51
|
Synaptic and endosomal localization of active gamma-secretase in rat brain. PLoS One 2010; 5:e8948. [PMID: 20126630 PMCID: PMC2812513 DOI: 10.1371/journal.pone.0008948] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 01/05/2010] [Indexed: 12/02/2022] Open
Abstract
Background A key player in the development of Alzheimer's disease (AD) is the γ-secretase complex consisting of at least four components: presenilin, nicastrin, Aph-1 and Pen-2. γ-Secretase is crucial for the generation of the neurotoxic amyloid β-peptide (Aβ) but also takes part in the processing of many other substrates. In cell lines, active γ-secretase has been found to localize primarily to the Golgi apparatus, endosomes and plasma membranes. However, no thorough studies have been performed to show the subcellular localization of the active γ-secretase in the affected organ of AD, namely the brain. Principal Findings We show by subcellular fractionation of rat brain that high γ-secretase activity, as assessed by production of Aβ40, is present in an endosome- and plasma membrane-enriched fraction of an iodixanol gradient. We also prepared crude synaptic vesicles as well as synaptic membranes and both fractions showed high Aβ40 production and contained high amounts of the γ-secretase components. Further purification of the synaptic vesicles verified the presence of the γ-secretase components in these compartments. The localization of an active γ-secretase in synapses and endosomes was confirmed in rat brain sections and neuronal cultures by using a biotinylated γ-secretase inhibitor together with confocal microscopy. Significance The information about the subcellular localization of γ-secretase in brain is important for the understanding of the molecular mechanisms of AD. Furthermore, the identified fractions can be used as sources for highly active γ-secretase.
Collapse
|
52
|
Altered expression and distribution of zinc transporters in APP/PS1 transgenic mouse brain. Neurobiol Aging 2010; 31:74-87. [DOI: 10.1016/j.neurobiolaging.2008.02.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 02/19/2008] [Accepted: 02/22/2008] [Indexed: 11/20/2022]
|
53
|
Jorissen E, De Strooper B. γ-Secretase and the Intramembrane Proteolysis of Notch. Curr Top Dev Biol 2010; 92:201-30. [DOI: 10.1016/s0070-2153(10)92006-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
54
|
Yang T, Arslanova D, Gu Y, Augelli-Szafran C, Xia W. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein. Mol Brain 2008; 1:15. [PMID: 18983676 PMCID: PMC2637266 DOI: 10.1186/1756-6606-1-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/04/2008] [Indexed: 11/23/2022] Open
Abstract
Background Deposition of amyloid-β protein (Aβ) is a major pathological hallmark of Alzheimer's disease (AD). Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP). In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E) and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H) binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ*) peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in zebrafish provides a novel approach for efficient cell-based screening and in vivo validation of APP selective γ-secretase inhibitors.
Collapse
Affiliation(s)
- Ting Yang
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard University, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
55
|
Waldron E, Heilig C, Schweitzer A, Nadella N, Jaeger S, Martin AM, Weggen S, Brix K, Pietrzik CU. LRP1 modulates APP trafficking along early compartments of the secretory pathway. Neurobiol Dis 2008; 31:188-97. [PMID: 18559293 DOI: 10.1016/j.nbd.2008.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/31/2008] [Accepted: 04/17/2008] [Indexed: 10/22/2022] Open
Abstract
The amyloid beta peptide (A beta) is a central player in Alzheimer's disease (AD) pathology. A beta liberation depends on APP cleavage by beta- and gamma-secretases. The low density lipoprotein receptor related protein 1 (LRP1) was shown to mediate APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. We wanted to investigate whether LRP1 mediates APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, the early trafficking of APP within the secretory pathway is strongly influenced by its interaction with the C-terminal domain of LRP1. The LRP1-construct expressing an ER-retention motif, LRP-CT KKAA, had the capacity to retard APP traffic to early secretory compartments. In addition, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases.
Collapse
Affiliation(s)
- Elaine Waldron
- Institute of Physiological Chemistry and Pathobiochemistry, Molecular Neurodegeneration, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
57
|
Zhang LH, Wang X, Stoltenberg M, Danscher G, Huang L, Wang ZY. Abundant expression of zinc transporters in the amyloid plaques of Alzheimer's disease brain. Brain Res Bull 2008; 77:55-60. [PMID: 18639746 DOI: 10.1016/j.brainresbull.2008.03.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
The pathological key features of Alzheimer's disease (AD) are beta-amyloid peptide (Abeta)-containing senile plaques (SP) and neurofibrillary tangles. Previous studies have suggested that an extracellular elevation of the zinc concentration can initiate the deposition of Abeta and lead to the formation of SP. In the present study, we present data showing a correlation between zinc ions, zinc transporters (ZNTs) and AD, using immersion autometallography (AMG) and double immunofluorescence for the ZNTs and Abeta. We found that all the ZNTs tested (ZNT1, 3, 4, 5, 6, 7) were extensively present in the Abeta-positive plaques in the cortex of human AD brains, and the density of autometallographic silver enhanced zinc-sulphur nanoparticles were much higher in the plaques than in the surrounding zinc enriched (ZEN) terminals. Moreover, we found an abundant expression of ZNT3 and autometallographic grains in the amyloid angiopathic vessels. The subcellular localization of ZNTs and zinc ions were not detected, due to the limited tissue preservation in the present study. In conclusion, our data provided significant morphological evidence of zinc ions and ZNTs being actively involved in the pathological processes that lead to plaque formation.
Collapse
Affiliation(s)
- Li-Hong Zhang
- Department of Histology and Embryology, China Medical University, Shenyang 110001, PR China.
| | | | | | | | | | | |
Collapse
|
58
|
Venezia V, Nizzari M, Carlo P, Corsaro A, Florio T, Russo C. Amyloid precursor protein and presenilin involvement in cell signaling. NEURODEGENER DIS 2007; 4:101-11. [PMID: 17596704 DOI: 10.1159/000101834] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To date the most relevant role for the amyloid precursor protein (APP) and for the presenilins (PSs) on Alzheimer's disease (AD) genesis is linked to the 'amyloid hypothesis', which considers an aberrant formation of amyloid-beta peptides the cause of neurodegeneration. In this view, APP is merely a substrate, cleaved by the gamma-secretase complex to form toxic amyloid peptides, PSs are key players in gamma-secretase complex, and corollary or secondary events are Tau-linked pathology and gliosis. A second theory, complementary to the amyloid hypothesis, proposes that APP and PSs may modulate a yet unclear cell signal, the disruption of which may induce cell-cycle abnormalities, neuronal death, eventually amyloid formation and finally dementia. This hypothesis is supported by the presence of a complex network of proteins, with a clear relevance for signal transduction mechanisms, which interact with APP or PSs. In this scenario, the C-terminal domain of APP has a pivotal role due to the presence of the 682YENPTY687 motif that represents the docking site for multiple interacting proteins involved in cell signaling. In this review we discuss the significance of novel findings related to cell signaling events modulated by APP and PSs for AD development.
Collapse
Affiliation(s)
- Valentina Venezia
- Department of Oncology, Biology and Genetics, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Khandelwal A, Chandu D, Roe CM, Kopan R, Quatrano RS. Moonlighting activity of presenilin in plants is independent of gamma-secretase and evolutionarily conserved. Proc Natl Acad Sci U S A 2007; 104:13337-42. [PMID: 17684101 PMCID: PMC1948938 DOI: 10.1073/pnas.0702038104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Indexed: 12/29/2022] Open
Abstract
Presenilins (PS) provide the catalytic activity for gamma-secretase, which cleaves physiologically relevant substrates including Notch, ErbB4, and APP. Recent genetic studies indicated that the contribution of PS1 to mouse development includes gamma-secretase-independent functions that cannot be easily explained by any of the demonstrated or hypothesized functions of this protein. To begin a nonbiased analysis of PS1 activity unencumbered by the dominant effect stemming from loss of Notch function, we characterized PS functions in the early land plant Physcomitrella patens, which lacks Notch, ErbB4, and APP. Removal of P. patens PS resulted in phenotypic abnormalities. Further assays performed to delineate the defective pathways in PS-deficient P. patens implicated improper function of the cytoskeletal network. Importantly, this characterization of a nonmetazoan PS uncovered a previously undescribed, evolutionarily conserved function (human PS1 can rescue the growth and light responses) that is gamma-secretase-independent (mutants with substitutions of the catalytic aspartyl residues retain the activity). Introduction of PpPS into PS-deficient mouse embryonic fibroblasts rescues normal growth rates, demonstrating that at least some metazoan functions of PS are evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Catherine M. Roe
- Division of Biostatistics, Washington University, St. Louis, MO 63110
| | | | | |
Collapse
|
60
|
Huysseune S, Kienlen-Campard P, Octave JN. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay. Biochem Biophys Res Commun 2007; 361:317-22. [PMID: 17651693 DOI: 10.1016/j.bbrc.2007.06.186] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Indexed: 11/20/2022]
Abstract
The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.
Collapse
Affiliation(s)
- Sandra Huysseune
- Université Catholique de Louvain, Center for Neurosciences, Laboratoire de Pharmacologie (FARL 5410), Avenue Hippocrate 54, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
61
|
Spasic D, Raemaekers T, Dillen K, Declerck I, Baert V, Serneels L, Füllekrug J, Annaert W. Rer1p competes with APH-1 for binding to nicastrin and regulates gamma-secretase complex assembly in the early secretory pathway. ACTA ACUST UNITED AC 2007; 176:629-40. [PMID: 17325205 PMCID: PMC2064021 DOI: 10.1083/jcb.200609180] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The γ-secretase complex, consisting of presenilin, nicastrin, presenilin enhancer-2 (PEN-2), and anterior pharynx defective-1 (APH-1) cleaves type I integral membrane proteins like amyloid precursor protein and Notch in a process of regulated intramembrane proteolysis. The regulatory mechanisms governing the multistep assembly of this “proteasome of the membrane” are unknown. We characterize a new interaction partner of nicastrin, the retrieval receptor Rer1p. Rer1p binds preferentially immature nicastrin via polar residues within its transmembrane domain that are also critical for interaction with APH-1. Absence of APH-1 substantially increased binding of nicastrin to Rer1p, demonstrating the competitive nature of these interactions. Moreover, Rer1p expression levels control the formation of γ-secretase subcomplexes and, concomitantly, total cellular γ-secretase activity. We identify Rer1p as a novel limiting factor that negatively regulates γ-secretase complex assembly by competing with APH-1 during active recycling between the endoplasmic reticulum (ER) and Golgi. We conclude that total cellular γ-secretase activity is restrained by a secondary ER control system that provides a potential therapeutic value.
Collapse
Affiliation(s)
- Dragana Spasic
- Laboratory for Membrane Trafficking, Center for Human Genetics, Katholieke Universiteit Leuven/Vlaams Instituut voor Biotechnologie, Gasthuisberg, Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Vingtdeux V, Hamdane M, Loyens A, Gelé P, Drobeck H, Bégard S, Galas MC, Delacourte A, Beauvillain JC, Buée L, Sergeant N. Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies. J Biol Chem 2007; 282:18197-18205. [PMID: 17468104 DOI: 10.1074/jbc.m609475200] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid precursor protein (APP) metabolism is central to the pathogenesis of Alzheimer disease. We showed recently that the amyloid intracellular domain (AICD), which is released by gamma-secretase cleavage of APP C-terminal fragments (CTFs), is strongly increased in cells treated with alkalizing drugs (Vingtdeux, V., Hamdane, M., Bégard, S., Loyens, A., Delacourte, A., Beauvillain, J.-C., Buée, L., Marambaud, P., and Sergeant, N. (2007) Neurobiol. Dis. 25, 686-696). Herein, we aimed to determine the cell compartment in which AICD accumulates. We show that APP-CTFs and AICD are present in multivesicular structures. Multivesicular bodies contain intraluminal vesicles (known as exosomes) when released in the extracellular space. We demonstrate that APP, APP-CTFs, and AICD are integrated and secreted within exosomes in differentiated neuroblastoma and primary neuronal culture cells. Together with recent data showing that amyloid-beta is also found in exosomes, our data show that multivesicular bodies are essential organelles for APP metabolism and that all APP metabolites can be secreted in the extracellular space.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Malika Hamdane
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Anne Loyens
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Patrick Gelé
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Hervé Drobeck
- CNRS, UMR 8161, "Lille Institute of Biology," University of Lille 1, Pasteur Institute of Lille, 1, rue du Professeur Calmette, F-59021 Lille Cedex, France
| | - Séverine Bégard
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Marie-Christine Galas
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - André Delacourte
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Jean-Claude Beauvillain
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Luc Buée
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Nicolas Sergeant
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
63
|
Poli M, Gatta LB, Lovati C, Mariani C, Galimberti D, Scarpini E, Biunno I, Musicco M, Dominici R, Albertini A, Finazzi D. Interaction between the APOE epsilon4 allele and the APH-1b c + 651T > G SNP in Alzheimer's disease. Neurobiol Aging 2007; 29:1494-501. [PMID: 17466415 DOI: 10.1016/j.neurobiolaging.2007.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2007] [Indexed: 10/23/2022]
Abstract
The gamma-secretase complex is a multimeric aspartyl protease which plays a pivotal role in the production of amyloid beta-peptide, the main component of senile plaques in Alzheimer's disease (AD). APH-1a and APH-1b have been recently identified as important subunits of the gamma-secretase complex. We previously studied sequence variations in both genes and their association with AD in a small Italian population. The rare polymorphism c + 651T > G in APH-1b showed a possible interaction with the Apolipoprotein E (APOE) epsilon4 allele in the AD population sample. We extended our genetic analysis to 449 AD patients and 435 controls and, in AD cases, we found a significant interaction (P=0.001) between the allelic variants in the two genes, resulting in a marked increase of the relative risk for AD (OR=28.6). Despite the amino acid substitution does not seem to modify either the intracellular localization or the half-life of APH-1b protein, these data suggest that a cooperative mechanism involving APOE and APH-1b plays a role in the susceptibility to develop AD.
Collapse
Affiliation(s)
- Maura Poli
- Section of Chemistry, Faculty of Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Hu Z, Zeng L, Huang Z, Zhang J, Li T. The Study of Golgi Apparatus in Alzheimer’s Disease. Neurochem Res 2007; 32:1265-77. [PMID: 17401657 DOI: 10.1007/s11064-007-9302-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is an irreversible, progressive neurodegenerative disorder leading invariably to death, usually within 7-10 years after diagnosis and is the leading cause of dementia in the elderly. Not only is Alzheimer's disease a tragic disease in which people suffer from neurodegeneration in the years to come, it also becomes an incredible burden on the public health system. However, there is currently no effective treatment to halt the progression or prevent the onset of Alzheimer's disease. This is partly due to the fact that the complex pathophysiology of Alzheimer's disease is not yet completely understood. Recently, Golgi apparatus is found to play an important role in Alzheimer's disease. In this review, we discuss the changes of Golgi apparatus during clinical progression and pathological development of Alzheimer's disease. First, changes of Golgi apparatus size in Alzheimer's disease are summarized. We then address the role of Golgi apparatus in the neuropathology of Alzheimer's disease. Finally, the role of Golgi apparatus in the pathogenesis of Alzheimer's disease is discussed. Understanding the contribution of Golgi apparatus dysfunction to Alzheimer's disease and its pathophysiological basis will significantly impact our ability to develop more effective therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
65
|
Brijbassi S, Amtul Z, Newbigging S, Westaway D, St George-Hyslop P, Rozmahel RF. Excess of nicastrin in brain results in heterozygosity having no effect on endogenous APP processing and amyloid peptide levels in vivo. Neurobiol Dis 2007; 25:291-6. [PMID: 17071095 DOI: 10.1016/j.nbd.2006.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/09/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022] Open
Abstract
Nicastrin is an integral member of PS-complexes that perform gamma-secretase cleavage of numerous type I membrane proteins including amyloid precursor protein that underlies Alzheimer's disease; thus, diminishing gamma-secretase activity by reducing levels of functional PS-complexes is suggested as a possible preventative/therapeutic avenue for the disease. One means of reducing PS-complex activity entails decreasing the levels of one or more of its components, such as nicastrin, which is fundamental to its assembly. Two previous studies detailing the effects of decreased nicastrin on gamma-secretase cleavage of APP in nicastrin heterozygous mouse fibroblast, which express relatively low levels of endogenous nicastrin compared to neurons, were contradictory. One report documented a 50% reduction in gamma-secretase cleavage of APP while the second showed markedly higher levels of this activity. Here we report that brains of heterozygous nicastrin mice show no difference in levels of APP gamma-secretase cleavage, APP C-terminal fragments or beta-amyloid peptides, compared to wild-type. This result is explained by the levels of nicastrin protein and functional presenilin complexes being similar between the heterozygous and wild-type brains, though nicastrin mRNA levels were diminished appropriately in the former. These in vivo results indicate that nicastrin mRNA and its immature protein are likely in overabundance in neurons and not limiting for assembly of PS-complexes, and that a 50% reduction of its mRNA or protein production would not affect APP processing, in contrast to fibroblast. Thus, partial reduction (maintaining a level above 50% of normal) of brain nicastrin would likely not be efficacious in reducing functional PS-complexes and gamma-secretase activity as a therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Sonya Brijbassi
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
66
|
Kodam A, Vetrivel KS, Thinakaran G, Kar S. Cellular distribution of gamma-secretase subunit nicastrin in the developing and adult rat brains. Neurobiol Aging 2007; 29:724-38. [PMID: 17222950 PMCID: PMC2871253 DOI: 10.1016/j.neurobiolaging.2006.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 11/20/2022]
Abstract
Nicastrin and presenilin 1 are integral components of the high molecular weight gamma-secretase complexes that regulate proteolytic processing of various type I membrane proteins including amyloid precursor protein and Notch. At present, there is little information regarding the cellular distribution of nicastrin in the developing or adult rat brain. We report here, using immunoblotting and immunohistochemical methods, that nicastrin in the adult rat brain is widely expressed and co-localized with presenilin 1 in select neuronal populations within all major areas, including the basal forebrain, striatum, cortex, hippocampus, amygdala, thalamus, hypothalamus, cerebellum and brainstem. We also observed dense neuropil labeling in many regions in the brain, suggesting that nicastrin gets transported to dendrites and/or axon terminals in the central nervous system. The levels of nicastrin are found to be relatively high at the early stages of postnatal development and then declined gradually to reach the adult profile. At the cellular level, nicastrin is localized predominantly in neuronal cell bodies at early postnatal stages, but is apparent both in cell bodies and dendrites/neuropil in all brain regions at the later stages. The regulation of nicastrin expression and localization during development and its distribution in a wide spectrum of neurons in the postnatal and adult rat brains provide an anatomical basis to suggest a multifunctional role for the gamma-secretase complex in the developing and adult rat brains.
Collapse
Affiliation(s)
- A Kodam
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
67
|
Vingtdeux V, Hamdane M, Bégard S, Loyens A, Delacourte A, Beauvillain JC, Buée L, Marambaud P, Sergeant N. Intracellular pH regulates amyloid precursor protein intracellular domain accumulation. Neurobiol Dis 2007; 25:686-96. [PMID: 17207630 DOI: 10.1016/j.nbd.2006.09.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/26/2006] [Accepted: 09/19/2006] [Indexed: 01/01/2023] Open
Abstract
The amyloid precursor protein (APP) metabolism is central to pathogenesis of Alzheimer's disease (AD). Parenchymal amyloid deposits, a neuropathological hallmark of AD, are composed of amyloid-beta peptides (Abeta). Abeta derives from the amyloid precursor protein (APP) by sequential cleavages by beta- and gamma-secretases. Gamma-secretase cleavage releases the APP intracellular domain (AICD), suggested to mediate a nuclear signaling. Physiologically, AICD is seldom detected and thus supposed to be rapidly degraded. The mechanisms responsible of its degradation remain unknown. We used a pharmacological approach and showed that several alkalizing drugs induce the accumulation of AICD in neuroblastoma SY5Y cell lines stably expressing APP constructs. Moreover, alkalizing drugs induce AICD accumulation in naive SY5Y, HEK and COS cells. This accumulation is not mediated by the proteasome or metallopeptidases and is not the result of an increased gamma-secretase activity since the gamma-secretase cleavage of Notch1 and N-Cadherin is not affected by alkalizing drug treatments. Altogether, our data demonstrate for the first time that alkalizing drugs induce the accumulation of AICD, a mechanism likely mediated by the endosome/lysosome pathway.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- INSERM U815, Centre Jean-Pierre Aubert, Neurodegenerative Disorders and Neuronal Death, 1, Place de Verdun, F-59045 Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Bandyopadhyay S, Hartley DM, Cahill CM, Lahiri DK, Chattopadhyay N, Rogers JT. Interleukin-1alpha stimulates non-amyloidogenic pathway by alpha-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase. J Neurosci Res 2006; 84:106-18. [PMID: 16724341 DOI: 10.1002/jnr.20864] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interleukin-1alpha (IL-1alpha) stimulates a disintegrin and metalloproteinase, ADAM-17 synthesis, consistent with activation of the soluble fragment of Amyloid Precursor Protein, APP, (sAPPalpha) in human primary astrocytes. To characterize the mechanism by which IL-1alpha promotes the non-amyloidogenic pathway of APP metabolism, we used U373 MG astrocytoma cells. IL-1alpha significantly increased levels of ADAM-10 and ADAM-17 mRNA in 16 hr. Upregulation of ADAM-17 mRNA by IL-1alpha was more pronounced despite higher basal levels of ADAM-10 mRNA. This pattern was also observed at the protein level with the upregulation of alpha-secretase. RNA interference (RNAi) of ADAM-10 and ADAM-17 inhibited IL-1alpha-stimulated sAPPalpha release and the effect was more pronounced with ADAM-17 RNAi. Concomitantly, the level of sAPPalpha was significantly increased by IL-1alpha in 48 hr; however, IL-1alpha stimulated cell-associated APP levels maximally at 6 h but the induction declined at 48 hr. IL-1alpha treatment of cells for 48 h reduced both intracellular and secreted levels of amyloid-beta, Abeta-40, and Abeta-42 peptides. Multiple MAP kinases (MAPK), including MEK/ERK, p38 kinase, PI3 kinase (PI3K) but not JNK were involved in the regulation of IL-1alpha-stimulated alpha-secretase activity and sAPPalpha release. p38 MAPK seems to be the most proximal of these MAPKs, as it was the earliest to be activated by IL-1alpha and blocking this pathway attenuated activation of IL-1alpha-induced MEK and PI3K pathways. Our data show a complex mechanism of sAPPalpha regulation by IL-1alpha that involves ADAM-10, ADAM-17 and p38 MAPK upstream of MEK and PI3K.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Neurochemistry Laboratory, Department of Psychiatry and Genetics and Aging Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
69
|
Lovell MA, Smith JL, Markesbery WR. Elevated zinc transporter-6 in mild cognitive impairment, Alzheimer disease, and pick disease. J Neuropathol Exp Neurol 2006; 65:489-98. [PMID: 16772872 DOI: 10.1097/01.jnen.0000229237.98124.91] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Filamentous cytoplasmic inclusions are hallmarks of Alzheimer disease (AD) and Pick disease (PD). Although previous studies show elevated zinc (Zn) in AD brain, there has been little study of zinc transporter (ZnT) proteins that are critical in the maintenance of Zn homeostasis. Using Western blot analysis, we show significantly elevated ZnT-6, the protein responsible for sequestration of Zn in the trans-Golgi network, in the hippocampus/parahippocampal gyrus (HPG) of AD subjects compared to age-matched controls and a trend toward elevated ZnT-6 in subjects with amnestic mild cognitive impairment (MCI). Based on these data, we used immunohistochemistry to investigate the cellular distribution of ZnT-6 in the HPG of control subjects and subjects with MCI, AD, and PD. Comparison of immediately adjacent serial sections stained using the modified Bielschowsky method and immunostained for ZnT-6 showed elevated ZnT-6 in 89 +/- 7% of neurofibrillary tangle (NFT)-bearing neurons in AD and 100 +/- 19% of Pick bodies in PD specimens. Confocal microscopy of HPG from MCI subjects double labeled for ZnT-6 and MC-1, a marker of early NFT formation, showed 85 +/- 4% of MC-1-positive cells were strongly ZnT-6-positive. Increased ZnT-6 immunostaining in neurons containing cytoplasmic inclusions in MCI, AD, and PD suggests a role for ZnT-6 in the pathogenesis of these lesions.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.
| | | | | |
Collapse
|
70
|
Oh YS, Turner RJ. Protease digestion indicates that endogenous presenilin 1 is present in at least two physical forms. Biochem Biophys Res Commun 2006; 346:330-4. [PMID: 16756946 DOI: 10.1016/j.bbrc.2006.05.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/22/2006] [Indexed: 12/22/2022]
Abstract
The membrane-bound protein complex gamma-secretase is an intramembranous protease whose substrates are a number of type I transmembrane proteins including the beta-amyloid precursor protein (APP). A presenilin molecule is thought to be the catalytic unit of gamma-secretase and either of two presenilin homologues, PS1 or PS2, can play this role. Mutations in the presenilins, apparently leading to aberrant processing of APP, have been genetically linked to early-onset familial Alzheimer's disease. To look for possible molecular heterogeneity in presenilin/gamma-secretase we examined the ability of proteinase K (PK) to digest endogenously expressed presenilins in intact endoplasmic reticulum vesicles. We demonstrate the existence of two physically different forms of gamma-secretase-associated PS1, one that is relatively PK-sensitive and one that is significantly more PK-resistant. A similarly PK-resistant form of PS2 was not observed. We speculate that the structural heterogeneity we observe may underlie, at least in part, previous observations indicating the physical and functional heterogeneity of gamma-secretase. In particular, our results suggest that there are significant differences between gamma-secretase complexes incorporating PS1 and PS2. This difference may underlie the more dominant role of PS1 in the generation of beta-amyloid peptides and in familial Alzheimer's disease.
Collapse
Affiliation(s)
- Young S Oh
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | |
Collapse
|
71
|
Zhang M, Haapasalo A, Kim DY, Ingano LAM, Pettingell WH, Kovacs DM. Presenilin/γ‐secretase activity regulates protein clearance from the endocytic recycling compartment. FASEB J 2006; 20:1176-8. [PMID: 16645046 DOI: 10.1096/fj.05-5531fje] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presenilin (PS)/gamma-secretase complex proteolytically cleaves more than 20 different proteins in addition to the amyloid precursor protein (APP). These substrates are almost exclusively type I membrane proteins. Many undergo internalization from the cell surface followed by degradation or recycling back to the plasma membrane through the endocytic recycling compartment (ERC). Evidence shows that the PSs also regulate intracellular trafficking of APP and its C-terminal fragments (CTFs). To investigate whether PS/gamma-secretase activity is required for normal endosomal recycling, we performed live cell imaging experiments with fluorescently labeled transferrin, reported to specifically traffic through the ERC. By using pharmacological gamma-secretase inhibitors or cell lines lacking functional PS/gamma-secretase, here we show that PS/gamma-secretase activity is required for clearance of transferrin from the ERC. Interestingly, lack of PS/gamma-secretase function also resulted in the accumulation of APP and APP-CTFs in the ERC in addition to the cell surface. Familial Alzheimer's disease mutations in APP-CTFs did not affect endocytic recycling of these proteins. Our results suggest that PS/gamma-secretase activity is required for normal endosomal recycling of soluble and membrane-associated proteins through the ERC and propose a new mechanism by which impaired PS/gamma-secretase function may eventually contribute to neurodegeneration.
Collapse
Affiliation(s)
- Mei Zhang
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit, Department of Neurology/MIND, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
72
|
Smith JL, Xiong S, Markesbery WR, Lovell MA. Altered expression of zinc transporters-4 and -6 in mild cognitive impairment, early and late Alzheimer's disease brain. Neuroscience 2006; 140:879-88. [PMID: 16580781 DOI: 10.1016/j.neuroscience.2006.02.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 02/06/2006] [Accepted: 02/23/2006] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that a disruption of zinc (Zn) homeostasis may play a role in the pathogenesis of Alzheimer's disease. Although several Zn transporter proteins responsible for the regulation of Zn balance are present in the brain, there has been little study of these proteins in Alzheimer's disease. To determine if alterations of Zn transporter proteins exist, levels of Zn transporter-4, which functions to remove Zn from the cytoplasm to endosomal/lysosomal compartments, and Zn transporter-6, which allocates cytoplasmic Zn to the trans-Golgi network, were measured in the hippocampus/parahippocampal gyrus, superior and middle temporal gyrus, and cerebellum of subjects with mild cognitive impairment, early Alzheimer's disease, late stage Alzheimer's disease, and age-matched controls using Western blot analysis and protein specific antibodies. Our results show that Zn transporter-4 and Zn transporter-6 are significantly (P<0.05) increased in hippocampus/parahippocampal gyrus of early Alzheimer's disease and Alzheimer's disease subjects. Zn transporter-6 is also increased (P<0.1) in the superior and middle temporal gyrus of Alzheimer's disease brain.
Collapse
Affiliation(s)
- J L Smith
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
73
|
Zetterberg H, Campbell WA, Yang HW, Xia W. The cytosolic loop of the gamma-secretase component presenilin enhancer 2 protects zebrafish embryos from apoptosis. J Biol Chem 2006; 281:11933-9. [PMID: 16507571 DOI: 10.1074/jbc.m512521200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The gamma-secretase complex, composed of presenilin, presenilin enhancer 2 (Pen-2), nicastrin, and Aph-1, catalyzes the final cleavage of amyloid precursor protein to generate the toxic amyloid beta protein, the major component of plaques in the brains of Alzheimer disease patients. To understand the in vivo function of Pen-2, we used morphant technology available in zebrafish and transiently knocked down the expression of endogenous Pen-2 by injecting the morpholino (MO) against Pen-2. Two truncated Pen-2 proteins lacking either the cytosolic or the C-terminal domain were expressed in MO-injected embryos. This deletion analysis demonstrated that the Pen-2 cytosolic loop is essential for protecting developing embryos from caspase-dependent apoptosis caused by the reduction of Pen-2. Twelve amino acids in the C terminus of Pen-2 were dispensable and could not rescue the Pen-2 knockdown-induced apoptotic phenotype. Surprisingly, double knockdown of Pen-2 and nuclear factor kappaB component p65 abrogated the single Pen-2 MO-induced caspase activation, indicating that a previously reported pro-apoptotic role of NF-kappaB in some cell types could be manifested in a whole animal and that knockdown of Pen-2 may trigger pro-apoptotic activation of NF-kappaB.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
74
|
Campbell WA, Yang H, Zetterberg H, Baulac S, Sears JA, Liu T, Wong STC, Zhong TP, Xia W. Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. J Neurochem 2006; 96:1423-40. [PMID: 16464238 DOI: 10.1111/j.1471-4159.2006.03648.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gamma-secretase cleavage, mediated by a complex of presenilin, presenilin enhancer (Pen-2), nicastrin, and Aph-1, is the final proteolytic step in generating amyloid beta protein found in brains of Alzheimer's disease patients and Notch intracellular domain critical for proper neuronal development. Here, we employ the zebrafish model to study the role of Pen-2 in neuronal survival. We found that (i) knockdown of Pen-2 using antisense morpholino led to a reduction of islet-1 positive neurons, (ii) Notch signaling was reduced in embryos lacking Pen-2 or other gamma-secretase components, (iii) neuronal loss in Pen-2 knockdown embryos is not as a result of a lack of neuronal precursor cells or cell proliferation, (iv) absence of Pen-2 caused massive apoptosis in the whole animal, which could be suppressed by simultaneous knockdown of the tumor suppressor p53, (v) loss of islet-1 or acetylated tubulin positive neurons in Pen-2 knockdown embryos could be partially rescued by knockdown of p53. Our results demonstrate that knockdown of Pen-2 directly induces a p53-dependent apoptotic pathway that contributes to neuronal loss and suggest that Pen-2 plays an important role in promoting neuronal cell survival and protecting from apoptosis in vivo.
Collapse
MESH Headings
- Alzheimer Disease
- Animals
- Animals, Genetically Modified
- Apoptosis/genetics
- Blotting, Northern
- Blotting, Western/methods
- Body Patterning/drug effects
- Body Patterning/genetics
- Cell Count/methods
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Embryo, Nonmammalian
- Fish Proteins/chemistry
- Fish Proteins/deficiency
- Fish Proteins/physiology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- In Situ Nick-End Labeling/methods
- Indoles
- Membrane Proteins/chemistry
- Membrane Proteins/deficiency
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Neurons/metabolism
- Oligonucleotides, Antisense/pharmacology
- Presenilin-2
- RNA, Messenger/metabolism
- Receptors, Notch/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/metabolism
- Zebrafish
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- William A Campbell
- Center for Neurologic Diseases, Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Dillen K, Annaert W. A Two Decade Contribution of Molecular Cell Biology to the Centennial of Alzheimer's Disease: Are We Progressing Toward Therapy? INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:215-300. [PMID: 17148000 DOI: 10.1016/s0074-7696(06)54005-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD), described for the first time 100 years ago, is a neurodegenerative disease characterized by two neuropathological hallmarks: neurofibrillary tangles containing hyperphosphorylated tau and senile plaques. These lesions are likely initiated by an imbalance between production and clearance of amyloid beta, leading to increased oligomerization of these peptides, formation of amyloid plaques in the brain of the patient, and final dementia. Amyloid beta is generated from amyloid precursor protein (APP) by subsequent beta- and gamma-secretase cleavage, the latter being a multiprotein complex consisting of presenilin-1 or -2, nicastrin, APH-1, and PEN-2. Alternatively, APP can be cleaved by alpha- and gamma-secretase, precluding the production of Abeta. In this review, we discuss the major breakthroughs during the past two decades of molecular cell biology and the current genetic and cell biological state of the art on APP proteolysis, including structure-function relationships and subcellular localization. Finally, potential directions for cell biological research toward the development of AD therapies are briefly discussed.
Collapse
Affiliation(s)
- Katleen Dillen
- Laboratory for Membrane Trafficking, Center for Human Genetics/VIB1104 & KULeuven, Gasthuisberg O&N1, B-3000 Leuven, Belgium
| | | |
Collapse
|
76
|
Herl L, Lleo A, Thomas AV, Nyborg AC, Jansen K, Golde TE, Hyman BT, Berezovska O. Detection of presenilin-1 homodimer formation in intact cells using fluorescent lifetime imaging microscopy. Biochem Biophys Res Commun 2005; 340:668-74. [PMID: 16376853 DOI: 10.1016/j.bbrc.2005.12.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Presenilin-1 (PS1) is a multipass transmembrane domain protein, which is believed to be the catalytic component of the gamma-secretase complex. The complex is comprised of four major components: PS1, nicastrin, Aph-1, and Pen-2. The exact stoichiometric relationship between the four components remains unclear. It has been shown that gamma-secretase exists as high molecular weight complexes, suggesting the possibility of dimer/multimer formation. We combined a biochemical approach with a novel morphological microscopy assay to analyze PS1 dimer formation and subcellular distribution in situ, in intact mammalian cells. Both coimmunoprecipitation and fluorescent lifetime imaging microscopy approaches showed that wildtype PS1 molecules form dimers. Moreover, PS1 holoproteins containing the D257A mutation also come into close enough proximity to form a dimer, suggesting that cleavage within the loop is not necessary for dimer formation. Taken together these data suggest that PS1 dimerization occurs during normal PS1 function.
Collapse
Affiliation(s)
- Lauren Herl
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Strömberg K, Hansson EM, Laudon H, Bergstedt S, Näslund J, Lundkvist J, Lendahl U. gamma-Secretase complexes containing N- and C-terminal fragments of different presenilin origin retain normal gamma-secretase activity. J Neurochem 2005; 95:880-90. [PMID: 16135086 DOI: 10.1111/j.1471-4159.2005.03415.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gamma-secretase complex processes substrate proteins within membranes and consists of four proteins: presenilin (PS), nicastrin, Aph-1 and Pen-2. PS harbours the enzymatic activity of the complex, and there are two mammalian PS homologues: PS1 and PS2. PS undergoes endoproteolysis, generating the N- and C-terminal fragments, NTF and CTF, which represent the active species of PS. To characterize the functional similarity between complexes of various PS composition, we analysed PS1, PS2, and chimeric PS composed of the NTF from PS1 and CTF from PS2, or vice versa, in assembly and function of the gamma-secretase complex. Chimeric PSs, like PS1 and PS2, undergo normal endoproteolysis when introduced into cells devoid of endogenous PS. Furthermore, PS2 CTF can, at least partially, restore processing in a truncated PS1, which cannot undergo endoproteolysis. All PS forms enable maturation of nicastrin and cleave full length Notch receptors, indicating that both PS1 and PS2 are present at the cell surface. Finally, when co-introduced as separate molecules, NTF and CTF of different PS origin reconstitute gamma-secretase activity. In conclusion, these data show that endoproteolysis, NTF-CTF interactions, and the assembly and activity of gamma-secretase complexes are very conserved between PS1 and PS2.
Collapse
Affiliation(s)
- Kia Strömberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized pathologically by the accumulation of beta-amyloid (Abeta) plaques and neurofibrillary tangles in the brain. Genetic studies of AD first highlighted the importance of the presenilins (PS). Subsequent functional studies have demonstrated that PS form the catalytic subunit of the gamma-secretase complex that produces the Abeta peptide, confirming the central role of PS in AD biology. Here, we review the studies that have characterized PS function in the gamma-secretase complex in Caenorhabditis elegans, mice and in in vitro cell culture systems, including studies of PS structure, PS interactions with substrates and other gamma-secretase complex members, and the evidence supporting the hypothesis that PS are aspartyl proteases that are active in intramembranous proteolysis. A thorough knowledge of the mechanism of PS cleavage in the context of the gamma-secretase complex will further our understanding of the molecular mechanisms that cause AD, and may allow the development of therapeutics that can alter Abeta production and modify the risk for AD.
Collapse
Affiliation(s)
- A L Brunkan
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63100, USA
| | | |
Collapse
|
79
|
Vingtdeux V, Hamdane M, Gompel M, Bégard S, Drobecq H, Ghestem A, Grosjean ME, Kostanjevecki V, Grognet P, Vanmechelen E, Buée L, Delacourte A, Sergeant N. Phosphorylation of amyloid precursor carboxy-terminal fragments enhances their processing by a gamma-secretase-dependent mechanism. Neurobiol Dis 2005; 20:625-37. [PMID: 15936948 DOI: 10.1016/j.nbd.2005.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/11/2005] [Accepted: 05/02/2005] [Indexed: 12/22/2022] Open
Abstract
In Alzheimer's disease, the complex catabolism of amyloid precursor protein (APP) leads to the production of amyloid-beta (Abeta) peptide, the major component of amyloid deposits. APP is cleaved by beta- and alpha-secretases to generate APP carboxy-terminal fragments (CTFs). Abeta peptide and amyloid intracellular domain are resulting from the cleavage of APP-CTFs by the gamma-secretase. In the present study, we hypothesize that post-translational modification of APP-CTFs could modulate their processing by the gamma-secretase. Inhibition of the gamma-secretase was shown to increase the total amount of APP-CTFs. Moreover, we showed that this increase was more marked among the phosphorylated variants and directly related to the activity of the gamma-secretase, as shown by kinetics analyses. Phosphorylated CTFs were shown to associate to presenilin 1, a major protein of the gamma-secretase complex. The phosphorylation of CTFs at the threonine 668 resulting of the c-Jun N-terminal kinase activation was shown to enhance their degradation by the gamma-secretase. Altogether, our results demonstrated that phosphorylated CTFs can be the substrates of the gamma-secretase and that an increase in the phosphorylation of APP-CTFs facilitates their processing by gamma-secretase.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Department of Cerebral Aging and Neurodegeneration, INSERM U422, 1, place de Verdun, 59045 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Wrigley JDJ, Schurov I, Nunn EJ, Martin ACL, Clarke EE, Ellis S, Bonnert TP, Shearman MS, Beher D. Functional Overexpression of γ-Secretase Reveals Protease-independent Trafficking Functions and a Critical Role of Lipids for Protease Activity. J Biol Chem 2005; 280:12523-35. [PMID: 15613471 DOI: 10.1074/jbc.m413086200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilins appear to form the active center of gamma-secretase but require the presence of the integral membrane proteins nicastrin, anterior pharynx defective 1, and presenilin enhancer 2 for catalytic function. We have simultaneously overexpressed all of these polypeptides, and we demonstrate functional assembly of the enzyme complex, a substantial increase in enzyme activity, and binding of all components to a transition state analogue gamma-secretase inhibitor. Co-localization of all components can be observed in the Golgi compartment, and further trafficking of the individual constituents seems to be dependent on functional assembly. Apart from its catalytic function, gamma-secretase appears to play a role in the trafficking of the beta-amyloid precursor protein, which was changed upon reconstitution of the enzyme but unaffected by pharmacological inhibition. Because the relative molecular mass and stoichiometry of the active enzyme complex remain elusive, we performed size exclusion chromatography of solubilized gamma-secretase, which yielded evidence of a tetrameric form of the complex, yet almost completely abolished enzyme activity. Gamma-secretase activity was reconstituted upon addition of an independent size exclusion chromatography fraction of lower molecular mass and nonproteinaceous nature, which could be replaced by a brain lipid extract. The same treatment was able to restore enzyme activity after immunoaffinity purification of the gamma-secretase complex, demonstrating that lipids play a key role in preserving the catalytic activity of this protease. Furthermore, these data show that it is important to discriminate between intact, inactive gamma-secretase complexes and the active form of the enzyme, indicating the care that must be taken in the study of gamma-secretase.
Collapse
Affiliation(s)
- Jonathan D J Wrigley
- Department of Molecular and Cellular Neuroscience, Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Niimura M, Isoo N, Takasugi N, Tsuruoka M, Ui-Tei K, Saigo K, Morohashi Y, Tomita T, Iwatsubo T. Aph-1 Contributes to the Stabilization and Trafficking of the γ-Secretase Complex through Mechanisms Involving Intermolecular and Intramolecular Interactions. J Biol Chem 2005; 280:12967-75. [PMID: 15644323 DOI: 10.1074/jbc.m409829200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-secretase cleaves type I transmembrane proteins, including beta-amyloid precursor protein and Notch, and requires the formation of a protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2 for its activity. Aph-1 is implicated in the stabilization of this complex, although its precise mechanistic role remains unknown. Substitution of the first glycine within the transmembrane GXXXG motif of Aph-1 causes a loss-of-function phenotype in Caenorhabditis elegans. Here, using an untranslated region-targeted RNA interference/rescue strategy in Drosophila Schneider 2 cells, we show that Aph-1 contributes to the assembly of the gamma-secretase complex by multiple mechanisms involving intermolecular and intramolecular interactions depending on or independent of the conserved glycines. Aph-1 binds to nicastrin forming an early subcomplex independent of the conserved glycines within the endoplasmic reticulum. Certain mutations in the conserved GXXXG motif affect the interaction of the Aph-1.nicastrin subcomplex with presenilin that mediates trafficking of the presenilin.Aph-1.nicastrin tripartite complex to the Golgi. The same mutations decrease the stability of Aph-1 polypeptides themselves, possibly by affecting intramolecular associations through the transmembrane domains. Our data suggest that the proper assembly of the Aph-1.nicastrin subcomplex with presenilin is the prerequisite for the trafficking as well as the enzymatic activity of the gamma-secretase complex and that Aph-1 functions as a stabilizing scaffold in the assembly of this complex.
Collapse
Affiliation(s)
- Manabu Niimura
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Zhao Z, Ksiezak-Reding H, Wang J, Pasinetti GM. Expression of tau reduces secretion of Aβ without altering the amyloid precursor protein content in CHOsw cells. FEBS Lett 2005; 579:2119-24. [PMID: 15811328 DOI: 10.1016/j.febslet.2005.02.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/03/2005] [Accepted: 02/15/2005] [Indexed: 11/17/2022]
Abstract
Insoluble deposits of tau and amyloid precursor protein (APP) peptides Abeta characterize Alzheimer's disease. We studied the role of tau in the metabolism of APP in cells stably expressing APP Swedish mutation (CHOsw). Transient expression of tau in CHOsw cells caused morphological changes, bundling of microtubules and perinuclear aggregation of Golgi-derived vesicles. It also reduced the secretion of Abeta(1-40) and Abeta(1-42) without altering the APP steady state levels. This was accompanied by a reduction in the gamma-secretase and an increase in the insulin degrading enzyme activities. Our results suggest that tau may play an inhibitory role in the amyloidogenic activity of APP.
Collapse
Affiliation(s)
- Zhong Zhao
- Neuroinflammation Research Laboratories, Department of Psychiatry of the Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
83
|
Capell A, Beher D, Prokop S, Steiner H, Kaether C, Shearman MS, Haass C. Gamma-secretase complex assembly within the early secretory pathway. J Biol Chem 2004; 280:6471-8. [PMID: 15591316 DOI: 10.1074/jbc.m409106200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Secretase is an aspartyl protease complex composed of the four core components APH-1, nicastrin (NCT), presenilin (PS), and PEN-2. It catalyzes the final intramembranous cleavage of the beta-secretase-processed beta-amyloid precursor protein to liberate the neurotoxic amyloid beta-peptide. Whereas unassembled complex components appear to be unstable and/or to be retained within the endoplasmic reticulum (ER), the fully assembled complex is known to exert its biological function in late secretory compartments, including the plasma membrane. We thus hypothesized that the gamma-secretase complex undergoes a stepwise assembly within the ER. We demonstrate that gamma-secretase-associated NCT can be actively retained within the ER by the addition of a retention signal. Under these conditions, complex assembly occurred in the absence of maturation of NCT, and ER-retained immature NCT associated with APH-1, PEN-2, and PS fragments. Moreover, a biotinylated transition state gamma-secretase inhibitor allowed the preferential isolation of the fully assembled complex containing immature NCT. Furthermore, we observed a conformational change in immature NCT, which is known to be selectively associated with complete gamma-secretase complex assembly. This was also observed for a small amount of immature endogenous NCT. ER-retained NCT also rescued the biochemical phenotype observed upon RNA interference-mediated NCT knockdown, viz. reduced amyloid beta-peptide production; instability of PS, PEN-2, and APH-1; and accumulation of beta-amyloid precursor protein C-terminal fragments. Finally, we demonstrate that dimeric (NCT/APH-1) and trimeric (NCT/APH-1/PS) intermediates of gamma-secretase complex assembly containing endogenous NCT are retained within the ER and that the incorporation of the fourth and last binding partner (PEN-2) also occurs on immature NCT, suggesting a complete assembly of the gamma-secretase complex within the ER.
Collapse
Affiliation(s)
- Anja Capell
- Adolf-Butenandt-Institut, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-Universität, Schillerstrasse 44, 80336 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
84
|
Chyung JH, Raper DM, Selkoe DJ. Gamma-secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. J Biol Chem 2004; 280:4383-92. [PMID: 15569674 DOI: 10.1074/jbc.m409272200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Research on Alzheimer's disease led to the identification of a novel proteolytic mechanism in all metazoans, the presenilin/gamma-secretase complex. This unique intramembrane-cleaving aspartyl protease is required for the normal processing of Notch, Jagged, beta-amyloid precursor protein (APP), E-cadherin, and many other receptor-like proteins. We recently provided indirect evidence of gamma-secretase activity at the cell surface in HeLa cells following inhibition of receptor-mediated endocytosis. Here, we directly identify and isolate gamma-secretase as an intact complex (Presenilin, Nicastrin, Aph-1, and Pen-2) from the plasma membrane, both in overexpressing cell lines and endogenously. Inhibition of its proteolytic activity allowed cell surface gamma-secretase to be captured in association with its plasma membrane-localized APP substrates (C83 and C99). Moreover, non-denaturing isolation of the intact enzyme complex revealed that cell surface gamma-secretase can specifically generate amyloid beta-protein from an APP substrate and similarly cleave a Notch substrate. These data directly establish the proteolytic function of gamma-secretase on the plasma membrane, independent of a hypothesized substrate trafficking role. We conclude that presenilin/gamma-secretase exists as a mature complex at the cell surface, where it interacts with and can cleave its substrates, consistent with an essential function in processing many adhesion molecules and receptors required for cell-cell interaction or intercellular signaling.
Collapse
Affiliation(s)
- Jay H Chyung
- Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
85
|
Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu H, Thinakaran G. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 2004; 279:44945-54. [PMID: 15322084 PMCID: PMC1201506 DOI: 10.1074/jbc.m407986200] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease-associated beta-amyloid peptides (Abeta) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by beta- and gamma-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major beta-secretase in neurons is a palmitoylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the gamma-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1(-/-)/PS2(-/-) and NCT(-/-) fibroblasts, gamma-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires gamma-secretase complex assembly. Biochemical evidence shows that subunits of the gamma-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of gamma-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP.
Collapse
Affiliation(s)
| | - Haipeng Cheng
- From the Department of Neurobiology, Pharmacology and Physiology and the
| | - William Lin
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, the
| | - Takashi Sakurai
- Laboratory for Neurodegeneration Signal and Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan, the
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the
| | - Nobuyuki Nukina
- Laboratory for Neurodegeneration Signal and Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan, the
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the
| | - Huaxi Xu
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, California 92037
| | - Gopal Thinakaran
- From the Department of Neurobiology, Pharmacology and Physiology and the
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, the
- §§ To whom correspondence should be addressed. Tel.: 773-834-3752; Fax: 773-834-3808; E-mail:
| |
Collapse
|
86
|
Nyborg AC, Jansen K, Ladd TB, Fauq A, Golde TE. A signal peptide peptidase (SPP) reporter activity assay based on the cleavage of type II membrane protein substrates provides further evidence for an inverted orientation of the SPP active site relative to presenilin. J Biol Chem 2004; 279:43148-56. [PMID: 15252014 DOI: 10.1074/jbc.m405879200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptide peptidase (SPP) is an intramembrane-cleaving protease identified by its cleavage of several type II membrane signal peptides after signal peptidase cleavage. Here we describe a novel, quantitative, cell-based SPP reporter assay. This assay utilizes a substrate consisting of the NH2 terminus of the ATF6 transcription factor fused to a transmembrane domain susceptible to SPP cleavage in vitro. In cells, cleavage of the substrate releases ATF6 from the membrane. This cleavage can be monitored by detection of an epitope that is unmasked in the cleaved substrate or by luciferase activity induced by the cleaved ATF6 substrate binding to and activating an ATF6 luciferase reporter construct. Using this assay we show that (i) SPP is the first aspartyl intramembrane-cleaving protease whose activity increases proportionally to its overexpression and (ii) selectivity of various SPP and gamma-secretase inhibitors can be rapidly evaluated. Because this assay was designed based on data suggesting that SPP has an orientation distinct from presenilin and cleaves type II membrane proteins, we determined whether the segment of SPP located between the two presumptive catalytic aspartates was in the lumen or cytoplasm. Using site-directed mutagenesis to insert an N-linked glycosylation site we show that a portion of this region is present in the lumen. These data provide strong evidence that although the SPP and presenilin active sites have some similarities, their presumptive catalytic domains are inverted. This assay should prove useful for additional functional studies of SPP as well as evaluation of SPP and gamma-secretase inhibitors.
Collapse
Affiliation(s)
- Andrew C Nyborg
- Mayo Clinic, Mayo Clinic College of Medicine, Department of Neuroscience, Jacksonville, Florida 32224, USA
| | | | | | | | | |
Collapse
|
87
|
Wang H, Luo WJ, Zhang YW, Li YM, Thinakaran G, Greengard P, Xu H. Presenilins and gamma-secretase inhibitors affect intracellular trafficking and cell surface localization of the gamma-secretase complex components. J Biol Chem 2004; 279:40560-6. [PMID: 15247291 DOI: 10.1074/jbc.m404345200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch is mediated by the presenilin (PS, PS1/PS2)-gamma-secretase complex, the components of which also include nicastrin, APH-1, and PEN-2. In addition to its essential role in gamma-secretase activity, we and others have reported that PS1 plays a role in intracellular trafficking of select membrane proteins including nicastrin. Here we examined the fate of PEN-2 in the absence of PS expression or gamma-secretase activity. We found that PEN-2 is retained in the endoplasmic reticulum and has a much shorter half-life in PS-deficient cells than in wild type cells, suggesting that PSs are required for maintaining the stability and proper subcellular trafficking of PEN-2. However, the function of PS in PEN-2 trafficking is distinct from its contribution to gamma-secretase activity because inhibition of gamma-secretase activity by gamma-secretase inhibitors did not affect the PEN-2 level or its egress from the endoplasmic reticulum. Instead, membrane-permeable gamma-secretase inhibitors, but not a membrane-impermeable derivative, markedly increased the cell surface levels of PS1 and PEN-2 without affecting that of nicastrin. In support of its role in PEN-2 trafficking, PS1 was also required for the gamma-secretase inhibitor-induced plasma membrane accumulation of PEN-2. We further showed that gamma-secretase inhibitors specifically accelerated the Golgi to the cell surface transport of PS1 and PEN-2. Taken together, we demonstrate an essential role for PSs in intracellular trafficking of the gamma-secretase components, and that selective gamma-secretase inhibitors differentially affect the trafficking of the gamma-secretase components, which may contribute to an inactivation of gamma-secretase.
Collapse
Affiliation(s)
- Hong Wang
- The Fisher Center for Alzheimer's Disease Research and the Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|