z, Salfeld J. Overview on the use of therapeutic antibodies in drug discovery. CURRENT PROTOCOLS IN PHARMACOLOGY 2005; Chapter 9:Unit 9.7. [PMID: 22294129 DOI: 10.1002/0471141755.ph0907s27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The number of therapeutic antibodies approved by regulatory agencies as novel drugs and the number of antibodies in development has increased significantly. The modular nature of antibody structure has enabled researchers to more predictably design therapeutic antibodies by choosing appropriate functional features most appropriate for a given antibody target and clinical indication. Advances in recombinant antibody technologies have allowed the routine generation of antibodies that can satisfy stringent drug design criteria, such as low immunogenicity, high affinity, target specificity, and commercially viable manufacturing methods. Engineering design opportunities exist for both the variable and the constant regions that encompass, in addition to antigen specificity and affinity, effector functions that mediate immune complex clearance or pharmacokinetics. These are discussed in the context of relevant in vivo and in vitro technologies, such as human IgG transgenic mice, phage display, and biologics manufacturing. Finally, therapeutic antibodies are compared with traditional drugs with respect to target class, selectivity, route of administration, intellectual property issues, and lead discovery and optimization.
Collapse
|
54
|
|
55
|
Jestin JL, Kaminski PA. Directed enzyme evolution and selections for catalysis based on product formation. J Biotechnol 2004; 113:85-103. [PMID: 15380650 DOI: 10.1016/j.jbiotec.2004.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 03/03/2004] [Indexed: 10/26/2022]
Abstract
Enzyme engineering by molecular modelling and site-directed mutagenesis can be remarkably efficient. Directed enzyme evolution appears as a more general strategy for the isolation of catalysts as it can be applied to most chemical reactions in aqueous solutions. Selections, as opposed to screening, allow the simultaneous analysis of protein properties for sets of up to about 10(14) different proteins. These approaches for the parallel processing of molecular information 'Is the protein a catalyst?' are reviewed here in the case of selections based on the formation of a specific reaction product. Several questions are addressed about in vivo and in vitro selections for catalysis reported in the literature. Can the selection system be extended to other types of enzymes? Does the selection control regio- and stereo-selectivity? Does the selection allow the isolation of enzymes with an efficient turnover? How should substrates be substituted or mimicked for the design of efficient selections while minimising the number of chemical synthesis steps? Engineering sections provide also some clues to design selections or to circumvent selection biases. A special emphasis is put on the comparison of in vivo and in vitro selections for catalysis.
Collapse
Affiliation(s)
- Jean-Luc Jestin
- Département de Biologie Structurale et Chimie, Unité de Chimie Organique URA 2128 CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France.
| | | |
Collapse
|
56
|
Bernath K, Hai M, Mastrobattista E, Griffiths AD, Magdassi S, Tawfik DS. In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting. Anal Biochem 2004; 325:151-7. [PMID: 14715296 DOI: 10.1016/j.ab.2003.10.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Water-in-oil (w/o) emulsions can be used to compartmentalize and select large gene libraries for a predetermined function. The aqueous droplets of the w/o emulsion function as cell-like compartments in each of which a single gene is transcribed and translated to give multiple copies of the protein (e.g., an enzyme) it encodes. While compartmentalization ensures that the gene, the protein it encodes, and the products of the activity of this protein remain linked, it does not directly afford a way of selecting for the desired activity. Here we show that re-emulsification of w/o emulsions gives water-in-oil-in-water (w/o/w) emulsions with an external (continuous) water phase through which droplets containing fluorescent markers can be isolated by fluorescence-activated cell sorting (FACS). These w/o/w emulsions can be sorted by FACS, while the content of the aqueous droplets of the primary w/o emulsion remains intact. Consequently, genes embedded in these water droplets together with a fluorescent marker can be isolated and enriched from an excess of genes embedded in water droplets without a fluorescent marker. The ability of FACS instruments to sort up to 40000 events per second may endow this technology a wide potential in the area of high-throughput screening and the directed evolution of enzymes.
Collapse
Affiliation(s)
- Kalia Bernath
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
57
|
Doi N, Kumadaki S, Oishi Y, Matsumura N, Yanagawa H. In vitro selection of restriction endonucleases by in vitro compartmentalization. Nucleic Acids Res 2004; 32:e95. [PMID: 15247328 PMCID: PMC484195 DOI: 10.1093/nar/gnh096] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Restriction endonucleases are widely used in laboratory applications from recombinant DNA technology to diagnostics, but engineering of restriction enzymes by structure-guided design and in vivo directed evolution is at an early stage. Here, we report the use of an in vitro compartmentalization system for completely in vitro selection of restriction enzymes. Compartmentalization of a single gene in a rabbit reticulocyte in vitro transcription/translation system serves to isolate individually synthesized enzymes from each other. In each compartment, an active enzyme cleaves only its own encoding gene, whereas genes encoding inactive enzymes remain intact. Affinity selection of the cleaved DNA encoding active restriction endonucleases was accomplished by the use of streptavidin-immobilized beads and dUTP-biotin, which was efficiently incorporated into the cohesive end of the cleaved DNA using a DNA polymerase. We confirmed that genes encoding active restriction endonuclease FokI could be selected from a randomized library. This method overcomes the limitations of current in vivo technologies and should prove useful for rapid screening and evolution of novel restriction enzymes from diverse mutant libraries, as well as for studies of catalytic and evolutionary mechanisms of restriction enzymes.
Collapse
Affiliation(s)
- Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | |
Collapse
|
58
|
Lindner A, Hollfelder F. European Symposium of Bio-Organic Chemistry 2003 (ESBOC): the evolution of catalysis. Chembiochem 2004; 5:241-3. [PMID: 14760746 PMCID: PMC7161992 DOI: 10.1002/cbic.200300796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ariel Lindner
- Laboratoire de Génétique Moléculaire Evolutive et Médicale, Université René Descartes-Paris V, France
| | | |
Collapse
|
59
|
Fa M, Radeghieri A, Henry AA, Romesberg FE. Expanding the Substrate Repertoire of a DNA Polymerase by Directed Evolution. J Am Chem Soc 2004; 126:1748-54. [PMID: 14871106 DOI: 10.1021/ja038525p] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid polymerases are the most important reagents in biotechnology. Unfortunately, their high substrate specificity severely limits their applications. Polymerases with tailored substrate repertoires would significantly expand their potential and allow enzymatic synthesis of unnatural polymers for in vivo and in vitro applications. For example, the ability to synthesize 2'-O-methyl-modified polymers would provide access to materials possessing properties that make them attractive for biotechnology and therapeutic applications, but unfortunately, no known polymerases are capable of efficiently accepting these modified substrates. To evolve such enzymes, we have developed an activity-based selection method which isolates polymerase mutants with the desired property from libraries of the enzyme displayed on phage. In this report, mutants that could efficiently synthesize an unnatural polymer from 2'-O-methyl ribonucleoside triphosphates were immobilized and isolated by means of their activity-dependent modification of a DNA oligonucleotide primer attached to the same phage particle. In each case, directed evolution resulted in relocating a critical side chain to a different position in the polypeptide, thus re-engineering the overall active site while preserving critical protein-DNA interactions. Remarkably, one evolved polymerase is shown to incorporate the modified substrates with an efficiency and fidelity equivalent to that of the wild-type enzyme with natural substrates.
Collapse
Affiliation(s)
- Ming Fa
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, USA
| | | | | | | |
Collapse
|
60
|
Strobel H, Ladant D, Jestin JL. In vitro selection for enzymatic activity: a model study using adenylate cyclase. J Mol Biol 2003; 332:1-7. [PMID: 12946341 DOI: 10.1016/s0022-2836(03)00920-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An in vitro enzyme selection that can, in principle, be generalised to most chemical reactions, is described. It makes use of filamentous phage display and of a tailor-made antibody fragment directed against the reaction product. The conversion of ATP into 3',5'-cyclic AMP catalysed by Bordetella pertussis adenylate cyclase is taken as an example.
Collapse
Affiliation(s)
- Heike Strobel
- Unité de Chimie Organique, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris 15, France
| | | | | |
Collapse
|
61
|
Fernandez-Gacio A, Uguen M, Fastrez J. Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 2003; 21:408-14. [PMID: 12948674 DOI: 10.1016/s0167-7799(03)00194-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Since its introduction in 1985, phage display has had a tremendous impact on the discovery of peptides that bind to a variety of receptors, the generation of binding sites within predefined scaffolds, and the creation of high-affinity antibodies without immunization. Its application to enzymology has required the development of techniques that couple enzymatic activity to selection protocols based on affinity chromatography. Here, we describe both indirect methods, using transition-state analogues and suicide substrates, and direct methods, using the ability of active phage-enzymes to transform substrate into product. The methods have been applied to large libraries for mechanistic-based studies and to generate variants with new or improved properties. In addition, such techniques have been successfully used to select catalytic antibodies and improve their catalytic efficiency.
Collapse
Affiliation(s)
- Ana Fernandez-Gacio
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, Université Catholique de Louvain, Place L. Pasteur, 1, B1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
62
|
James LC, Tawfik DS. Conformational diversity and protein evolution--a 60-year-old hypothesis revisited. Trends Biochem Sci 2003; 28:361-8. [PMID: 12878003 DOI: 10.1016/s0968-0004(03)00135-x] [Citation(s) in RCA: 440] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Leo C James
- Centre for Protein Engineering, Hills Road, Cambridge, UK CB2 2HQ
| | | |
Collapse
|
63
|
Cesaro-Tadic S, Lagos D, Honegger A, Rickard JH, Partridge LJ, Blackburn GM, Plückthun A. Turnover-based in vitro selection and evolution of biocatalysts from a fully synthetic antibody library. Nat Biotechnol 2003; 21:679-85. [PMID: 12754520 DOI: 10.1038/nbt828] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 02/21/2003] [Indexed: 11/08/2022]
Abstract
This report describes the selection of highly efficient antibody catalysts by combining chemical selection from a synthetic library with directed in vitro protein evolution. Evolution started from a naive antibody library displayed on phage made from fully synthetic, antibody-encoding genes (the Human Combinatorial Antibody Library; HuCAL-scFv). HuCAL-scFv was screened by direct selection for catalytic antibodies exhibiting phosphatase turnover. The substrate used was an aryl phosphate, which is spontaneously transformed into an electrophilic trapping reagent after cleavage. Chemical selection identified an efficient biocatalyst that then served as a template for error-prone PCR (epPCR) to generate randomized repertoires that were subjected to further selection cycles. The resulting superior catalysts displayed cumulative mutations throughout the protein sequence; the ten-fold improvement of their catalytic proficiencies (>10(10) M(-1)) resulted from increased kcat values, thus demonstrating direct selection for turnover. The strategy described here makes the search for new catalysts independent of the immune system and the antibody framework.
Collapse
Affiliation(s)
- Sandro Cesaro-Tadic
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
64
|
Griffiths AD, Tawfik DS. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 2003; 22:24-35. [PMID: 12505981 PMCID: PMC140064 DOI: 10.1093/emboj/cdg014] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe the selection of a phosphotriesterase with a very fast k(cat) (over 10(5) s(-1)), 63 times higher than the already very efficient wild-type enzyme. The enzyme was selected from a library of 3.4 x 10(7) mutated phosphotriesterase genes using a novel strategy based on linking genotype and phenotype by in vitro compartmentalization (IVC) using water-in-oil emulsions. First, microbeads, each displaying a single gene and multiple copies of the encoded protein, are formed by compartmentalized in vitro translation. These microbeads can then be selected for catalysis or binding. To select for catalysis the microbeads are re-emulsified in a reaction buffer of choice with a soluble substrate. The product and any unreacted substrate are coupled to the beads when the reaction is finished. Product-coated beads, displaying active enzymes and the genes that encode them, are detected with anti-product antibodies and selected using flow cytometry. This completely in vitro process selects for all enzymatic features simultaneously (substrate recognition, product formation, rate acceleration and turnover) and single enzyme molecules can be detected.
Collapse
Affiliation(s)
- Andrew D. Griffiths
- MRC Laboratory of Molecular Biology and
Centre for Protein Engineering, MRC Centre, Hills Road, Cambridge CB2 2QH, UK and Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76 100, Israel Corresponding authors e-mail: or
| | - Dan S. Tawfik
- MRC Laboratory of Molecular Biology and
Centre for Protein Engineering, MRC Centre, Hills Road, Cambridge CB2 2QH, UK and Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76 100, Israel Corresponding authors e-mail: or
| |
Collapse
|
65
|
Sepp A, Tawfik DS, Griffiths AD. Microbead display by in vitro compartmentalisation: selection for binding using flow cytometry. FEBS Lett 2002; 532:455-8. [PMID: 12482612 DOI: 10.1016/s0014-5793(02)03740-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In vitro compartmentalisation in an emulsion was used to physically link proteins to the DNA that encodes them via microbeads. These microbeads can be selected for catalysis, or, as demonstrated here, for binding. Genes encoding a peptide containing an epitope (haemagglutinin) were enriched to near purity from a 10(6)-fold excess of genes encoding a different peptide by two rounds of selection using flow cytometry, indicating approximately 1000-fold enrichment per round. Single beads can be isolated using flow sorting and the single gene on the bead amplified by polymerase chain reaction. Hence, the entire process can be performed completely in vitro.
Collapse
Affiliation(s)
- Armin Sepp
- MRC Laboratory of Molecular Biology, MRC Centre, Hills Road, CB2 2QH, Cambridge, UK
| | | | | |
Collapse
|
66
|
Abstract
It is 20 years since site-directed mutagenesis was first used to modify the active site of an enzyme of known structure and mechanism. Since then, this method has contributed far-reaching insights into catalysis, specificity, stability and folding of proteins. Engineered proteins are now being used in industry and for the improved treatment of human disease.
Collapse
|
67
|
Lee YF, Tawfik DS, Griffiths AD. Investigating the target recognition of DNA cytosine-5 methyltransferase HhaI by library selection using in vitro compartmentalisation. Nucleic Acids Res 2002; 30:4937-44. [PMID: 12433997 PMCID: PMC137165 DOI: 10.1093/nar/gkf617] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vitro compartmentalisation (IVC), a technique for selecting genes encoding enzymes based on compartmentalising gene translation and enzymatic reactions in emulsions, was used to investigate the interaction of the DNA cytosine-5 methyltransferase M.HhaI with its target DNA (5'-GCGC-3'). Crystallography shows that the active site loop from the large domain of M.HhaI interacts with a flipped-out cytosine (the target for methylation) and two target recognition loops (loops I and II) from the small domain make almost all the other base-specific interactions. A library of M.HhaI genes was created by randomising all the loop II residues thought to make base-specific interactions and directly determine target specificity. The library was selected for 5'-GCGC-3' methylation. Interestingly, in 11 selected active clones, 10 different sequences were found and none were wild-type. At two of the positions mutated (Ser252 and Tyr254) a number of different amino acids could be tolerated. At the third position, however, all active mutants had a glycine, as in wild-type M.HhaI, suggesting that Gly257 is crucial for DNA recognition and enzyme activity. Our results suggest that recognition of base pairs 3 and 4 of the target site either relies entirely on main chain interactions or that different residues from those identified in the crystal structure contribute to DNA recognition.
Collapse
Affiliation(s)
- Yin-Fai Lee
- The MRC Laboratory of Molecular Biology and. Centre for Protein Engineering, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
68
|
Otten LG, Sio CF, Vrielink J, Cool RH, Quax WJ. Altering the substrate specificity of cephalosporin acylase by directed evolution of the Beta -subunit. J Biol Chem 2002; 277:42121-7. [PMID: 12198140 DOI: 10.1074/jbc.m208317200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using directed evolution, we have selected an adipyl acylase enzyme that can be used for a one-step bioconversion of adipyl-7-aminodesacetoxycephalosporanic acid (adipyl-7-ADCA) to 7-ADCA, an important compound for the synthesis of semisynthetic cephalosporins. The starting point for the directed evolution was the glutaryl acylase from Pseudomonas SY-77. The gene fragment encoding the beta-subunit was divided into five overlapping parts that were mutagenized separately using error-prone PCR. Mutants were selected in a leucine-deficient host using adipyl-leucine as the sole leucine source. In total, 24 out of 41 plate-selected mutants were found to have a significantly improved ratio of adipyl-7-ADCA versus glutaryl-7-ACA hydrolysis. Several mutations around the substrate-binding site were isolated, especially in two hot spot positions: residues Phe-375 and Asn-266. Five mutants were further characterized by determination of their Michaelis-Menten parameters. Strikingly, mutant SY-77(N266H) shows a nearly 10-fold improved catalytic efficiency (k(cat)/K(m)) on adipyl-7-ADCA, resulting from a 50% increase in k(cat) and a 6-fold decrease in K(m), without decreasing the catalytic efficiency on glutaryl-7-ACA. In contrast, the improved adipyl/glutaryl activity ratio of mutant SY-77(F375L) mainly is a consequence of a decreased catalytic efficiency toward glutaryl-7-ACA. These results are discussed in the light of a structural model of SY-77 glutaryl acylase.
Collapse
Affiliation(s)
- Linda G Otten
- Department of Pharmaceutical Biology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, The Netherlands
| | | | | | | | | |
Collapse
|
69
|
Amstutz P, Pelletier JN, Guggisberg A, Jermutus L, Cesaro-Tadic S, Zahnd C, Plückthun A. In vitro selection for catalytic activity with ribosome display. J Am Chem Soc 2002; 124:9396-403. [PMID: 12167034 DOI: 10.1021/ja025870q] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report what is, to our knowledge, the first in vitro selection for catalytic activity based on catalytic turnover by using ribosome display, a method which does not involve living cells at any step. RTEM-beta-lactamase was functionally displayed on ribosomes as a complex with its encoding mRNA. We designed and synthesized a mechanism-based inhibitor of beta-lactamase, biotinylated ampicillin sulfone, appropriate for selection of catalytic activity of the ribosome-displayed beta-lactamase. This derivative of ampicillin inactivated beta-lactamase in a specific and irreversible manner. Under appropriate selection conditions, active RTEM-beta-lactamase was enriched relative to an inactive point mutant over 100-fold per ribosome display selection cycle. Selection for binding, carried out with beta-lactamase inhibitory protein (BLIP), gave results similar to selection with the suicide inhibitor, indicating that ribosome display is similarly efficient in catalytic activity and affinity selections. In the future, the capacity to select directly for enzymatic activity using an entirely in vitro process may allow for a significant increase in the explorable sequence space relative to existing strategies.
Collapse
Affiliation(s)
- Patrick Amstutz
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, Switzerland
| | | | | | | | | | | | | |
Collapse
|
70
|
Lindner AB, Kim SH, Schindler DG, Eshhar Z, Tawfik DS. Esterolytic antibodies as mechanistic and structural models of hydrolases-a quantitative analysis. J Mol Biol 2002; 320:559-72. [PMID: 12096909 DOI: 10.1016/s0022-2836(02)00418-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Understanding enzymes quantitatively and mimicking their remarkable catalytic efficiency is a paramount challenge. Here, we applied esterolytic antibodies (the D-Abs) to dissect and quantify individual elements of enzymatic catalysis such as transition state (TS) stabilization, nucleophilic reactivity and conformational changes. Kinetic and mutagenic analysis of the D-Abs were combined with existing structural evidence to show that catalysis by the D-Abs is driven primarily by stabilization of the tetrahedral oxyanionic intermediate of ester hydrolysis formed by the nucleophilic attack of an exogenous (solution) hydroxide anion. The side-chain of TyrH100d is shown to be the main H-bond donor of the D-Abs oxyanion hole. The pH-rate and pH-binding profiles indicate that the strength of this H-bond increases dramatically as the neutral substrate develops into the oxyanionic TS, resulting in TS stabilization of 5-7 kcal/mol, which is comparable to oxyanionic TS stabilization in serine hydrolases. We show that the rate of the exogenous (intermolecular) nucleophilic attack can be enhanced by 2000-fold by replacing the hydroxide nucleophile with peroxide, an alpha-nucleophile that is much more reactive than hydroxide. In the presence of peroxide, the rate saturates (k(cat)(max)) at 6 s(-1). This rate-ceiling appears to be dictated by the rate of the induced-fit conformational rearrangement leading to the active antibody-TS complex. The selective usage of negatively charged exogenous nucleophiles by the D-Abs led to the identification of a positively charged channel. Imprinted by the negatively-charged TS-analogue against which these antibodies were elicited, this channel presumably directs the nucleophile to the antibody-bound substrate. Our findings are discussed in comparison with serine esterases and, in particular, with cocaine esterase (cocE), which possesses a tyrosine based oxyanion hole.
Collapse
Affiliation(s)
- Ariel B Lindner
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
71
|
Dower WJ, Mattheakis LC. In vitro selection as a powerful tool for the applied evolution of proteins and peptides. Curr Opin Chem Biol 2002; 6:390-8. [PMID: 12023121 DOI: 10.1016/s1367-5931(02)00332-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
New in vitro methods for the applied evolution of protein structure and function complement conventional cellular and phage-based methods. Strategies employing the direct physical linkage of genotype and phenotype, and the compartmental association of gene and product to select desired properties are discussed, and recent useful applications are described. Engineering of antibodies and other proteins, selection from cDNA libraries, and the creation of functional protein domains from completely random starting sequences illustrate the value of the in vitro approaches. Also discussed is an emerging new direction for in vitro display technology: the self-assembly of protein arrays.
Collapse
Affiliation(s)
- William J Dower
- XenoPort, Inc., 3410 Central Expressway, Santa Clara, CA 95051, USA.
| | | |
Collapse
|
72
|
Xia G, Chen L, Sera T, Fa M, Schultz PG, Romesberg FE. Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc Natl Acad Sci U S A 2002; 99:6597-602. [PMID: 12011423 PMCID: PMC124448 DOI: 10.1073/pnas.102577799] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The creation of novel enzymatic function is of great interest, but remains a challenge because of the large sequence space of proteins. We have developed an activity-based selection method to evolve DNA polymerases with RNA polymerase activity. The Stoffel fragment (SF) of Thermus aquaticus DNA polymerase I is displayed on a filamentous phage by fusing it to a pIII coat protein, and the substrate DNA template/primer duplexes are attached to other adjacent pIII coat proteins. Phage particles displaying SF polymerases, which are able to extend the attached oligonucleotide primer by incorporating ribonucleoside triphosphates and biotinylated UTP, are immobilized to streptavidin-coated magnetic beads and subsequently recovered. After four rounds of screening an SF library, three SF mutants were isolated and shown to incorporate ribonucleoside triphosphates virtually as efficiently as the wild-type enzyme incorporates dNTP substrates.
Collapse
Affiliation(s)
- Gang Xia
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
With the rapid accumulation of genetic information, development of general experimental approach suitable for large scale annotation and profiling of the whole proteome have become one of the major challenges in postgenomic era. Biomolecular display technologies, which allow expressing of a large pool of modularly coded biomolecules, are extremely useful for accessing and analyzing protein diversity and interaction profile on a large scale. Recent advances in protein display technologies and their applications to proteomic analyses have been discussed.
Collapse
Affiliation(s)
- D Ma
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
74
|
Jékely G. Evolution in a nutshell. EMBL PhD student symposium on evolution. EMBO Rep 2002; 3:307-11. [PMID: 11943758 PMCID: PMC1084065 DOI: 10.1093/embo-reports/kvf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gáspár Jékely
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
75
|
Abstract
A variety of techniques can now be used to alter the genome of a cell. Although these techniques are very powerful, they have limitations related to cost and efficiency of scale. Artificial cells designed for specific applications combine properties of biological systems such as nanoscale efficiency, self-organization and adaptability at relatively low cost. Individual components needed for such structures have already been developed, and now the main challenge is to integrate them in functional microscopic compartments. It will then become possible to design and construct communities of artificial cells that can perform different tasks related to therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Andrew Pohorille
- Exobiology Branch, NASA-Ames Research Center, MS 239-4, 94035, Moffett Field, CA, USA.
| | | |
Collapse
|
76
|
James LC, Tawfik DS. Catalytic and binding poly-reactivities shared by two unrelated proteins: The potential role of promiscuity in enzyme evolution. Protein Sci 2001; 10:2600-7. [PMID: 11714928 PMCID: PMC2374036 DOI: 10.1110/ps.14601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is generally accepted that enzymes evolved via gene duplication of existing proteins. But duplicated genes can serve as a starting point for the evolution of a new function only if the protein they encode happens to exhibit some activity towards this new function. Although the importance of such catalytic promiscuity in enzyme evolution has been proposed, little is actually known regarding how common promiscuous catalytic activities are in proteins or their origins, magnitudes, and potential contribution to the survival of an organism. Here we describe a pattern of promiscuous activities in two completely unrelated proteins-serum albumins and a catalytic antibody (aldolase antibody 38C2). Despite considerable structural dissimilarities-in the shape of the cavities and the position of catalytic lysine residues-both active sites are able to catalyze the Kemp elimination, a model reaction for proton transfer from carbon. We also show that these different active sites can bind promiscuously an array of hydrophobic negatively charged ligands. We suggest that the basic active-site features of an apolar pocket and a lysine residue can act as a primitive active site allowing these promiscuous activities to take place. We also describe, by modelling product formation at different substrate concentrations, how promiscuous activities of this kind- inefficient and rudimentary as they are-can provide a considerable selective advantage and a starting point for the evolution of new functions.
Collapse
Affiliation(s)
- L C James
- Centre for Protein Engineering, Cambridge CB2 2HQ, United Kingdom
| | | |
Collapse
|
77
|
Hollfelder F, Kirby AJ, Tawfik DS. On the magnitude and specificity of medium effects in enzyme-like catalysts for proton transfer. J Org Chem 2001; 66:5866-74. [PMID: 11511264 DOI: 10.1021/jo015723v] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Medium effects are normally studied by comparing the rates of reactions in different solvents. However, medium effects at the active site of enzymes differ dramatically from bulk solvents, both in their diversity (the presence of more than one type of "solvent") and in their spatial arrangement. We describe medium effects in a simple catalytic system, obtained by systematic alkylation of a polymeric scaffold bearing amine groups to give synzymes that catalyze the Kemp elimination of benzisoxazoles with remarkable efficiency. Our analysis indicates that catalysis by these synzymes is driven primarily by specific, localized enzyme-like medium effects, and these effects seem to differ dramatically from the nonspecific medium effects (i.e., desolvation activation) exhibited by solvents. Ligand-binding studies indicate that the synzyme active sites provide localized microenvironments affording a combination of hydrophobic and apolar regions on one hand and dipolar, protic, and positively charged on the other. Such localized microenvironments are not available in bulk solvents. A Brønsted (leaving group) analysis indicates that, in comparison to solvent catalysis, the efficiency of synzyme catalysis shows little sensitivity to leaving group pK(a). We show that enzyme-like medium effects alone, in the absence of efficient positioning of the catalytic amine base relative to the substrate, can give rise to rate accelerations as high as 10(5), for both activated and nonactivated substrates. Supported by the accidental identification of active sites on the surfaces of noncatalytic proteins and the promiscuous activities found in many enzymes, our findings suggest that the interfaces of protein surfaces and their hydrophobic cores provide a microenvironment that is intrinsically active and may serve as a basis for further evolutionary improvements to give proficient and selective enzymes.
Collapse
Affiliation(s)
- F Hollfelder
- Department of Biochemistry, Cambridge CB2 2QW, UK
| | | | | |
Collapse
|
78
|
Amstutz P, Forrer P, Zahnd C, Plückthun A. In vitro display technologies: novel developments and applications. Curr Opin Biotechnol 2001; 12:400-5. [PMID: 11551470 DOI: 10.1016/s0958-1669(00)00234-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vitro display techniques are powerful tools to select polypeptide binders against various target molecules. Novel applications include maturation of protein affinity and stability, selection for enzymatic activity, and the display of cDNA and random polypeptide libraries. Taken together, these display techniques have great potential for biotechnological, medical and proteomic applications.
Collapse
Affiliation(s)
- P Amstutz
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
79
|
Abstract
The selection of mutant enzymes with novel properties from libraries is emerging as a very powerful strategy for enzyme engineering. The past year has witnessed significant progress on several fronts: new and improved methods have been developed for the creation of libraries and advances have been made in screening and selection techniques. The results achieved demonstrate the enormous potential of the methods and leave questions open for further studies.
Collapse
Affiliation(s)
- P Soumillion
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, Université Catholique de Louvain, 1 Place Louis Pasteur, B 1348 Louvain la-Neuve, Belgium
| | | |
Collapse
|
80
|
|
81
|
Ponsard I, Galleni M, Soumillion P, Fastrez J. Selection of metalloenzymes by catalytic activity using phage display and catalytic elution. Chembiochem 2001; 2:253-9. [PMID: 11828452 DOI: 10.1002/1439-7633(20010401)2:4<253::aid-cbic253>3.0.co;2-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The metallo-beta-lactamase betaLII from Bacillus cereus 569/H/9 was displayed on the filamentous phage fd. The phage-bound enzyme fd-betaLII was shown to be active on benzylpenicillin as substrate; it could be inactivated by complexation of the essential zinc(II) ion with EDTA and reactivated by addition of a zinc(II) salt. A selection process was designed to extract active phage-bound enzymes from libraries of mutants in three steps: 1. inactivation of active phage-bound enzymes by metal ion complexation, 2. binding to substrate-coated magnetic beads, 3. release of phages capable of transforming the substrate into product upon zinc salt addition. The selection process was first successfully tested on model mixtures containing fd-betaLII plus either a dummy phage, a phage displaying an inactive mutant of the serine beta-lactamase TEM-1, or inactive and low-activity mutants of betaLII. The selection was then applied to extract active phage-bound enzymes from a library of mutants generated by mutagenic polymerase chain reaction (PCR). The activity of the library was shown to increase 60-fold after two rounds of selection. Eleven clones from the second round were randomly picked for sequencing and to characterize their activity and stability.
Collapse
Affiliation(s)
- I Ponsard
- Laboratoire de Biochimie Physique et des Biopolymères, Université Catholique de Louvain, Place L. Pasteur, 1, Bte 1B, 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|