51
|
Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
Sarkisova SA, Lotlikar SR, Guragain M, Kubat R, Cloud J, Franklin MJ, Patrauchan MA. A Pseudomonas aeruginosa EF-hand protein, EfhP (PA4107), modulates stress responses and virulence at high calcium concentration. PLoS One 2014; 9:e98985. [PMID: 24918783 PMCID: PMC4053335 DOI: 10.1371/journal.pone.0098985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/09/2014] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a facultative human pathogen, and a major cause of nosocomial infections and severe chronic infections in endocarditis and in cystic fibrosis (CF) patients. Calcium (Ca2+) accumulates in pulmonary fluids of CF patients, and plays a role in the hyperinflammatory response to bacterial infection. Earlier we showed that P. aeruginosa responds to increased Ca2+ levels, primarily through the increased production of secreted virulence factors. Here we describe the role of putative Ca2+-binding protein, with an EF-hand domain, PA4107 (EfhP), in this response. Deletion mutations of efhP were generated in P. aeruginosa strain PAO1 and CF pulmonary isolate, strain FRD1. The lack of EfhP abolished the ability of P. aeruginosa PAO1 to maintain intracellular Ca2+ homeostasis. Quantitative high-resolution 2D-PAGE showed that the efhP deletion also affected the proteomes of both strains during growth with added Ca2+. The greatest proteome effects occurred when the pulmonary isolate was cultured in biofilms. Among the proteins that were significantly less abundant or absent in the mutant strains were proteins involved in iron acquisition, biosynthesis of pyocyanin, proteases, and stress response proteins. In support, the phenotypic responses of FRD1 ΔefhP showed that the mutant strain lost its ability to produce pyocyanin, developed less biofilm, and had decreased resistance to oxidative stress (H2O2) when cultured at high [Ca2+]. Furthermore, the mutant strain was unable to produce alginate when grown at high [Ca2+] and no iron. The effect of the ΔefhP mutations on virulence was determined in a lettuce model of infection. Growth of wild-type P. aeruginosa strains at high [Ca2+] causes an increased area of disease. In contrast, the lack of efhP prevented this Ca2+-induced increase in the diseased zone. The results indicate that EfhP is important for Ca2+ homeostasis and virulence of P. aeruginosa when it encounters host environments with high [Ca2+].
Collapse
Affiliation(s)
- Svetlana A. Sarkisova
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Shalaka R. Lotlikar
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Manita Guragain
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ryan Kubat
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - John Cloud
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Michael J. Franklin
- Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
53
|
López-Esteban S, Bartolomé JF, Dí Az LA, Esteban-Tejeda L, Prado C, López-Piriz R, Torrecillas R, Moya JS. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic. J Mech Behav Biomed Mater 2014; 34:302-12. [PMID: 24667693 DOI: 10.1016/j.jmbbm.2014.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Abstract
A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc).
Collapse
Affiliation(s)
- S López-Esteban
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - J F Bartolomé
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - L A Dí Az
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), [Consejo Superior de Investigaciones Científicas-Universidad de Oviedo-Principado de Asturias], Parque Tecnológico de Asturias, 33428 Llanera, Spain
| | - L Esteban-Tejeda
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - C Prado
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), [Consejo Superior de Investigaciones Científicas-Universidad de Oviedo-Principado de Asturias], Parque Tecnológico de Asturias, 33428 Llanera, Spain
| | - R López-Piriz
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), [Consejo Superior de Investigaciones Científicas-Universidad de Oviedo-Principado de Asturias], Parque Tecnológico de Asturias, 33428 Llanera, Spain
| | - R Torrecillas
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), [Consejo Superior de Investigaciones Científicas-Universidad de Oviedo-Principado de Asturias], Parque Tecnológico de Asturias, 33428 Llanera, Spain; Moscow State University of Technology STANKIN, Vadkovskij per. 1, Moscow Oblast, Moscow, Russian Federation
| | - J S Moya
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
54
|
Srivastava SS, Mishra A, Krishnan B, Sharma Y. Ca2+-binding motif of βγ-crystallins. J Biol Chem 2014; 289:10958-10966. [PMID: 24567326 DOI: 10.1074/jbc.o113.539569] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
βγ-Crystallin-type double clamp (N/D)(N/D)XX(S/T)S motif is an established but sparsely investigated motif for Ca(2+) binding. A βγ-crystallin domain is formed of two Greek key motifs, accommodating two Ca(2+)-binding sites. βγ-Crystallins make a separate class of Ca(2+)-binding proteins (CaBP), apparently a major group of CaBP in bacteria. Paralleling the diversity in βγ-crystallin domains, these motifs also show great diversity, both in structure and in function. Although the expression of some of them has been associated with stress, virulence, and adhesion, the functional implications of Ca(2+) binding to βγ-crystallins in mediating biological processes are yet to be elucidated.
Collapse
Affiliation(s)
- Shanti Swaroop Srivastava
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Amita Mishra
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Bal Krishnan
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Yogendra Sharma
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India.
| |
Collapse
|
55
|
Basic studies on the role of components of Bacillus megaterium as flotation biocollectors in sulphide mineral separation. Appl Microbiol Biotechnol 2013; 98:2719-28. [DOI: 10.1007/s00253-013-5251-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/09/2013] [Accepted: 09/07/2013] [Indexed: 11/26/2022]
|
56
|
Rai S, Bhaskar, Goel SK, Nath Dwivedi U, Sundar S, Goyal N. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani. PLoS One 2013; 8:e74862. [PMID: 24069359 PMCID: PMC3775726 DOI: 10.1371/journal.pone.0074862] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/06/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in Leishmania, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in Leishmania but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s) and expression profiles of known genes involved in transport and thiol based redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS We selected 7 clinical isolates (2 sensitive and 5 resistant) in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates. CONCLUSIONS/SIGNIFICANCE Here we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s) in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance.
Collapse
Affiliation(s)
- Smita Rai
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Bhaskar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sudhir K. Goel
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | | | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neena Goyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
57
|
Liu S, Zhang Z, Ni J. Effects of Ca2+ on activity restoration of the damaged anammox consortium. BIORESOURCE TECHNOLOGY 2013; 143:315-321. [PMID: 23811064 DOI: 10.1016/j.biortech.2013.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Intracellular free Ca(2+) are canonically well known as significant "second messenger" in cells and regarded as critical regulators of bacterial metabolism. We investigated the influence of Ca(2+) dosage on the restoration of anammox consortium, in which nearly 80% cells were dead or badly damaged. Chemical analysis and flow cytometry (FCM) demonstrated that Ca(2+) dosage was of primary importance and the restoration process was apparently faster with increasing Ca(2+) as its concentration was ranged 0.02-0.5mM in feeding. Using FCM and Fura red fluorescence labeling for analysis of intracellular free Ca(2+), we found a strong correlation between external Ca(2+) concentration in feeding and the levels of steady-state intracellular free Ca(2+), the abundance of which was considered as the intrinsic causes for favoring anammox consortium restoration. This study provides new insight into the ions effects on rapid restoration of damaged anammox consortium, targeting efficient nitrogen removal from wastewater with anammox process.
Collapse
Affiliation(s)
- Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, PR China.
| | | | | |
Collapse
|
58
|
Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, van Dijl JM. Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J Proteome Res 2013; 12:4101-10. [PMID: 23937099 DOI: 10.1021/pr400433h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gram-positive bacteria are known to export many proteins to the cell wall and growth medium, and accordingly, many studies have addressed the respective protein export mechanisms. In contrast, very little is known about the subsequent fate of these proteins. The present studies were therefore aimed at determining the fate of native exported proteins in the model organism Bacillus subtilis. Specifically, we employed a gel electrophoresis-based liquid chromatography-mass spectrometry approach to distinguish the roles of the membrane-associated quality control proteases HtrA and HtrB from those of eight other proteases that are present in the cell wall and/or growth medium of B. subtilis. Notably, HtrA and HtrB were previously shown to counteract potentially detrimental "protein export stresses" upon overproduction of membrane or secreted proteins. Our results show that many secreted proteins, lipoproteins, and membrane proteins of B. subtilis are potential substrates of extracytoplasmic proteases. Moreover, potentially important roles of HtrA and HtrB in the folding of native secreted proteins into a protease-resistant conformation, the liberation of lipoproteins from the membrane-cell wall interface, and the degradation of membrane proteins are uncovered. Altogether, our observations show that HtrA and HtrB are crucial for maintaining the integrity of the B. subtilis cell even under nonstress conditions.
Collapse
Affiliation(s)
- Laxmi Krishnappa
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Zhou Y, Xue S, Yang JJ. Calciomics: integrative studies of Ca2+-binding proteins and their interactomes in biological systems. Metallomics 2013; 5:29-42. [PMID: 23235533 DOI: 10.1039/c2mt20009k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium ion (Ca(2+)), the fifth most common chemical element in the earth's crust, represents the most abundant mineral in the human body. By binding to a myriad of proteins distributed in different cellular organelles, Ca(2+) impacts nearly every aspect of cellular life. In prokaryotes, Ca(2+) plays an important role in bacterial movement, chemotaxis, survival reactions and sporulation. In eukaryotes, Ca(2+) has been chosen through evolution to function as a universal and versatile intracellular signal. Viruses, as obligate intracellular parasites, also develop smart strategies to manipulate the host Ca(2+) signaling machinery to benefit their own life cycles. This review focuses on recent advances in applying both bioinformatic and experimental approaches to predict and validate Ca(2+)-binding proteins and their interactomes in biological systems on a genome-wide scale (termed "calciomics"). Calmodulin is used as an example of Ca(2+)-binding protein (CaBP) to demonstrate the role of CaBPs on the regulation of biological functions. This review is anticipated to rekindle interest in investigating Ca(2+)-binding proteins and Ca(2+)-modulated functions at the systems level in the post-genomic era.
Collapse
Affiliation(s)
- Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
60
|
Effect of calcium on Staphylococcus aureus biofilm architecture: A confocal laser scanning microscopic study. Colloids Surf B Biointerfaces 2013; 103:448-54. [DOI: 10.1016/j.colsurfb.2012.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 01/29/2023]
|
61
|
Abdian PL, Caramelo JJ, Ausmees N, Zorreguieta A. RapA2 is a calcium-binding lectin composed of two highly conserved cadherin-like domains that specifically recognize Rhizobium leguminosarum acidic exopolysaccharides. J Biol Chem 2012; 288:2893-904. [PMID: 23235153 DOI: 10.1074/jbc.m112.411769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In silico analyses have revealed a conserved protein domain (CHDL) widely present in bacteria that has significant structural similarity to eukaryotic cadherins. A CHDL domain was shown to be present in RapA, a protein that is involved in autoaggregation of Rhizobium cells, biofilm formation, and adhesion to plant roots as shown by us and others. Structural similarity to cadherins suggested calcium-dependent oligomerization of CHDL domains as a mechanistic basis for RapA action. Here we show by circular dichroism spectroscopy, light scattering, isothermal titration calorimetry, and other methods that RapA2 from Rhizobium leguminosarum indeed exhibits a cadherin-like β-sheet conformation and that its proper folding and stability are dependent on the binding of one calcium ion per protein molecule. By further in silico analysis we also reveal that RapA2 consists of two CHDL domains and expand the range of CHDL-containing proteins in bacteria and archaea. However, light scattering assays at various concentrations of added calcium revealed that RapA2 formed neither homo-oligomers nor hetero-oligomers with RapB (a distinct CHDL protein), indicating that RapA2 does not mediate cellular interactions through a cadherin-like mechanism. Instead, we demonstrate that RapA2 interacts specifically with the acidic exopolysaccharides (EPSs) produced by R. leguminosarum in a calcium-dependent manner, sustaining a role of these proteins in the development of the biofilm matrix made of EPS. Because EPS binding by RapA2 can only be attributed to its two CHDL domains, we propose that RapA2 is a calcium-dependent lectin and that CHDL domains in various bacterial and archaeal proteins confer carbohydrate binding activity to these proteins.
Collapse
Affiliation(s)
- Patricia L Abdian
- Fundación Instituto Leloir, IIBBA Consejo Nacional de Investigaciones Científicas y Tecnológicas, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | | | | | | |
Collapse
|
62
|
Moscatiello R, Baldan B, Squartini A, Mariani P, Navazio L. Oligogalacturonides: novel signaling molecules in Rhizobium-legume communications. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1387-1395. [PMID: 22835276 DOI: 10.1094/mpmi-03-12-0066-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oligogalacturonides are pectic fragments of the plant cell wall, whose signaling role has been described thus far during plant development and plant-pathogen interactions. In the present work, we evaluated the potential involvement of oligogalacturonides in the molecular communications between legumes and rhizobia during the establishment of nitrogen-fixing symbiosis. Oligogalacturonides with a degree of polymerization of 10 to 15 were found to trigger a rapid intracellular production of reactive oxygen species in Rhizobium leguminosarum bv. viciae 3841. Accumulation of H(2)O(2), detected by both 2',7'-dichlorodihydrofluorescein diacetate-based fluorescence and electron-dense deposits of cerium perhydroxides, was transient and did not affect bacterial cell viability, due to the prompt activation of the katG gene encoding a catalase. Calcium measurements carried out in R. leguminosarum transformed with the bioluminescent Ca(2+) reporter aequorin demonstrated the induction of a rapid and remarkable intracellular Ca(2+) increase in response to oligogalacturonides. When applied jointly with naringenin, oligogalacturonides effectively inhibited flavonoid-induced nod gene expression, indicating an antagonistic interplay between oligogalacturonides and inducing flavonoids in the early stages of plant root colonization. The above data suggest a novel role for oligogalacturonides as signaling molecules released in the rhizosphere in the initial rhizobium-legume interaction.
Collapse
|
63
|
Ercole C, Bozzelli P, Altieri F, Cacchio P, Del Gallo M. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:829-839. [PMID: 22697480 DOI: 10.1017/s1431927612000426] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallization in vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated from Bacillus firmus and Nocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium--in the presence or absence of calcium ions--and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation.
Collapse
Affiliation(s)
- Claudia Ercole
- Department of Basic and Applied Biology, University of L'Aquila, 67010 L'Aquila, Italy.
| | | | | | | | | |
Collapse
|
64
|
Morino M, Ito M. Functional expression of the multi-subunit type calcium/proton antiporter from Thermomicrobium roseum. FEMS Microbiol Lett 2012; 335:26-30. [PMID: 22774932 DOI: 10.1111/j.1574-6968.2012.02634.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) antiporters are widely distributed in various prokaryotes and have been reported to function as a hetero-oligomeric monovalent cation/proton antiporter, which exchanges a cytoplasmic monovalent cation (Na(+), Li(+), and/or K(+)) with extracellular H(+). In many organisms, they are essential for survival in alkaline or saline environments. Here, we report that the Mrp antiporter from the thermophilic gram-negative bacterium, Thermomicrobium roseum, does not catalyze monovalent cation/proton antiport like the Mrp antiporters studied to date, but catalyzes Ca(2+)/H(+) antiport in Escherichia coli membrane vesicles.
Collapse
Affiliation(s)
- Masato Morino
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | | |
Collapse
|
65
|
Karkare S, Yousafzai F, Mitchenall LA, Maxwell A. The role of Ca²⁺ in the activity of Mycobacterium tuberculosis DNA gyrase. Nucleic Acids Res 2012; 40:9774-87. [PMID: 22844097 PMCID: PMC3479174 DOI: 10.1093/nar/gks704] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA gyrase is the only type II topoisomerase in Mycobacterium tuberculosis and needs to catalyse DNA supercoiling, relaxation and decatenation reactions in order to fulfil the functions normally carried out by gyrase and DNA topoisomerase IV in other bacteria. We have obtained evidence for the existence of a Ca2+-binding site in the GyrA subunit of M. tuberculosis gyrase. Ca2+ cannot support topoisomerase reactions in the absence of Mg2+, but partial removal of Ca2+ from GyrA by dialysis against EGTA leads to a modest loss in relaxation activity that can be restored by adding back Ca2+. More extensive removal of Ca2+ by denaturation of GyrA and dialysis against EGTA results in an enzyme with greatly reduced enzyme activities. Mutation of the proposed Ca2+-binding residues also leads to loss of activity. We propose that Ca2+ has a regulatory role in M. tuberculosis gyrase and suggest a model for the modulation of gyrase activity by Ca2+ binding.
Collapse
Affiliation(s)
- Shantanu Karkare
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
66
|
Battesti A, Bouveret E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 2012; 58:325-34. [PMID: 22841567 DOI: 10.1016/j.ymeth.2012.07.018] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 05/29/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022] Open
Abstract
The bacterial two-hybrid system based on the reconstitution of adenylate cyclase in Escherichia coli (BACTH) was described 14years ago (Karimova, Pidoux, Ullmann, and Ladant, 1998, PNAS, 95:5752). For microbiologists, it is a practical and powerful alternative to the use of the widely spread yeast two-hybrid technology for testing protein-protein interactions. In this review, we aim at giving the reader clear and most importantly simple instructions that should break any reticence to try the technique. Yet, we also add recommendations in the use of the system, related to its specificities. Finally, we expose the advantages and disadvantages of the technique, and review its diverse applications in the literature, which should help in deciding if it is the appropriate method to choose for the case at hand.
Collapse
|
67
|
Santamaría-Hernando S, Krell T, Ramos-González MI. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins. PLoS One 2012; 7:e40698. [PMID: 22808235 PMCID: PMC3396595 DOI: 10.1371/journal.pone.0040698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33–79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca2+ binding with a KD of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.
Collapse
Affiliation(s)
- Saray Santamaría-Hernando
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María-Isabel Ramos-González
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| |
Collapse
|
68
|
LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease. J Bacteriol 2012; 194:4406-14. [PMID: 22707708 DOI: 10.1128/jb.00642-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biofilm formation by Pseudomonas fluorescens Pf0-1 requires the cell surface adhesin LapA. We previously reported that LapG, a periplasmic cysteine protease of P. fluorescens, cleaves the N terminus of LapA, thus releasing this adhesin from the cell surface and resulting in loss of the ability to make a biofilm. The activity of LapG is regulated by the inner membrane-localized cyclic-di-GMP receptor LapD via direct protein-protein interactions. Here we present chelation and metal add-back studies demonstrating that calcium availability regulates biofilm formation by P. fluorescens Pf0-1. The determination that LapG is a calcium-dependent protease, based on in vivo and in vitro studies, explains the basis of this calcium-dependent regulation. Based on the crystal structure of LapG of Legionella pneumophila in the accompanying report by Chatterjee and colleagues (D. Chatterjee et al., J. Bacteriol. 194:4415-4425, 2012), we show that the calcium-binding residues of LapG, D134 and E136, which are near the critical C135 active-site residue, are required for LapG activity of P. fluorescens in vivo and in vitro. Furthermore, we show that mutations in D134 and E136 result in LapG proteins no longer able to interact with LapD, indicating that calcium binding results in LapG adopting a conformation competent for interaction with the protein that regulates its activity. Finally, we show that citrate, an environmentally relevant calcium chelator, can impact LapG activity and thus biofilm formation, suggesting that a physiologically relevant chelator of calcium can impact biofilm formation by this organism.
Collapse
|
69
|
Combination of site-directed mutagenesis and calcium ion addition for enhanced production of thermostable MBP-fused heparinase I in recombinant Escherichia coli. Appl Microbiol Biotechnol 2012; 97:2907-16. [PMID: 22588503 DOI: 10.1007/s00253-012-4145-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/13/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Heparinase I (HepI), which specifically cleaves heparin and heparan sulfate, is one of the most extensively studied glycosaminoglycan lyases. Low productivity of HepI has largely hindered its industrial and pharmaceutical applications. Loss of bacterial HepI enzyme activity through poor thermostability during its expression and purification process in production can be an important issue. In this study, using a thermostabilization strategy combining site-directed mutagenesis and calcium ion addition during its production markedly improved the yield of maltose-binding protein-fused HepI (MBP-HepI) from recombinant Escherichia coli. Substitution of Cys297 to serine in MBP-HepI offered a 30.6% increase in the recovered total enzyme activity due to a mutation-induced thermostabilizing effect. Furthermore, upon addition of Ca2+ as a stabilizer at optimized concentrations throughout its expression, extraction, and purification process, purified mutant MBP-HepI showed a specific activity of 56.3 IU/mg, 206% higher than that of the wild type obtained without Ca2+ addition, along with a 177% increase in the recovered total enzyme activity. The enzyme obtained through this novel approach also exhibited significantly enhanced thermostability, as indicated by both experimental data and the kinetic modeling. High-yield production of thermostable MBP-HepI using the present system will facilitate its applications in laboratory-scale heparin analysis as well as industrial-scale production of low molecular weight heparin as an improved anticoagulant substitute.
Collapse
|
70
|
Abraham NM, Jefferson KK. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. MICROBIOLOGY-SGM 2012; 158:1504-1512. [PMID: 22442307 DOI: 10.1099/mic.0.057018-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is the leading cause of nosocomial infections and a major cause of community-acquired infections. Biofilm formation is a key virulence determinant in certain types of S. aureus infection, especially those involving inserted medical devices. We found in a previous study that the calcium chelators sodium citrate and EGTA inhibit biofilm formation in certain strains of S. aureus but actually augment biofilm formation in other strains. Even two closely related strains, Newman and 10833, exhibited strikingly different biofilm phenotypes in the presence of calcium chelators, in that biofilm formation was inhibited in Newman but augmented in 10833. We also found that the surface protein clumping factor B (ClfB) plays a role in this phenomenon. In this study, we confirm that ClfB is required for biofilm formation under calcium-depleted conditions. We investigated the post-translational regulation of ClfB-mediated biofilm formation and found evidence that both calcium and the protease aureolysin disrupt established ClfB-dependent biofilms. Finally, we investigated the genetic basis for the biofilm-negative phenotype in strain Newman versus the biofilm-positive phenotype in strain 10833 under calcium-depleted conditions and found that strain 10833 contains a deletion that results in a stop codon within the aureolysin gene (aur). When 10833 expressed Newman aur, surface-associated ClfB and the ability to form a biofilm in chelating conditions was lost. Thus, the positive effect of chelating agents on biofilm formation in certain strains can be explained by increased ClfB activity in the absence of calcium and the discrepancy in the response of strains 10833 and Newman can be explained by point mutations in aur. This study reveals a previously unknown, to our knowledge, role for ClfB in biofilm formation and underscores the potential for striking phenotypic variability resulting from minor differences in strain background.
Collapse
Affiliation(s)
- Nabil M Abraham
- Virginia Commonwealth University, Department of Microbiology and Immunology, PO Box 980678, Richmond, VA 23928, USA
| | - Kimberly K Jefferson
- Virginia Commonwealth University, Department of Microbiology and Immunology, PO Box 980678, Richmond, VA 23928, USA
| |
Collapse
|
71
|
Nikolaidis I, Izoré T, Job V, Thielens N, Breukink E, Dessen A. Calcium-dependent complex formation between PBP2 and lytic transglycosylase SltB1 of Pseudomonas aeruginosa. Microb Drug Resist 2012; 18:298-305. [PMID: 22432706 DOI: 10.1089/mdr.2012.0006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Gram-negative bacteria, the bacterial cell wall biosynthetic mechanism requires the coordinated action of enzymes and structural proteins located in the cytoplasm, within the membrane, and in the periplasm of the cell. Its main component, peptidoglycan (PG), is essential for cell division and wall elongation. Penicillin-binding proteins (PBPs) catalyze the last steps of PG biosynthesis, namely the polymerization of glycan chains and the cross-linking of stem peptides, and can be either monofunctional or bifunctional. Their action is coordinated with that of other enzymes essential for cell-wall biosynthesis, such as lytic transglycosylases (LT). Here, we have studied SltB1, an LT from Pseudomonas aeruginosa, and identified that it forms a complex with PBP2, a monofunctional enzyme, which requires the presence of Ca(2+). In addition, we have solved the structure of SltB1 to a high resolution, and identified that it harbors an EF-hand like motif containing a Ca(2+) ion displaying bipyramidal coordination. These studies provide initial structural details that shed light on the interactions between the PG biosynthesis enzymes in P. aeruginosa.
Collapse
Affiliation(s)
- Ioulia Nikolaidis
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, Grenoble, France
| | | | | | | | | | | |
Collapse
|
72
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
73
|
Arockiasamy A, Aggarwal A, Savva CG, Holzenburg A, Sacchettini JC. Crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site. Protein Sci 2011; 20:827-33. [PMID: 21370306 PMCID: PMC3125867 DOI: 10.1002/pro.607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/01/2011] [Indexed: 01/07/2023]
Abstract
In eukaryotes, calcium-binding proteins play a pivotal role in diverse cellular processes, and recent findings suggest similar roles for bacterial proteins at different stages in their life cycle. Here, we report the crystal structure of calcium dodecin, Rv0379, from Mycobacterium tuberculosis with a dodecameric oligomeric assembly and a unique calcium-binding motif. Structure and sequence analysis were used to identify orthologs of Rv0379 with different ligand-binding specificity.
Collapse
Affiliation(s)
- Arulandu Arockiasamy
- Department of Biochemistry and Biophysics, Texas A&M University, College StationTexas 77843-2128
| | - Anup Aggarwal
- Department of Biochemistry and Biophysics, Texas A&M University, College StationTexas 77843-2128
| | - Christos G Savva
- Microscopy and Imaging Center and Department of Biology, Texas A&M University, Biological Sciences Building West, College StationTexas 77843-2257
| | - Andreas Holzenburg
- Microscopy and Imaging Center and Department of Biology, Texas A&M University, Biological Sciences Building West, College StationTexas 77843-2257
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College StationTexas 77843-2128
- Center for Structural Biology, Institute of Biosciences and TechnologyHouston, Texas 77030
| |
Collapse
|
74
|
Munaron L. Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity. World J Biol Chem 2011; 2:59-66. [PMID: 21537474 PMCID: PMC3083947 DOI: 10.4331/wjbc.v2.i4.59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 02/05/2023] Open
Abstract
Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as “hubs”, thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular “hubs”, including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations.
Collapse
Affiliation(s)
- Luca Munaron
- Luca Munaron, Department of Animal and Human Biology, Nanostructured Interfaces and Surfaces Centre of Excellence, Center for Complex Systems in Molecular Biology and Medicine, University of Torino, 10123 Torino, Italy
| |
Collapse
|
75
|
Chatterjee T, Mukherjee D, Dey S, Pal A, Hoque KM, Chakrabarti P. Accessory cholera enterotoxin, Ace, from Vibrio cholerae: structure, unfolding, and virstatin binding. Biochemistry 2011; 50:2962-72. [PMID: 21366345 DOI: 10.1021/bi101673x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae accessory cholera enterotoxin (Ace) is the third toxin, along with cholera toxin (CT) and zonula occludens toxin (Zot), that causes the endemic disease cholera. Structural characterization of Ace has been restricted because of the limited production of this toxic protein by V. cholerae. We have cloned, overexpressed, and purified Ace from V. cholerae strain O395 in Escherichia coli to homogeneity and determined its biological activity. The unfolding of the purified protein was investigated using circular dichroism and intrinsic tryptophan fluorescence. Because Ace is predominantly a hydrophobic protein, the degree of exposure of hydrophobic regions was identified from the spectral changes of the environment-sensitive fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) that quenches the fluorescence of tryptophan residues of Ace in a concentration-dependent manner. Results showed that bis-ANS binds one monomeric unit of Ace with a 1:1 stoichiometry and a K' of 0.72 μM. Ace exists as a dimer, with higher oligomeric forms appearing upon glutaraldehyde cross-linking. This study also reports the binding of virstatin, a small molecule that inhibits virulence regulation in V. cholerae, to Ace. The binding constant (K=9×10(4) M(-1)) and the standard free energy change (ΔG°=-12 kcal mol(-1)) of Ace-virstatin interaction have been evaluated by the fluorescence quenching method. The binding does not affect the oligomeric status of Ace. A cell viability assay of the antibacterial activity of Ace has been performed using various microbial strains. A homology model of Ace, consistent with the experimental results, has been constructed.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
Vertebrates have a large glycoprotein hormone, stanniocalcin, which originally was shown to inhibit calcium uptake from the environment in teleost fish gills. Later, humans, other mammals, and teleost fish were shown to have two forms of stanniocalcin (STC1 and STC2) that were widely distributed in many tissues. STC1 is associated with calcium and phosphate homeostasis and STC2 with phosphate, but their receptors and signaling pathways have not been elucidated. We undertook a phylogenetic investigation of stanniocalcin beyond the vertebrates using a combination of BLAST and HMMER homology searches in protein, genomic, and expressed sequence tag databases. We identified novel STC homologs in a diverse array of multicellular and unicellular organisms. Within the eukaryotes, almost all major taxonomic groups except plants and algae have STC homologs, although some groups like echinoderms and arthropods lack STC genes. The critical structural feature for recognition of stanniocalcins was the conserved pattern of ten cysteines, even though the amino acid sequence identity was low. Signal peptides in STC sequences suggest they are secreted from the cell of synthesis. The role of glycosylation signals and additional cysteines is not yet clear, although the 11th cysteine, if present, has been shown to form homodimers in some vertebrates. We predict that large secreted stanniocalcin homologs appeared in evolution as early as single-celled eukaryotes. Stanniocalcin's tertiary structure with five disulfide bonds and its primary structure with modest amino acid conservation currently lack an established receptor-signaling system, although we suggest possible alternatives.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | |
Collapse
|
77
|
Hu Y, Zhang X, Shi Y, Zhou Y, Zhang W, Su XD, Xia B, Zhao J, Jin C. Structures of Anabaena calcium-binding protein CcbP: insights into Ca2+ signaling during heterocyst differentiation. J Biol Chem 2011; 286:12381-8. [PMID: 21330362 DOI: 10.1074/jbc.m110.201186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ca2+-binding proteins play pivotal roles in both eukaryotic and prokaryotic cells. CcbP from cyanobacterium Anabaena sp. strain PCC 7120 is a major Ca2+-binding protein involved in heterocyst differentiation, a process that forms specialized nitrogen-fixing cells. The three-dimensional structures of both Ca2+-free and Ca2+-bound forms of CcbP are essential for elucidating the Ca2+-signaling mechanism. However, CcbP shares low sequence identity with proteins of known structures, and its Ca2+-binding sites remain unknown. Here, we report the solution structures of CcbP in both Ca2+-free and Ca2+-bound forms determined by nuclear magnetic resonance spectroscopy. CcbP adopts an overall new fold and contains two Ca2+-binding sites with distinct Ca2+-binding abilities. Mutation of Asp38 at the stronger Ca2+-binding site of CcbP abolished its ability to regulate heterocyst formation in vivo. Surprisingly, the β-barrel subdomain of CcbP, which does not participate in Ca2+-binding, topologically resembles the Src homology 3 (SH3) domain and might act as a protein-protein interaction module. Our results provide the structural basis of the unique Ca2+ signaling mechanism during heterocyst differentiation.
Collapse
Affiliation(s)
- Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, State Key Laboratory of Plant and Protein Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Bucholc M, Ciesielski A, Goch G, Anielska-Mazur A, Kulik A, Krzywińska E, Dobrowolska G. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor. J Biol Chem 2011; 286:3429-41. [PMID: 21098029 PMCID: PMC3030349 DOI: 10.1074/jbc.m110.115535] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 11/18/2010] [Indexed: 01/12/2023] Open
Abstract
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.
Collapse
Affiliation(s)
- Maria Bucholc
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 and
| | - Arkadiusz Ciesielski
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 and
- the Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Grażyna Goch
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 and
| | - Anna Anielska-Mazur
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 and
| | - Anna Kulik
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 and
| | - Ewa Krzywińska
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 and
| | - Grażyna Dobrowolska
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 and
| |
Collapse
|
79
|
Moon YJ, Park YM, Chung YH, Choi JS. Calcium Is Involved in Photomovement of Cyanobacterium Synechocystis sp. PCC 6803¶. Photochem Photobiol 2011. [DOI: 10.1111/j.1751-1097.2004.tb09865.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
80
|
Raman R, Rajanikanth V, Palaniappan RUM, Lin YP, He H, McDonough SP, Sharma Y, Chang YF. Big domains are novel Ca²+-binding modules: evidences from big domains of Leptospira immunoglobulin-like (Lig) proteins. PLoS One 2010; 5:e14377. [PMID: 21206924 PMCID: PMC3012076 DOI: 10.1371/journal.pone.0014377] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/24/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca²+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca²+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. PRINCIPAL FINDINGS We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9(th) (Lig A9) and 10(th) repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca²+ with dissociation constants of 2-4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. CONCLUSIONS We demonstrate that the Lig are Ca²+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca²+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca²+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca²+ binding.
Collapse
Affiliation(s)
- Rajeev Raman
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - V. Rajanikanth
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Raghavan U. M. Palaniappan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yi-Pin Lin
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Hongxuan He
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sean P. McDonough
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yogendra Sharma
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
- * E-mail: (YS); (YC)
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (YS); (YC)
| |
Collapse
|
81
|
Ouattara M, Cunha EB, Li X, Huang YS, Dixon D, Eichenbaum Z. Shr of group A streptococcus is a new type of composite NEAT protein involved in sequestering haem from methaemoglobin. Mol Microbiol 2010; 78:739-56. [PMID: 20807204 DOI: 10.1111/j.1365-2958.2010.07367.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A growing body of evidence suggests that surface or secreted proteins with NEAr Transporter (NEAT) domains play a central role in haem acquisition and trafficking across the cell envelope of Gram-positive bacteria. Group A streptococcus (GAS), a β-haemolytic human pathogen, expresses a NEAT protein, Shr, which binds several haemoproteins and extracellular matrix (ECM) components. Shr is a complex, membrane-anchored protein, with a unique N-terminal domain (NTD) and two NEAT domains separated by a central leucine-rich repeat region. In this study we have carried out an analysis of the functional domains in Shr. We show that Shr obtains haem in solution and furthermore reduces the haem iron; this is the first report of haem reduction by a NEAT protein. More specifically, we demonstrate that both of the constituent NEAT domains of Shr are responsible for binding haem, although they are missing a critical tyrosine residue found in the ligand-binding pocket of other haem-binding NEAT domains. Further investigations show that a previously undescribed region within the Shr NTD interacts with methaemoglobin. Shr NEAT domains, however, do not contribute significantly to the binding of methaemoglobin but mediate binding to the ECM components fibronectin and laminin. A protein fragment containing the NTD plus the first NEAT domain was found to be sufficient to sequester haem directly from methaemoglobin. Correlating these in vitro findings to in vivo biological function, mutants analysis establishes the role of Shr in GAS growth with methaemoglobin as a sole source of iron, and indicates that at least one NEAT domain is necessary for the utilization of methaemoglobin. We suggest that Shr is the prototype of a new group of NEAT composite proteins involved in haem uptake found in pyogenic streptococci and Clostridium novyi.
Collapse
Affiliation(s)
- Mahamoudou Ouattara
- Department of Biology,College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|
82
|
Abbott DW, Gilbert HJ, Boraston AB. The active site of oligogalacturonate lyase provides unique insights into cytoplasmic oligogalacturonate beta-elimination. J Biol Chem 2010; 285:39029-38. [PMID: 20851883 DOI: 10.1074/jbc.m110.153981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oligogalacturonate lyases (OGLs; now also classified as pectate lyase family 22) are cytoplasmic enzymes found in pectinolytic members of Enterobacteriaceae, such as the enteropathogen Yersinia enterocolitica. OGLs utilize a β-elimination mechanism to preferentially catalyze the conversion of saturated and unsaturated digalacturonate into monogalacturonate and the 4,5-unsaturated monogalacturonate-like molecule, 5-keto-4-deoxyuronate. To provide mechanistic insights into the specificity of this enzyme activity, we have characterized the OGL from Y. enterocolitica, YeOGL, on oligogalacturonides and determined its three-dimensional x-ray structure to 1.65 Å. The model contains a Mn(2+) atom in the active site, which is coordinated by three histidines, one glutamine, and an acetate ion. The acetate mimics the binding of the uronate group of galactourono-configured substrates. These findings, in combination with enzyme kinetics and metal supplementation assays, provide a framework for modeling the active site architecture of OGL. This enzyme appears to contain a histidine for the abstraction of the α-proton in the -1 subsite, a residue that is highly conserved throughout the OGL family and represents a unique catalytic base among pectic active lyases. In addition, we present a hypothesis for an emerging relationship observed between the cellular distribution of pectate lyase folding and the distinct metal coordination chemistries of pectate lyases.
Collapse
Affiliation(s)
- D Wade Abbott
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
83
|
Zhao X, Pang H, Wang S, Zhou W, Yang K, Bartlam M. Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium binding protein. Protein Cell 2010; 1:771-9. [PMID: 21203918 PMCID: PMC4875191 DOI: 10.1007/s13238-010-0085-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/10/2010] [Indexed: 01/07/2023] Open
Abstract
The important and diverse regulatory roles of Ca(2+) in eukaryotes are conveyed by the EF-hand containing calmodulin superfamily. However, the calcium-regulatory proteins in prokaryotes are still poorly understood. In this study, we report the three-dimensional structure of the calcium-binding protein from Streptomyces coelicolor, named CabD, which shares low sequence homology with other known helix-loop-helix EF-hand proteins. The CabD structure should provide insights into the biological role of the prokaryotic calcium-binding proteins. The unusual structural features of CabD compared with prokaryotic EF-hand proteins and eukaryotic sarcoplasmic calcium-binding proteins, including the bending conformation of the first C-terminal α-helix, unpaired ligand-binding EF-hands and the lack of the extreme C-terminal loop region, suggest it may have a distinct and significant function in calcium-mediated bacterial physiological processes, and provide a structural basis for potential calcium-mediated regulatory roles in prokaryotes.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| | - Hai Pang
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| | - Shenglan Wang
- Center for Microbial Metabolism and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Weihong Zhou
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Keqian Yang
- Center for Microbial Metabolism and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Mark Bartlam
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
84
|
Balsanelli E, Serrato RV, de Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 2010; 12:2233-44. [PMID: 21966916 DOI: 10.1111/j.1462-2920.2010.02187.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues.
Collapse
Affiliation(s)
- Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Yu Y, Zhang Y, Song X, Jin M, Guan Q, Zhang Q, Li S, Wei C, Lu G, Zhang J, Ren H, Sheng X, Wang C, Du L. Alternative splicing and tissue expression of CIB4 gene in sheep testis. Anim Reprod Sci 2010; 120:1-9. [PMID: 20236775 DOI: 10.1016/j.anireprosci.2010.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 12/21/2009] [Accepted: 01/08/2010] [Indexed: 11/18/2022]
Abstract
In this study, the sheep CIB4 cDNA was cloned from the small tail Han sheep by RT-PCR and RACE (rapid amplification of cDNA ends), and CIB4 cDNA and amino acid sequence were analyzed. Our results showed that the sheep CIB4 gene expressed two alternatively spliced variants L-CIB4 (long CIB4) and S-CIB4 (short CIB4). Sequence analysis indicated that the sheep CIB4 cDNA cloned (L-CIB4) was 745-bp in length (GenBank accession number: FJ039532) with 185 amino acids residues. The sheep CIB4 cDNA showed more than 72% of sequence identity, at the nucleotide level, to its equivalents in cattle, horse, chimpanzee, humans, mice and rats, while at the deduced protein level, the value increased to 79.6%. Semi-quantitative RT-PCR using total RNA from different tissues showed that CIB4 has a strong tissue-specific expression pattern in sheep. L-CIB4 expression level was shown to be no different in small tail Han sheep and the Dorset ram, but both were significantly different from the Texel (P<0.05). Surprisingly, the short spliced form, S-CIB4, could only be detected in small tail Han sheep, suggesting that CIB4 may be linked in some way to the high fecundity of this breed.
Collapse
Affiliation(s)
- Yan Yu
- Institute of Animal Science Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Aravind P, Mishra A, Suman SK, Jobby MK, Sankaranarayanan R, Sharma Y. The betagamma-crystallin superfamily contains a universal motif for binding calcium. Biochemistry 2010; 48:12180-90. [PMID: 19921810 DOI: 10.1021/bi9017076] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The betagamma-crystallin superfamily consists of evolutionarily related proteins with domain topology similar to lens beta- and gamma-crystallins, formed from duplicated Greek key motifs. Ca(2+) binding was found in a few betagamma-crystallin members earlier, although its prevalence and diversity as inherent molecular properties among members of the superfamily are not well studied. To increase our understanding of Ca(2+) binding in various betagamma-crystallins, we undertook comprehensive structural and Ca(2+)-binding studies of seven members of the superfamily from bacteria, archaea, and vertebrates, including determination of high-resolution crystal structures of three proteins. Our structural observations show that the determinants of Ca(2+) coordination remain conserved in the form of an N/D-N/D-#-I-S/T-S motif in all domains. However, binding of Ca(2+) elicits varied physicochemical responses, ranging from passive sequestration to active stabilization. The motif in this superfamily is modified in some members like lens crystallins where Ca(2+)-binding abilities are partly or completely compromised. We show that reduction or loss of Ca(2+) binding in members of the superfamily, particularly in vertebrates, is due to the selective presence of unfavorable amino acids (largely Arg) at key Ca(2+)-ligation positions and that engineering of the canonical Ca(2+)-binding residues can confer binding activity on an otherwise inactive domain. Through this work, we demonstrate that betagamma-crystallins with the N/D-N/D-#-I-S/T-S motif form an extensive set of Ca(2+)-binding proteins prevalent in all of the three kingdoms of life.
Collapse
Affiliation(s)
- Penmatsa Aravind
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | | | | | | | | | | |
Collapse
|
87
|
Tung JY, Yang CW, Chou SW, Lin CC, Sun YJ. Calcium binds to LipL32, a lipoprotein from pathogenic Leptospira, and modulates fibronectin binding. J Biol Chem 2009; 285:3245-52. [PMID: 19948735 DOI: 10.1074/jbc.m109.006320] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubulointerstitial nephritis is a cardinal renal manifestation of leptospirosis. LipL32, a major lipoprotein and a virulence factor, locates on the outer membrane of the pathogen Leptospira. It evades immune response by recognizing and adhering to extracellular matrix components of the host cell. The crystal structure of Ca(2+)-bound LipL32 was determined at 2.3 A resolution. LipL32 has a novel polyD sequence of seven aspartates that forms a continuous acidic surface patch for Ca(2+) binding. A significant conformational change was observed for the Ca(2+)-bound form of LipL32. Calcium binding to LipL32 was determined by isothermal titration calorimetry. The binding of fibronectin to LipL32 was observed by Stains-all CD and enzyme-linked immunosorbent assay experiments. The interaction between LipL32 and fibronectin might be associated with Ca(2+) binding. Based on the crystal structure of Ca(2+)-bound LipL32 and the Stains-all results, fibronectin probably binds near the polyD region on LipL32. Ca(2+) binding to LipL32 might be important for Leptospira to interact with the extracellular matrix of the host cell.
Collapse
Affiliation(s)
- Jung-Yu Tung
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
88
|
Moscatiello R, Alberghini S, Squartini A, Mariani P, Navazio L. Evidence for calcium-mediated perception of plant symbiotic signals in aequorin-expressing Mesorhizobium loti. BMC Microbiol 2009; 9:206. [PMID: 19775463 PMCID: PMC2759959 DOI: 10.1186/1471-2180-9-206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/23/2009] [Indexed: 11/22/2022] Open
Abstract
Background During the interaction between rhizobia and leguminous plants the two partners engage in a molecular conversation that leads to reciprocal recognition and ensures the beginning of a successful symbiotic integration. In host plants, intracellular Ca2+ changes are an integral part of the signalling mechanism. In rhizobia it is not yet known whether Ca2+ can act as a transducer of symbiotic signals. Results A plasmid encoding the bioluminescent Ca2+ probe aequorin was introduced into Mesorhizobium loti USDA 3147T strain to investigate whether a Ca2+ response is activated in rhizobia upon perception of plant root exudates. We find that M. loti cells respond to environmental and symbiotic cues through transient elevations in intracellular free Ca2+ concentration. Only root exudates from the homologous host Lotus japonicus induce Ca2+ signalling and downstream activation of nodulation genes. The extracellular Ca2+ chelator EGTA inhibits both transient intracellular Ca2+ increase and inducible nod gene expression, while not affecting the expression of other genes, either constitutively expressed or inducible. Conclusion These findings indicate a newly described early event in the molecular dialogue between plants and rhizobia and highlight the use of aequorin-expressing bacterial strains as a promising novel approach for research in legume symbiosis.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Dipartimento di Biologia, Università di Padova, Via U, Bassi 58/B, 35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
89
|
Feng Y, Yao H, Wang J. Solution structure and calcium binding of protein SSO6904 from the hyperthermophilic archaeonSulfolobus solfataricus. Proteins 2009; 78:474-9. [DOI: 10.1002/prot.22580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
Hauk P, Guzzo CR, Ramos HR, Ho PL, Farah CS. Structure and Calcium-Binding Activity of LipL32, the Major Surface Antigen of Pathogenic Leptospira sp. J Mol Biol 2009; 390:722-36. [DOI: 10.1016/j.jmb.2009.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
|
91
|
Fujisawa M, Wada Y, Tsuchiya T, Ito M. Characterization of Bacillus subtilis YfkE (ChaA): a calcium-specific Ca2+/H+ antiporter of the CaCA family. Arch Microbiol 2009; 191:649-57. [PMID: 19543710 DOI: 10.1007/s00203-009-0494-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 11/29/2022]
Abstract
YfkE, a protein from Bacillus subtilis, exhibits homology to the Ca(2+):Cation Antiporter (CaCA) Family. In a fluorescence-based assay of everted membrane vesicles prepared from Na(+)(Ca(2+))/H(+) antiporter-defective mutant Escherichia coli KNabc, YfkE exhibited robust Ca(2+)/H(+) antiport activity, with a K (m) for Ca(2+) estimated at 12.5 muM at pH 8.5 and 113 muM at pH 7.5. Neither Na(+) nor K(+) served as a substrate. Mg(2+) also did not serve as a substrate, but inhibited the Ca(2+)/H(+) antiporter activity. The Ca(2+) transport capability of YfkE was also observed directly by transport assays in everted membrane vesicles using radiolabeled (45)Ca(2+). Transcriptional analysis from the putative yfkED operon using beta-garactosidase activity as a reporter revealed that both of the yfkE and yfkD genes are regulated by forespore-specific sigma factor, SigG, and the general stress response regulator, SigB. These results suggest that YfkE may be needed for Ca(2+) signaling in the sporulation or germination process in B. subtilis. ChaA is proposed as the designation for YfkE of B. subtilis.
Collapse
Affiliation(s)
- Makoto Fujisawa
- Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | | | | | | |
Collapse
|
92
|
Extracellular Ca2+ transients affect poly-(R)-3-hydroxybutyrate regulation by the AtoS-AtoC system in Escherichia coli. Biochem J 2009; 417:667-72. [DOI: 10.1042/bj20081169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Escherichia coli is exposed to wide extracellular concentrations of Ca2+, whereas the cytosolic levels of the ion are subject to stringent control and are implicated in many physiological functions. The present study shows that extracellular Ca2+ controls cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis through the AtoS-AtoC two-component system. Maximal cPHB accumulation was observed at higher [Ca2+]e (extracellular Ca2+ concentration) in AtoS-AtoC-expressing E. coli compared with their ΔatoSC counterparts, in both cytosolic and membrane fractions. The reversal of EGTA-mediated down-regulation of cPHB biosynthesis by the addition of Ca2+ and Mg2+ was under the control of the AtoS-AtoC system. Moreover, the Ca2+-channel blocker verapamil reduced total and membrane-bound cPHB levels, the inhibitory effect being circumvented by Ca2+ addition only in atoSC+ bacteria. Histamine and compound 48/80 affected cPHB accumulation in a [Ca2+]e-dependent manner directed by the AtoS-AtoC system. In conclusion, these data provide evidence for the involvement of external Ca2+ on cPHB synthesis regulated by the AtoS-AtoC two-component system, thus linking Ca2+ with a signal transduction system, most probably through a transporter.
Collapse
|
93
|
Yu Y, Song X, Du L, Wang C. Molecular characterization of the sheep CIB1 gene. Mol Biol Rep 2008; 36:1799-809. [DOI: 10.1007/s11033-008-9383-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/17/2008] [Indexed: 11/27/2022]
|
94
|
Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:985-92. [PMID: 19022300 DOI: 10.1016/j.bbamcr.2008.10.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/15/2008] [Indexed: 01/27/2023]
Abstract
Calcium serves as a critical messenger in many adaptation and developmental processes. Cellular calcium signals are detected and transmitted by sensor molecules such as calcium-binding proteins. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of protein kinases (CIPKs). Several CBL proteins appear to be targeted to the plasma membrane by means of dual lipid modification by myristoylation and S-acylation. In addition, CBL/CIPK complexes have been identified in other cellular localizations, suggesting that this network may confer spatial specificity in Ca2+ signaling. Molecular genetics analyses of loss-of function mutants have implicated several CBL proteins and CIPKs as important components of abiotic stress responses, hormone reactions and ion transport processes. The occurrence of CBL and CIPK proteins appears not to be restricted to the plant kingdom raising the question about the function of these Ca2+ decoding components in non-plant species.
Collapse
Affiliation(s)
- Oliver Batistic
- Institut für Botanik, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | | |
Collapse
|
95
|
Bekker OB, Elizarov SM, Alekseeva MT, Lyubimova IK, Danilenko VN. Ca2+-dependent modulation of antibiotic resistance in Streptomyces lividans 66 and Streptomyces coelicolor A3(2). Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708050081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
96
|
Zhao X, Wang S, Pang H, Yang K, Bartlam M. Crystallization and preliminary X-ray diffraction studies of the calcium-binding protein CalD from Streptomyces coelicolor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:816-8. [PMID: 18765912 DOI: 10.1107/s1744309108019891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 06/30/2008] [Indexed: 11/11/2022]
Abstract
Calcium ions play an important regulatory role in eukaryotes. However, the regulatory roles of Ca(2+) in prokaryotes are poorly understood. CalD, an 18 kDa calcium-binding protein from the model actinomycete Streptomyces coelicolor A3(2), was purified and crystallized for structure determination by X-ray crystallography. Crystals of CalD that were suitable for X-ray diffraction were obtained using the hanging-drop vapour-diffusion method and diffraction data were collected in-house to 1.56 A resolution. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 32.9, b = 51.0, c = 87.0 A, alpha = beta = gamma = 90.0 degrees . There is one protein molecule per asymmetric unit.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
97
|
Crystal-structure and biochemical characterization of recombinant human calcyphosine delineates a novel EF-hand-containing protein family. J Mol Biol 2008; 383:455-64. [PMID: 18775726 DOI: 10.1016/j.jmb.2008.08.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/07/2008] [Accepted: 08/12/2008] [Indexed: 01/08/2023]
Abstract
Calcyphosine is an EF-hand protein involved in both Ca(2+)-phosphatidylinositol and cyclic AMP signal cascades, as well as in other cellular functions. The crystal structure of Ca(2+)-loaded calcyphosine was determined up to 2.65 A resolution and reveals a protein containing two pairs of Ca(2+)-binding EF-hand motifs. Calcyphosine shares a highly similar overall topology with calmodulin. However, there are striking differences between EF-hand 4, both N-terminal and C-terminal regions, and interdomain linkers. The C-terminal domain of calcyphosine possesses a large hydrophobic pocket in the presence of calcium ions that might be implicated in ligand binding, while its N-terminal hydrophobic pocket is almost shielded by an additional terminal helix. Calcyphosine is largely monomeric, regardless of the presence of Ca(2+). Differences in structure, oligomeric state in the presence and in the absence of Ca(2+), a highly conserved sequence with low similarity to other proteins, and phylogeny define a new EF-hand-containing family of calcyphosine proteins that extends from arthropods to humans.
Collapse
|
98
|
He X, Wu C, Yarbrough D, Sim L, Niu G, Merritt J, Shi W, Qi F. The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol Microbiol 2008; 70:112-26. [PMID: 18681938 DOI: 10.1111/j.1365-2958.2008.06390.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Streptococcus mutans is a primary pathogen for dental caries in humans. CiaR and CiaH of S. mutans comprise a two-component signal transduction system (TCS) involved in regulating various virulent factors. However, the signal that triggers the CiaRH response remains unknown. In this study, we show that calcium is a signal for regulation of the ciaRH operon, and that a double-glycine-containing small peptide encoded within the ciaRH operon (renamed ciaX) mediates this regulation. CiaX contains a serine + aspartate (SD) domain that is shared by calcium-binding proteins. A markerless in-frame deletion of ciaX reduced ciaRH operon expression and diminished the calcium repression of operon transcription. Point mutations of the SD domain resulted in the same phenotype as the in-frame deletion, indicating that the SD domain is required for CiaX function. Further characterization of ciaX demonstrated that it is involved in calcium-mediated biofilm formation. Furthermore, inactivation of ciaR or ciaH led to the same phenotype as the in-frame deletion of ciaX, suggesting that all three genes are involved in the same regulatory pathway. Sequence analysis and real-time RT-PCR identified a putative CiaR binding site upstream of ciaX. We conclude that the ciaXRH operon is a three-component, self-regulatory system modulating cellular functions in response to calcium.
Collapse
Affiliation(s)
- Xuesong He
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Lin YP, Raman R, Sharma Y, Chang YF. Calcium binds to leptospiral immunoglobulin-like protein, LigB, and modulates fibronectin binding. J Biol Chem 2008; 283:25140-25149. [PMID: 18625711 DOI: 10.1074/jbc.m801350200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic Leptospira spp. express immunoglobulin-like proteins, LigA and LigB, which serve as adhesins to bind to extracellular matrices and mediate their attachment on host cells. However, nothing is known about the mechanism by which these proteins are involved in pathogenesis. We demonstrate that LigBCen2 binds Ca(2+), as evidenced by inductively coupled plasma optical emission spectrometry, energy dispersive spectrometry, (45)Ca overlay, and mass spectrometry, although there is no known motif for Ca(2+) binding. LigBCen2 binds four Ca(2+) as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The dissociation constant, K(D), for Ca(2+) binding is 7 mum, as measured by isothermal titration calorimetry and calcium competition experiments. The nature of the Ca(2+)-binding site in LigB is possibly similar to that seen in the betagamma-crystallin superfamily, since structurally, both families of proteins possess the Greek key type fold. The conformation of LigBCen2 was significantly influenced by Ca(2+) binding as shown by far- and near-UV CD and by fluorescence spectroscopy. In the apo form, the protein appears to be partially unfolded, as seen in the far-UV CD spectrum, and upon Ca(2+) binding, the protein acquires significant beta-sheet conformation. Ca(2+) binding stabilizes the protein as monitored by thermal unfolding by CD (50.7-54.8 degrees C) and by differential scanning calorimetry (50.0-55.7 degrees C). Ca(2+) significantly assists the binding of LigBCen2 to the N-terminal domain of fibronectin and perturbs the secondary structure, suggesting the involvement of Ca(2+) in adhesion. We demonstrate that LigB is a novel bacterial Ca(2+)-binding protein and suggest that Ca(2+) binding plays a pivotal role in the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Yi-Pin Lin
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 and the
| | - Rajeev Raman
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500 007, India
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 and the.
| |
Collapse
|
100
|
Calcium, troponin, calmodulin, S100 proteins: From myocardial basics to new therapeutic strategies. Biochem Biophys Res Commun 2008; 369:247-64. [PMID: 17964289 DOI: 10.1016/j.bbrc.2007.10.082] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 10/14/2007] [Indexed: 01/15/2023]
|