51
|
Malhotra D, Linehan JL, Dileepan T, Lee YJ, Purtha WE, Lu JV, Nelson RW, Fife BT, Orr HT, Anderson MS, Hogquist KA, Jenkins MK. Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns. Nat Immunol 2016; 17:187-95. [PMID: 26726812 PMCID: PMC4718891 DOI: 10.1038/ni.3327] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
Abstract
Studies of repertoires of mouse monoclonal CD4(+) T cells have revealed several mechanisms of self-tolerance; however, which mechanisms operate in normal repertoires is unclear. Here we studied polyclonal CD4(+) T cells specific for green fluorescent protein expressed in various organs, which allowed us to determine the effects of specific expression patterns on the same epitope-specific T cells. Peptides presented uniformly by thymic antigen-presenting cells were tolerated by clonal deletion, whereas peptides excluded from the thymus were ignored. Peptides with limited thymic expression induced partial clonal deletion and impaired effector T cell potential but enhanced regulatory T cell potential. These mechanisms were also active for T cell populations specific for endogenously expressed self antigens. Thus, the immunotolerance of polyclonal CD4(+) T cells was maintained by distinct mechanisms, according to self-peptide expression patterns.
Collapse
Affiliation(s)
- Deepali Malhotra
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Jonathan L. Linehan
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - You Jeong Lee
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Whitney E. Purtha
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Jennifer V. Lu
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Ryan W. Nelson
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Harry T. Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Kristin A. Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Marc K. Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| |
Collapse
|
52
|
Holland CJ, Dolton G, Scurr M, Ladell K, Schauenburg AJ, Miners K, Madura F, Sewell AK, Price DA, Cole DK, Godkin AJ. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide-MHC Class II Multimers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5827-36. [PMID: 26553072 PMCID: PMC4671089 DOI: 10.4049/jimmunol.1402787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
Fluorochrome-conjugated peptide-MHC (pMHC) class I multimers are staple components of the immunologist's toolbox, enabling reliable quantification and analysis of Ag-specific CD8(+) T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4(+) T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II-bound peptides, can enhance TCR-pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4(+) T cells, highlighting an unappreciated feature of TCR-pMHC-II interactions.
Collapse
Affiliation(s)
- Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Martin Scurr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrea J Schauenburg
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Kelly Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Florian Madura
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and Department of Integrated Medicine, University Hospital of Wales, Cardiff CF14 4XW, Wales, United Kingdom
| |
Collapse
|
53
|
Abstract
T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
54
|
Massilamany C, Krishnan B, Reddy J. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research. Scand J Immunol 2015; 82:399-408. [PMID: 26207337 PMCID: PMC4610346 DOI: 10.1111/sji.12344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
The advent of major histocompatibility complex (MHC) tetramer technology has been a major contribution to T cell immunology, because tetramer reagents permit detection of antigen-specific T cells at the single-cell level in heterogeneous populations by flow cytometry. However, unlike MHC class I tetramers, the utility of MHC class II tetramers has been less frequently reported. MHC class II tetramers can be used successfully to enumerate the frequencies of antigen-specific CD4 T cells in cells activated in vitro, but their use for ex vivo analyses continues to be a problem, due in part to their activation dependency for binding with T cells. To circumvent this problem, we recently reported the creation of a new generation of reagents called MHC class II dextramers, which were found to be superior to their counterparts. In this review, we discuss the utility of class II dextramers vis-a-vis tetramers, with respect to their specificity and sensitivity, including potential applications and limitations.
Collapse
Affiliation(s)
- C Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - B Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - J Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
55
|
Prota G, Christensen D, Andersen P, Medaglini D, Ciabattini A. Peptide-specific T helper cells identified by MHC class II tetramers differentiate into several subtypes upon immunization with CAF01 adjuvanted H56 tuberculosis vaccine formulation. Vaccine 2015; 33:6823-30. [PMID: 26494626 DOI: 10.1016/j.vaccine.2015.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/17/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
CD4(+) T-cell priming is an essential step in vaccination due to the key role of T helper cells in driving both effector and memory immune responses. Here we have characterized in C57BL/6 mice the T helper subtype differentiation among tetramer-specific CD4(+) T cells primed by subcutaneous immunization with the tuberculosis vaccine antigen H56 plus the adjuvant CAF01. Peptide-specific population identified by the MHC class II tetramers differentiated into several T helper subtypes upon antigen encounter, and the frequency of subpopulations differed according to their localization. Th1 (CXCR3(+)T-bet(+)), Tfh (CXCR5(+)PD-1(+)Bcl-6(+)) and RORγt(+) cells were induced in the lymph nodes draining the immunization site (dLN), while Th1 cells were the predominant subtype in the spleen. In addition, CD4(+) T cells co-expressing multiple T-cell lineage-specifying transcription factors were also detected. In the lungs, most of the tetramer-binding T cells were RORγt(+), while Tfh and Th1 cells were absent. After boosting, a higher frequency of tetramer-binding cells co-expressing the markers CD44 and CD127 was detected compared to primed cells, and cells showed a prevalent Th1 phenotype in both dLN and spleens, while Tfh cells were significantly reduced. In conclusion, these data demonstrate that parenteral immunization with H56 and CAF01 elicits a distribution of antigen-specific CD4(+) T cells in both lymphoid tissues and lungs, and gives rise to multiple T helper subtypes, that differ depending on localization and following reactivation.
Collapse
Affiliation(s)
- Gennaro Prota
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy.
| |
Collapse
|
56
|
N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proc Natl Acad Sci U S A 2015; 112:13318-23. [PMID: 26453556 DOI: 10.1073/pnas.1517862112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chromogranin A (ChgA) is an autoantigen for CD4(+) T cells in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). The natural ChgA-processed peptide, WE14, is a weak agonist for the prototypical T cell, BDC-2.5, and other ChgA-specific T-cell clones. Mimotope peptides with much higher activity share a C-terminal motif, WXRM(D/E), that is predicted to lie in the p5 to p9 position in the mouse MHC class II, IA(g7) binding groove. This motif is also present in WE14 (WSRMD), but at its N terminus. Therefore, to place the WE14 motif into the same position as seen in the mimotopes, we added the amino acids RLGL to its N terminus. Like the other mimotopes, RLGL-WE14, is much more potent than WE14 in T-cell stimulation and activates a diverse population of CD4(+) T cells, which also respond to WE14 as well as islets from WT, but not ChgA(-/-) mice. The crystal structure of the IA(g7)-RLGL-WE14 complex confirmed the predicted placement of the peptide within the IA(g7) groove. Fluorescent IA(g7)-RLGL-WE14 tetramers bind to ChgA-specific T-cell clones and easily detect ChgA-specific T cells in the pancreas and pancreatic lymph nodes of NOD mice. The prediction that many different N-terminal amino acid extensions to the WXRM(D/E) motif are sufficient to greatly improve T-cell stimulation leads us to propose that such a posttranslational modification may occur uniquely in the pancreas or pancreatic lymph nodes, perhaps via the mechanism of transpeptidation. This modification could account for the escape of these T cells from thymic negative selection.
Collapse
|
57
|
Martinez RJ, Evavold BD. Lower Affinity T Cells are Critical Components and Active Participants of the Immune Response. Front Immunol 2015; 6:468. [PMID: 26441973 PMCID: PMC4564719 DOI: 10.3389/fimmu.2015.00468] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/28/2015] [Indexed: 11/13/2022] Open
Abstract
Kinetic and biophysical parameters of T cell receptor (TCR) and peptide:MHC (pMHC) interaction define intrinsic factors required for T cell activation and differentiation. Although receptor ligand kinetics are somewhat cumbersome to assess experimentally, TCR:pMHC affinity has been shown to predict peripheral T cell functionality and potential for forming memory. Multimeric forms of pMHC monomers have often been used to provide an indirect readout of higher affinity T cells due to their availability and ease of use while allowing simultaneous definition of other functional and phenotypic characteristics. However, multimeric pMHC reagents have introduced a bias that underestimates the lower affinity components contained in the highly diverse TCR repertoires of all polyclonal T cell responses. Advances in the identification of lower affinity cells have led to the examination of these cells and their contribution to the immune response. In this review, we discuss the identification of high- vs. low-affinity T cells as well as their attributed signaling and functional differences. Lastly, mechanisms are discussed that maintain a diverse range of low- and high-affinity T cells.
Collapse
Affiliation(s)
- Ryan J. Martinez
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
58
|
Hong J, Persaud SP, Horvath S, Allen PM, Evavold BD, Zhu C. Force-Regulated In Situ TCR-Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:3557-64. [PMID: 26336148 DOI: 10.4049/jimmunol.1501407] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 12/27/2022]
Abstract
We have recently shown that two-dimensional (2D) and force-regulated kinetics of TCR-peptide-bound MHC class I (pMHC-I) interactions predict responses of CD8(+) T cells. To test whether these findings are applicable to CD4(+) T cells, we analyzed the in situ 3.L2 TCR-pMHC-II interactions for a well-characterized panel of altered peptide ligands on the T cell surface using the adhesion frequency assay with a micropipette and the thermal fluctuation and force-clamp assays with a biomembrane force probe. We found that the 2D effective TCR-pMHC-II affinity and off-rate correlate with, but better predict the T cell response than, the corresponding measurements with the surface plasmon resonance in three dimensions. The 2D affinity of the CD4 for MHC-II was very low, approaching the detection limit, making it one to two orders of magnitude lower than the affinity of CD8 for MHC-I. In addition, the signal-dependent cooperation between TCR and coreceptor for pMHC binding previously observed for CD8 was not observed for CD4. Interestingly, force elicited TCR-pMHC-II catch-slip bonds for agonists but slip-only bonds for antagonists, thereby amplifying the power of discrimination between altered peptide ligands. These results show that the force-regulated 2D binding kinetics of the 3.L2 TCR for pMHC-II determine functions of CD4(+) T cells.
Collapse
Affiliation(s)
- Jinsung Hong
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Stephen P Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen Horvath
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian D Evavold
- Department of Immunology and Microbiology, Emory University School of Medicine, Atlanta, GA 30332; and
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
59
|
Phetsouphanh C, Zaunders JJ, Kelleher AD. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci 2015; 16:18878-93. [PMID: 26274954 PMCID: PMC4581277 DOI: 10.3390/ijms160818878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.
Collapse
Affiliation(s)
| | - John James Zaunders
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| | - Anthony Dominic Kelleher
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| |
Collapse
|
60
|
Deshpande NR, Parrish HL, Kuhns MS. Self-recognition drives the preferential accumulation of promiscuous CD4(+) T-cells in aged mice. eLife 2015; 4:e05949. [PMID: 26173205 PMCID: PMC4501121 DOI: 10.7554/elife.05949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
T-cell recognition of self and foreign peptide antigens presented in major histocompatibility complex molecules (pMHC) is essential for life-long immunity. How the ability of the CD4+ T-cell compartment to bind self- and foreign-pMHC changes over the lifespan remains a fundamental aspect of T-cell biology that is largely unexplored. We report that, while old mice (18–22 months) contain fewer CD4+ T-cells compared with adults (8–12 weeks), those that remain have a higher intrinsic affinity for self-pMHC, as measured by CD5 expression. Old mice also have more cells that bind individual or multiple distinct foreign-pMHCs, and the fold increase in pMHC-binding populations is directly related to their CD5 levels. These data demonstrate that the CD4+ T-cell compartment preferentially accumulates promiscuous constituents with age as a consequence of higher affinity T-cell receptor interactions with self-pMHC. DOI:http://dx.doi.org/10.7554/eLife.05949.001 The immune system's T cells help the body to recognize and destroy harmful pathogens, such as viruses and bacteria. T cells ‘remember’ immunity-inducing fragments, called antigens, from the pathogens they have encountered. This memory then allows the immune system to quickly fend off infections if those pathogens, or even related pathogens, invade again. Vaccines exploit the ability to form immunological memory by exposing the body to harmless forms of the pathogen, or even just particular antigens from it. This allows the T cells to learn how to identify the pathogen without any risk of illness. Vaccines have been extremely successful and have helped to virtually eliminate some diseases. However, for reasons that are unclear, the immune systems of older adults become less functional, so vaccines often lose their effectiveness. Paradoxically, as people age T cells become more likely to attack the body's cells, causing autoimmune diseases like arthritis. Understanding what happens to aging T cells to cause these immune changes may help scientists design vaccines that remain effective as people age. Little is known about what happens to a particular type of T cell—the CD4+ T cells—as people age, even though this population plays a critical role in providing other immune cells with detailed instructions on when and how to fight a pathogen. Now, Deshpande et al. show that CD4+ T cells undergo a remarkable set of changes in aging mice. Mice that are nearing the end of their natural lifespan have fewer CD4+ T cells than younger mice. However, those CD4+ T cells that remain are more likely than CD4+ T cells from younger mice to be able to recognize multiple antigens. This increase in the proportion of multitasking CD4+ T cells corresponds with an increased tendency of these cells to bind to the body's own cells. If similar changes occur in older people, this may help explain some age-related autoimmune diseases. Yet, the relationship between the increase in multitasking CD4+ T cells and the decrease in immune function with aging remains to be fully explored. The challenge for scientists now is to determine how these age-related changes in CD4+ T cells affect immune responses to vaccines or pathogens in older individuals. One implication of this work is that CD4+ T cell responses may be too robust and out of balance with other arms of the immune system. This could even lead to conditions such as autoimmunity. Alternatively, while there may be more CD4+ T cells that can multitask by recognizing multiple antigens, their ability to respond appropriately to infections or vaccinations may be diminished. What is clear from the work of Deshpande et al. is that the rules that have been defined for immunity in adults change with aging. The rules that govern immunity in the elderly must be more clearly defined to realize the goal of designing immunotherapies, such as vaccines, that provide protection throughout the lifespan. DOI:http://dx.doi.org/10.7554/eLife.05949.002
Collapse
Affiliation(s)
- Neha R Deshpande
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
| | - Heather L Parrish
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
| | - Michael S Kuhns
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
| |
Collapse
|
61
|
Parrish HL, Glassman CR, Keenen MM, Deshpande NR, Bronnimann MP, Kuhns MS. A Transmembrane Domain GGxxG Motif in CD4 Contributes to Its Lck-Independent Function but Does Not Mediate CD4 Dimerization. PLoS One 2015; 10:e0132333. [PMID: 26147390 PMCID: PMC4493003 DOI: 10.1371/journal.pone.0132333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/14/2015] [Indexed: 12/24/2022] Open
Abstract
CD4 interactions with class II major histocompatibility complex (MHC) molecules are essential for CD4+ T cell development, activation, and effector functions. While its association with p56lck (Lck), a Src kinase, is important for these functions CD4 also has an Lck-independent role in TCR signaling that is incompletely understood. Here, we identify a conserved GGxxG motif in the CD4 transmembrane domain that is related to the previously described GxxxG motifs of other proteins and predicted to form a flat glycine patch in a transmembrane helix. In other proteins, these patches have been reported to mediate dimerization of transmembrane domains. Here we show that introducing bulky side-chains into this patch (GGxxG to GVxxL) impairs the Lck-independent role of CD4 in T cell activation upon TCR engagement of agonist and weak agonist stimulation. However, using Forster’s Resonance Energy Transfer (FRET), we saw no evidence that these mutations decreased CD4 dimerization either in the unliganded state or upon engagement of pMHC concomitantly with the TCR. This suggests that the CD4 transmembrane domain is either mediating interactions with an unidentified partner, or mediating some other function such as membrane domain localization that is important for its role in T cell activation.
Collapse
Affiliation(s)
- Heather L. Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Caleb R. Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Madeline M. Keenen
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Neha R. Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Matthew P. Bronnimann
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Michael S. Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
62
|
Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P. CD11c-Expressing B Cells Are Located at the T Cell/B Cell Border in Spleen and Are Potent APCs. THE JOURNAL OF IMMUNOLOGY 2015; 195:71-9. [PMID: 26034175 DOI: 10.4049/jimmunol.1500055] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022]
Abstract
In addition to the secretion of Ag-specific Abs, B cells may play an important role in the generation of immune responses by efficiently presenting Ag to T cells. We and other investigators recently described a subpopulation of CD11c(+) B cells (Age/autoimmune-associated B cells [ABCs]) that appear with age, during virus infections, and at the onset of some autoimmune diseases and participate in autoimmune responses by secreting autoantibodies. In this study, we assessed the ability of these cells to present Ag and activate Ag-specific T cells. We demonstrated that ABCs present Ag to T cells, in vitro and in vivo, better than do follicular B cells (FO cells). Our data indicate that ABCs express higher levels of the chemokine receptor CCR7, have higher responsiveness to CCL21 and CCL19 than do FO cells, and are localized at the T/B cell border in spleen. Using multiphoton microscopy, we show that, in vivo, CD11c(+) B cells form significantly more stable interactions with T cells than do FO cells. Together, these data identify a previously undescribed role for ABCs as potent APCs and suggest another potential mechanism by which these cells can influence immune responses and/or the development of autoimmunity.
Collapse
Affiliation(s)
- Anatoly V Rubtsov
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206;
| | - Kira Rubtsova
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - John W Kappler
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - Philippa Marrack
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206; Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
63
|
Babad J, Mukherjee G, Follenzi A, Ali R, Roep BO, Shultz LD, Santamaria P, Yang OO, Goldstein H, Greiner DL, DiLorenzo TP. Generation of β cell-specific human cytotoxic T cells by lentiviral transduction and their survival in immunodeficient human leucocyte antigen-transgenic mice. Clin Exp Immunol 2015; 179:398-413. [PMID: 25302633 DOI: 10.1111/cei.12465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 01/23/2023] Open
Abstract
Several β cell antigens recognized by T cells in the non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D) are also T cell targets in the human disease. While numerous antigen-specific therapies prevent diabetes in NOD mice, successful translation of rodent findings to patients has been difficult. A human leucocyte antigen (HLA)-transgenic mouse model incorporating human β cell-specific T cells might provide a better platform for evaluating antigen-specific therapies. The ability to study such T cells is limited by their low frequency in peripheral blood and the difficulty in obtaining islet-infiltrating T cells from patients. We have worked to overcome this limitation by using lentiviral transduction to 'reprogram' primary human CD8 T cells to express three T cell receptors (TCRs) specific for a peptide derived from the β cell antigen islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP265-273 ) and recognized in the context of the human class I major histocompatibility complex (MHC) molecule HLA-A2. The TCRs bound peptide/MHC multimers with a range of avidities, but all bound with at least 10-fold lower avidity than the anti-viral TCR used for comparison. One exhibited antigenic recognition promiscuity. The β cell-specific human CD8 T cells generated by lentiviral transduction with one of the TCRs released interferon (IFN)-γ in response to antigen and exhibited cytotoxic activity against peptide-pulsed target cells. The cells engrafted in HLA-A2-transgenic NOD-scid IL2rγ(null) mice and could be detected in the blood, spleen and pancreas up to 5 weeks post-transfer, suggesting the utility of this approach for the evaluation of T cell-modulatory therapies for T1D and other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- J Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Van Hemelen D, Mahler V, Fischer G, Fae I, Reichl-Leb V, Pickl W, Jutel M, Smolinska S, Ebner C, Bohle B, Jahn-Schmid B. HLA class II peptide tetramers vs allergen-induced proliferation for identification of allergen-specific CD4 T cells. Allergy 2015; 70:49-58. [PMID: 25236500 DOI: 10.1111/all.12524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Fluorescence-labeled MHC class II/peptide tetramer complexes are considered as optimal tools to characterize allergen-specific CD4(+) T cells, but this technique is restricted to frequently expressed HLA class II molecules and knowledge of immunodominant epitopes. In contrast, allergen-stimulated proliferation assessed by CFSE dilution is less sophisticated and widely applicable. The major mugwort allergen, Art v 1, contains only one single, immunodominant, HLA-DR1-restricted epitope (Art v 125-36 ). Thus, essentially all Art v 1-reactive cells should be identified by a HLA-DRB1*01:01/Art v 119-36 tetramer. METHODS We compared specificity and sensitivity of tetramer(+) and allergen-induced proliferating (CFSE(lo) ) CD4(+) T cells by flow cytometry. RESULTS The frequency of tetramer(+) CD4(+) T cells determined ex vivo in PBMC of mugwort-allergic individuals ranged from 0 to 0.029%. After 2-3 weeks of in vitro expansion, sufficient tetramer(+) T cells for phenotyping were detected in 83% of Art v 125-36 -reactive T-cell lines (TCL) from mugwort-allergic individuals, but not in TCL from healthy individuals. The tetramers defined bona fide Th2 cells. Notably, Art v 125-36 -reactive TCL depleted of tetramer(+) T cells still reacted to the peptide, and only 44% of Art v 125-36 -specific T-cell clones were detected by the tetramer. CFSE(lo) CD4(+) T cells contained only 0.3-10.7% of tetramer(+) T cells and very low proportions of Th2 cells. CONCLUSION Allergen-specific T cells can be identified by HLA class II tetramers with high specificity, but unexpected low sensitivity. In contrast, allergen-stimulated CFSE(lo) CD4(+) T cells contain extremely high fractions of bystander cells. Therefore, for T-cell monitoring, either method should be interpreted with caution.
Collapse
Affiliation(s)
- D. Van Hemelen
- Department of Pathophysiology and Allergy Research; Center for Pathophysiology; Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - V. Mahler
- Department of Dermatology; University of Erlangen; Erlangen Germany
| | - G. Fischer
- Department of Blood Group Serology; Medical University of Vienna; Vienna Austria
| | - I. Fae
- Department of Blood Group Serology; Medical University of Vienna; Vienna Austria
| | - V. Reichl-Leb
- Institute of Immunology; Medical University of Vienna; Vienna Austria
- Christian Doppler Laboratory for Immunomodulation; Medical University of Vienna; Vienna Austria
| | - W. Pickl
- Institute of Immunology; Medical University of Vienna; Vienna Austria
- Christian Doppler Laboratory for Immunomodulation; Medical University of Vienna; Vienna Austria
| | - M. Jutel
- Department of Clinical Immunology; Wroclaw Medical University and ‘ALL-MED’ Medical Research Institute; Wroclaw Poland
| | - S. Smolinska
- Department of Clinical Immunology; Wroclaw Medical University and ‘ALL-MED’ Medical Research Institute; Wroclaw Poland
| | - C. Ebner
- Allergieambulatorium Reumannplatz; Vienna Austria
| | - B. Bohle
- Department of Pathophysiology and Allergy Research; Center for Pathophysiology; Infectiology and Immunology; Medical University of Vienna; Vienna Austria
- Christian Doppler Laboratory for Immunomodulation; Medical University of Vienna; Vienna Austria
| | - B. Jahn-Schmid
- Department of Pathophysiology and Allergy Research; Center for Pathophysiology; Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| |
Collapse
|
65
|
Ma Z, LeBard DN, Loverde SM, Sharp KA, Klein ML, Discher DE, Finkel TH. TCR triggering by pMHC ligands tethered on surfaces via poly(ethylene glycol) depends on polymer length. PLoS One 2014; 9:e112292. [PMID: 25383949 PMCID: PMC4226474 DOI: 10.1371/journal.pone.0112292] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 10/10/2014] [Indexed: 11/29/2022] Open
Abstract
Antigen recognition by T cells relies on the interaction between T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) at the interface between the T cell and the antigen presenting cell (APC). The pMHC-TCR interaction is two-dimensional (2D), in that both the ligand and receptor are membrane-anchored and their movement is limited to 2D diffusion. The 2D nature of the interaction is critical for the ability of pMHC ligands to trigger TCR. The exact properties of the 2D pMHC-TCR interaction that enable TCR triggering, however, are not fully understood. Here, we altered the 2D pMHC-TCR interaction by tethering pMHC ligands to a rigid plastic surface with flexible poly(ethylene glycol) (PEG) polymers of different lengths, thereby gradually increasing the ligands' range of motion in the third dimension. We found that pMHC ligands tethered by PEG linkers with long contour length were capable of activating T cells. Shorter PEG linkers, however, triggered TCR more efficiently. Molecular dynamics simulation suggested that shorter PEGs exhibit faster TCR binding on-rates and off-rates. Our findings indicate that TCR signaling can be triggered by surface-tethered pMHC ligands within a defined 3D range of motion, and that fast binding rates lead to higher TCR triggering efficiency. These observations are consistent with a model of TCR triggering that incorporates the dynamic interaction between T cell and antigen-presenting cell.
Collapse
Affiliation(s)
- Zhengyu Ma
- Department of Biomedical Research, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - David N. LeBard
- Department of Chemistry, Yeshiva University, New York, New York, United States of America
| | - Sharon M. Loverde
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York, United States of America
| | - Kim A. Sharp
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael L. Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dennis E. Discher
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Terri H. Finkel
- Department of Pediatrics, Nemours Children’s Hospital, Orlando, Florida, United States of America
- Department of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
66
|
Clayton GM, Wang Y, Crawford F, Novikov A, Wimberly BT, Kieft JS, Falta MT, Bowerman NA, Marrack P, Fontenot AP, Dai S, Kappler JW. Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity. Cell 2014; 158:132-42. [PMID: 24995984 PMCID: PMC4269484 DOI: 10.1016/j.cell.2014.04.048] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/22/2014] [Accepted: 04/21/2014] [Indexed: 11/20/2022]
Abstract
T-cell-mediated hypersensitivity to metal cations is common in humans. How the T cell antigen receptor (TCR) recognizes these cations bound to a major histocompatibility complex (MHC) protein and self-peptide is unknown. Individuals carrying the MHCII allele, HLA-DP2, are at risk for chronic beryllium disease (CBD), a debilitating inflammatory lung condition caused by the reaction of CD4 T cells to inhaled beryllium. Here, we show that the T cell ligand is created when a Be(2+) cation becomes buried in an HLA-DP2/peptide complex, where it is coordinated by both MHC and peptide acidic amino acids. Surprisingly, the TCR does not interact with the Be(2+) itself, but rather with surface changes induced by the firmly bound Be(2+) and an accompanying Na(+) cation. Thus, CBD, by creating a new antigen by indirectly modifying the structure of preexisting self MHC-peptide complex, lies on the border between allergic hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Gina M Clayton
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Frances Crawford
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Andrey Novikov
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Brian T Wimberly
- Department of Biochemistry and Molecular Genetics, Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Michael T Falta
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Natalie A Bowerman
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Andrew P Fontenot
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | - John W Kappler
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
67
|
Dolton G, Lissina A, Skowera A, Ladell K, Tungatt K, Jones E, Kronenberg-Versteeg D, Akpovwa H, Pentier JM, Holland CJ, Godkin AJ, Cole DK, Neller MA, Miles JJ, Price DA, Peakman M, Sewell AK. Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clin Exp Immunol 2014; 177:47-63. [PMID: 24673376 PMCID: PMC4089154 DOI: 10.1111/cei.12339] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2014] [Indexed: 02/05/2023] Open
Abstract
Fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers are widely used for flow cytometric visualization of antigen-specific T cells. The most common multimers, streptavidin-biotin-based 'tetramers', can be manufactured readily in the laboratory. Unfortunately, there are large differences between the threshold of T cell receptor (TCR) affinity required to capture pMHC tetramers from solution and that which is required for T cell activation. This disparity means that tetramers sometimes fail to stain antigen-specific T cells within a sample, an issue that is particularly problematic when staining tumour-specific, autoimmune or MHC class II-restricted T cells, which often display TCRs of low affinity for pMHC. Here, we compared optimized staining with tetramers and dextramers (dextran-based multimers), with the latter carrying greater numbers of both pMHC and fluorochrome per molecule. Most notably, we find that: (i) dextramers stain more brightly than tetramers; (ii) dextramers outperform tetramers when TCR-pMHC affinity is low; (iii) dextramers outperform tetramers with pMHC class II reagents where there is an absence of co-receptor stabilization; and (iv) dextramer sensitivity is enhanced further by specific protein kinase inhibition. Dextramers are compatible with current state-of-the-art flow cytometry platforms and will probably find particular utility in the fields of autoimmunity and cancer immunology.
Collapse
Affiliation(s)
- G Dolton
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Maricic I, Halder R, Bischof F, Kumar V. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:1035-46. [PMID: 24973441 DOI: 10.4049/jimmunol.1302898] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CD1d-restricted NKT cells can be divided into two groups: type I NKT cells use a semi-invariant TCR, whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the CNS tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. In this article, we have addressed the mechanism of regulation, as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of myelin proteolipid proteins 139-151/I-A(s)-tetramer(+) cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells (DCs) in the periphery, as well as CNS-resident microglia, are inactivated after sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover, tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not α-galactosylceramide, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune-regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Because CD1 molecules are nonpolymorphic, the sulfatide-mediated immune-regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Ramesh Halder
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Felix Bischof
- Department of Neurology, University of Tubingen, Tubingen D-72076, Germany
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
69
|
Tolerance induction in memory CD4 T cells requires two rounds of antigen-specific activation. Proc Natl Acad Sci U S A 2014; 111:7735-40. [PMID: 24821788 DOI: 10.1073/pnas.1406218111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A major goal for immunotherapy is to tolerize the immune cells that coordinate tissue damage in autoimmune and alloantigen responses. CD4 T cells play a central role in many of these conditions and improved antigen-specific regulation or removal of these cells could revolutionize current treatments. A confounding factor is that little is known about whether and how tolerance is induced in memory CD4 T cells. We used MHC class II tetramers to track and analyze a population of endogenous antigen-specific memory CD4 T cells exposed to soluble peptide in the absence of adjuvant. We found that such memory T cells proliferated and reentered the memory pool apparently unperturbed by the incomplete activation signals provided by the peptide. Upon further restimulation in vivo, CD4 memory T cells that had been previously exposed to peptide proliferated, provided help to primary responding B cells, and migrated to inflamed sites. However, these reactivated memory cells failed to survive. The reduction in T-cell number was marked by low expression of the antiapoptotic molecule B cell lymphoma 2 (Bcl2) and increased expression of activated caspase molecules. Consequently, these cells failed to sustain a delayed-type hypersensitivity response. Moreover, following two separate exposures to soluble antigen, no T-cell recall response and no helper activity for B cells could be detected. These results suggest that the induction of tolerance in memory CD4 T cells is possible but that deletion and permanent removal of the antigen-specific T cells requires reactivation following exposure to the tolerogenic antigen.
Collapse
|
70
|
Massilamany C, Gangaplara A, Jia T, Elowsky C, Kang G, Riethoven JJ, Li Q, Zhou Y, Reddy J. Direct staining with major histocompatibility complex class II dextramers permits detection of antigen-specific, autoreactive CD4 T cells in situ. PLoS One 2014; 9:e87519. [PMID: 24475302 PMCID: PMC3903673 DOI: 10.1371/journal.pone.0087519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/23/2013] [Indexed: 11/18/2022] Open
Abstract
We report here the utility of major histocompatibility complex (MHC) class II dextramers for in situ detection of self-reactive CD4 T cells in two target organs, the brain and heart. We optimized the conditions for in situ detection of antigen-specific CD4 T cells using brain sections obtained from SJL mice immunized with myelin proteolipid protein (PLP) 139–151; the sections were costained with IAs/PLP 139–151 (specific) or Theiler's murine encephalomyelitis virus (TMEV) 70–86 (control) dextramers and anti-CD4. Analysis of sections by laser scanning confocal microscope revealed detection of cells positive for PLP 139–151 but not for TMEV 70–86 dextramers to be colocalized with CD4-expressing T cells, indicating that the staining was specific to PLP 139–151 dextramers. Further, we devised a method to reliably enumerate the frequencies of antigen-specific T cells by counting the number of dextramer+ CD4+ T cells in the ‘Z’ serial images acquired sequentially. We next extended these observations to detect cardiac myosin-specific T cells in autoimmune myocarditis induced in A/J mice by immunizing with cardiac myosin heavy chain-α (Myhc) 334–352. Heart sections prepared from immunized mice were costained with Myhc 334–352 (specific) or bovine ribonuclease 43–56 (control) dextramers together with anti-CD4; the sections showed the infiltrations of Myhc-specific CD4 T cells. The data suggest that MHC class II dextramers are useful tools for enumerating the frequencies of antigen-specific CD4 T cells in situ by direct staining without having to amplify the fluorescent signals, an approach commonly employed with conventional MHC tetramers.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ting Jia
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Christian Elowsky
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Guobin Kang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
71
|
Topham DJ, Chapman TJ, Richter M. Lymphoid and extralymphoid CD4 T cells that orchestrate the antiviral immune response. Expert Rev Clin Immunol 2014; 2:267-76. [DOI: 10.1586/1744666x.2.2.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
72
|
Ciabattini A, Pettini E, Medaglini D. CD4(+) T Cell Priming as Biomarker to Study Immune Response to Preventive Vaccines. Front Immunol 2013; 4:421. [PMID: 24363656 PMCID: PMC3850413 DOI: 10.3389/fimmu.2013.00421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/20/2013] [Indexed: 01/10/2023] Open
Abstract
T cell priming is a critical event in the initiation of the immune response to vaccination since it deeply influences both the magnitude and the quality of the immune response induced. CD4(+) T cell priming, required for the induction of high-affinity antibodies and immune memory, represents a key target for improving and modulating vaccine immunogenicity. A major challenge in the study of in vivo T cell priming is due to the low frequency of antigen-specific T cells. This review discusses the current knowledge on antigen-specific CD4(+) T cell priming in the context of vaccination, as well as the most advanced tools for the characterization of the in vivo T cell priming and the opportunities offered by the application of systems biology.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| |
Collapse
|
73
|
Kim C, Wilson T, Fischer KF, Williams MA. Sustained interactions between T cell receptors and antigens promote the differentiation of CD4⁺ memory T cells. Immunity 2013; 39:508-20. [PMID: 24054329 DOI: 10.1016/j.immuni.2013.08.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
During CD4⁺ T cell activation, T cell receptor (TCR) signals impact T cell fate, including recruitment, expansion, differentiation, trafficking, and survival. To determine the impact of TCR signals on the fate decision of activated CD4⁺ T cells to become end-stage effector or long-lived memory T helper 1 (Th1) cells, we devised a deep-sequencing-based approach that allowed us to track the evolution of TCR repertoires after acute infection. The transition of effector Th1 cells into the memory pool was associated with a significant decrease in repertoire diversity, and the major histocompatibility complex (MHC) class II tetramer off rate, but not tetramer avidity, was a key predictive factor in the representation of individual clonal T cell populations at the memory stage. We conclude that stable and sustained interactions with antigens during the development of Th1 responses to acute infection are a determinative factor in promoting the differentiation of Th1 memory cells.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84121, USA
| | | | | | | |
Collapse
|
74
|
Johnson TS, Terrell CE, Millen SH, Katz JD, Hildeman DA, Jordan MB. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. THE JOURNAL OF IMMUNOLOGY 2013; 192:84-91. [PMID: 24259502 DOI: 10.4049/jimmunol.1302282] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is an inborn disorder of immune regulation caused by mutations affecting perforin-dependent cytotoxicity. Defects in this pathway impair negative feedback between cytotoxic lymphocytes and APCs, leading to prolonged and pathologic activation of T cells. Etoposide, a widely used chemotherapeutic drug that inhibits topoisomerase II, is the mainstay of treatment for HLH, although its therapeutic mechanism remains unknown. We used a murine model of HLH, involving lymphocytic choriomeningitis virus infection of perforin-deficient mice, to study the activity and mechanism of etoposide for treating HLH and found that it substantially alleviated all symptoms of murine HLH and allowed prolonged survival. This therapeutic effect was relatively unique among chemotherapeutic agents tested, suggesting distinctive effects on the immune response. We found that the therapeutic mechanism of etoposide in this model system involved potent deletion of activated T cells and efficient suppression of inflammatory cytokine production. This effect was remarkably selective; etoposide did not exert a direct anti-inflammatory effect on macrophages or dendritic cells, and it did not cause deletion of quiescent naive or memory T cells. Finally, etoposide's immunomodulatory effects were similar in wild-type and perforin-deficient animals. Thus, etoposide treats HLH by selectively eliminating pathologic, activated T cells and may have usefulness as a novel immune modulator in a broad array of immunopathologic disorders.
Collapse
Affiliation(s)
- Theodore S Johnson
- Cancer Immunology, Inflammation and Tolerance Program, Division of Pediatric Hematology/Oncology, Department of Pediatrics, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | | | | | | | | | | |
Collapse
|
75
|
Borchers S, Ogonek J, Varanasi PR, Tischer S, Bremm M, Eiz-Vesper B, Koehl U, Weissinger EM. Multimer monitoring of CMV-specific T cells in research and in clinical applications. Diagn Microbiol Infect Dis 2013; 78:201-12. [PMID: 24331953 DOI: 10.1016/j.diagmicrobio.2013.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Multimer monitoring has become a standard technique for detection of antigen-specific T cells. The term "multimer" refers to a group of reagents based on the multimerisation of molecules in order to raise avidity and thus stabilize binding to their ligand. Multimers for detection of antigen-specific T-cell responses are based on major histocompatibility complex class I peptide complexes. Multimer staining enables fast and direct visualization of antigen-specific T cells; thus, it is widely applied to assess antiviral immunity, e.g., monitor patients in vaccination trials or confirm purity of cell products for adoptive transfer. Assessment of T-cell immunity against persistent pathogens like cytomegalovirus (CMV) is of major importance in immunosuppressed patients. Recent advancements of multimers facilitate reversible labeling and allow isolation of epitope-specific T cells for adoptive transfer. Here, we give an overview on the different multimers and their applications, with an emphasis on CMV-specific T-cell responses.
Collapse
Affiliation(s)
- Sylvia Borchers
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| | - Justyna Ogonek
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
| | - Pavankumar R Varanasi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| | - Sabine Tischer
- Institute of Transfusion Medicine, MHH, Hannover, Germany.
| | - Melanie Bremm
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | - Britta Eiz-Vesper
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; Institute of Transfusion Medicine, MHH, Hannover, Germany.
| | - Ulrike Koehl
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; Institute for Cellular Therapeutics, MHH, Hannover, Germany.
| | - Eva M Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| |
Collapse
|
76
|
Falta MT, Pinilla C, Mack DG, Tinega AN, Crawford F, Giulianotti M, Santos R, Clayton GM, Wang Y, Zhang X, Maier LA, Marrack P, Kappler JW, Fontenot AP. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease. ACTA ACUST UNITED AC 2013; 210:1403-18. [PMID: 23797096 PMCID: PMC3698527 DOI: 10.1084/jem.20122426] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Identification of peptides that form complexes with beryllium and class II HLA molecules and are recognized by CD4+ T cells from patients with chronic beryllium disease. Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4+ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4+ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4+ T cells specific for these ligands in all HLA-DP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4+ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD.
Collapse
Affiliation(s)
- Michael T Falta
- Department of Medicine, University of Colorado, Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Braendstrup P, Justesen S, Østerbye T, Nielsen LLB, Mallone R, Vindeløv L, Stryhn A, Buus S. MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides. PLoS One 2013; 8:e73648. [PMID: 24023895 PMCID: PMC3759463 DOI: 10.1371/journal.pone.0073648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/22/2013] [Indexed: 12/24/2022] Open
Abstract
Targeting CD4+ T cells through their unique antigen-specific, MHC class II-restricted T cell receptor makes MHC class II tetramers an attractive strategy to identify, validate and manipulate these cells at the single cell level. Currently, generating class II tetramers is a specialized undertaking effectively limiting their use and emphasizing the need for improved methods of production. Using class II chains expressed individually in E. coli as versatile recombinant reagents, we have previously generated peptide-MHC class II monomers, but failed to generate functional class II tetramers. Adding a monomer purification principle based upon affinity-tagged peptides, we here provide a robust method to produce class II tetramers and demonstrate staining of antigen-specific CD4+ T cells. We also provide evidence that both MHC class II and T cell receptor molecules largely accept affinity-tagged peptides. As a general approach to class II tetramer generation, this method should support rational CD4+ T cell epitope discovery as well as enable specific monitoring and manipulation of CD4+ T cell responses.
Collapse
Affiliation(s)
- Peter Braendstrup
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
- Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Sune Justesen
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Østerbye
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | | | - Roberto Mallone
- Institut National de la Santé et de la Recherche Médicale, Unité 1016, Cochin Institute, DeAR Lab Avenir, Paris, France
| | - Lars Vindeløv
- Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Anette Stryhn
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
78
|
Tripathi P, Koss B, Opferman JT, Hildeman DA. Mcl-1 antagonizes Bax/Bak to promote effector CD4(+) and CD8(+) T-cell responses. Cell Death Differ 2013; 20:998-1007. [PMID: 23558951 PMCID: PMC3705594 DOI: 10.1038/cdd.2013.25] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 01/25/2023] Open
Abstract
Members of the Bcl-2 family have critical roles in regulating tissue homeostasis by modulating apoptosis. Anti-apoptotic molecules physically interact and restrain pro-apoptotic family members preventing the induction of cell death. However, the specificity of the functional interactions between pro- and anti-apoptotic Bcl-2 family members remains unclear. The pro-apoptotic Bcl-2 family member Bcl-2 interacting mediator of death (Bim) has a critical role in promoting the death of activated, effector T cells following viral infections. Although Bcl-2 is an important Bim antagonist in effector T cells, and Bcl-xL is not required for effector T-cell survival, the roles of other anti-apoptotic Bcl-2 family members remain unclear. Here, we investigated the role of myeloid cell leukemia sequence 1 (Mcl-1) in regulating effector T-cell responses in vivo. We found, at the peak of the response to lymphocytic choriomeningitis virus (LCMV) infection, that Mcl-1 expression was increased in activated CD4(+) and CD8(+) T cells. Retroviral overexpression of Mcl-1-protected activated T cells from death, whereas deletion of Mcl-1 during the course of infection led to a massive loss of LCMV-specific CD4(+) and CD8(+) T cells. Interestingly, the co-deletion of Bim failed to prevent the loss of Mcl-1-deficient T cells. Furthermore, lck-driven overexpression of a Bcl-xL transgene only partially rescued Mcl-1-deficient effector T cells suggesting a lack of redundancy between the family members. In contrast, additional loss of Bax and Bak completely rescued Mcl-1-deficient effector T-cell number and function, without enhancing T-cell proliferation. These data suggest that Mcl-1 is critical for promoting effector T-cell responses, but does so by combating pro-apoptotic molecules beyond Bim.
Collapse
Affiliation(s)
- P Tripathi
- Division of Cellular and Molecular Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - B Koss
- Department of Biochemistry, St. Jude's Children's Research Hospital, Memphis, Tennessee, USA
| | - J T Opferman
- Department of Biochemistry, St. Jude's Children's Research Hospital, Memphis, Tennessee, USA
| | - D A Hildeman
- Division of Cellular and Molecular Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
79
|
Tubo NJ, Pagán AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, Huseby ES, Way SS, Jenkins MK. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 2013; 153:785-96. [PMID: 23663778 DOI: 10.1016/j.cell.2013.04.007] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/05/2012] [Accepted: 04/04/2013] [Indexed: 02/07/2023]
Abstract
A naive CD4(+) T cell population specific for a microbial peptide:major histocompatibility complex II ligand (p:MHCII) typically consists of about 100 cells, each with a different T cell receptor (TCR). Following infection, this population produces a consistent ratio of effector cells that activate microbicidal functions of macrophages or help B cells make antibodies. We studied the mechanism that underlies this division of labor by tracking the progeny of single naive T cells. Different naive cells produced distinct ratios of macrophage and B cell helpers but yielded the characteristic ratio when averaged together. The effector cell pattern produced by a given naive cell correlated with the TCR-p:MHCII dwell time or the amount of p:MHCII. Thus, the consistent production of effector cell subsets by a polyclonal population of naive cells results from averaging the diverse behaviors of individual clones, which are instructed in part by the strength of TCR signaling.
Collapse
Affiliation(s)
- Noah J Tubo
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Buhrman JD, Slansky JE. Improving T cell responses to modified peptides in tumor vaccines. Immunol Res 2013; 55:34-47. [PMID: 22936035 DOI: 10.1007/s12026-012-8348-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immune recognition and elimination of cancerous cells is the primary goal of cancer immunotherapy. However, obstacles including immune tolerance and tumor-induced immunosuppression often limit beneficial immune responses. Vaccination is one proposed intervention that may help to overcome these issues and is an active area of study in cancer immunotherapy. Immunizing with tumor antigenic peptides is a promising, straight-forward vaccine strategy hypothesized to boost preexisting antitumor immunity. However, tumor antigens are often weak T cell agonists, attributable to several mechanisms, including immune self-tolerance and poor immunogenicity of self-derived tumor peptides. One strategy for overcoming these mechanisms is vaccination with mimotopes, or peptide mimics of tumor antigens, which alter the antigen presentation and/or T cell activation to increase the expansion of tumor-specific T cells. Evaluation of mimotope vaccine strategies has revealed that even subtle alterations in peptide sequence can dramatically alter antigen presentation and T cell receptor recognition. Most of this research has been performed using T cell clones, which may not be accurate representations of the naturally occurring antitumor response. The relationship between clones generated after mimotope vaccination and the polyclonal T cell repertoire is unclear. Our work with mimotopes in a mouse model of colon carcinoma has revealed important insights into these issues. We propose that the identification of mimotopes based on stimulation of the naturally responding T cell repertoire will dramatically improve the efficacy of mimotope vaccination.
Collapse
Affiliation(s)
- Jonathan D Buhrman
- Integrated Department of Immunology, University of Colorado School of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | |
Collapse
|
81
|
MacLeod MKL, David A, Jin N, Noges L, Wang J, Kappler JW, Marrack P. Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza A virus that expresses an altered nucleoprotein sequence. PLoS One 2013; 8:e61775. [PMID: 23613928 PMCID: PMC3629017 DOI: 10.1371/journal.pone.0061775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes.
Collapse
Affiliation(s)
- Megan K. L. MacLeod
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- * E-mail: (PM); (MKLM)
| | - Alexandria David
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Niyun Jin
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Laura Noges
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - John W. Kappler
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Program in Biomolecular Structure, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
| | - Philippa Marrack
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Program in Biomolecular Structure, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- * E-mail: (PM); (MKLM)
| |
Collapse
|
82
|
Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proc Natl Acad Sci U S A 2013; 110:E1122-31. [PMID: 23447566 DOI: 10.1073/pnas.1300392110] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many vaccines include aluminum salts (alum) as adjuvants despite little knowledge of alum's functions. Host DNA rapidly coats injected alum. Here, we further investigated the mechanism of alum and DNA's adjuvant function. Our data show that DNase coinjection reduces CD4 T-cell priming by i.m. injected antigen + alum. This effect is partially replicated in mice lacking stimulator of IFN genes, a mediator of cellular responses to cytoplasmic DNA. Others have shown that DNase treatment impairs dendritic cell (DC) migration from the peritoneal cavity to the draining lymph node in mice immunized i.p. with alum. However, our data show that DNase does not affect accumulation of, or expression of costimulatory proteins on, antigen-loaded DCs in lymph nodes draining injected muscles, the site by which most human vaccines are administered. DNase does inhibit prolonged T-cell-DC conjugate formation and antigen presentation between antigen-positive DCs and antigen-specific CD4 T cells following i.m. injection. Thus, from the muscle, an immunization site that does not require host DNA to promote migration of inflammatory DCs, alum acts as an adjuvant by introducing host DNA into the cytoplasm of antigen-bearing DCs, where it engages receptors that promote MHC class II presentation and better DC-T-cell interactions.
Collapse
|
83
|
Mandl JN, Monteiro JP, Vrisekoop N, Germain RN. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 2013; 38:263-274. [PMID: 23290521 PMCID: PMC3785078 DOI: 10.1016/j.immuni.2012.09.011] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/28/2012] [Indexed: 01/19/2023]
Abstract
Developing T cells express diverse antigen receptors whose specificities are not prematched to the foreign antigens they eventually encounter. Past experiments have revealed that thymocytes must productively signal in response to self antigens to mature and enter the peripheral T cell pool (positive selection), but how this process enhances effective mature T cell responses to foreign antigen is not fully understood. Here we have documented an unsuspected connection between thymic recognition events and foreign antigen-driven T cell responses. We find that the strength of self-reactivity is a clone-specific property unexpectedly directly related to the strength of T cell receptor (TCR) binding to presented foreign antigen. T cells with receptors showing stronger interaction with self dominate in responses to infections and accumulate in aging individuals, revealing that positive selection contributes to effective immunity by skewing the mature TCR repertoire toward highly effective recognition of pathogens that pose a danger to the host.
Collapse
Affiliation(s)
- Judith N. Mandl
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - João P. Monteiro
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Nienke Vrisekoop
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
84
|
Kurtulus S, Hildeman D. Assessment of CD4(+) and CD8 (+) T cell responses using MHC class I and II tetramers. Methods Mol Biol 2013; 979:71-9. [PMID: 23397390 PMCID: PMC4265237 DOI: 10.1007/978-1-62703-290-2_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The low frequency of T cells specific for given antigens makes the study of antigen-specific T cell responses difficult. The development of MHC class I and II tetramer staining techniques allows precise quantification and tracking of antigen-specific CD8(+) and CD4(+) T cell responses. Here, we describe a protocol for MHC class I and II tetramer staining of mouse T cells isolated from various tissues of mice infected with lymphocytic choriomeningitis virus (LCMV) or with murine cytomegalovirus (MCMV).
Collapse
Affiliation(s)
- Sema Kurtulus
- Division of Immunobiology, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
85
|
Buhrman JD, Jordan KR, U'ren L, Sprague J, Kemmler CB, Slansky JE. Augmenting antitumor T-cell responses to mimotope vaccination by boosting with native tumor antigens. Cancer Res 2012; 73:74-85. [PMID: 23161490 DOI: 10.1158/0008-5472.can-12-1005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vaccination with antigens expressed by tumors is one strategy for stimulating enhanced T-cell responses against tumors. However, these peptide vaccines rarely result in efficient expansion of tumor-specific T cells or responses that protect against tumor growth. Mimotopes, or peptide mimics of tumor antigens, elicit increased numbers of T cells that crossreact with the native tumor antigen, resulting in potent antitumor responses. Unfortunately, mimotopes may also elicit cells that do not crossreact or have low affinity for tumor antigen. We previously showed that one such mimotope of the dominant MHC class I tumor antigen of a mouse colon carcinoma cell line stimulates a tumor-specific T-cell clone and elicits antigen-specific cells in vivo, yet protects poorly against tumor growth. We hypothesized that boosting the mimotope vaccine with the native tumor antigen would focus the T-cell response elicited by the mimotope toward high affinity, tumor-specific T cells. We show that priming T cells with the mimotope, followed by a native tumor-antigen boost, improves tumor immunity compared with T cells elicited by the same prime with a mimotope boost. Our data suggest that the improved tumor immunity results from the expansion of mimotope-elicited tumor-specific T cells that have increased avidity for the tumor antigen. The enhanced T cells are phenotypically distinct and enriched for T-cell receptors previously correlated with improved antitumor immunity. These results suggest that incorporation of native antigen into clinical mimotope vaccine regimens may improve the efficacy of antitumor T-cell responses.
Collapse
Affiliation(s)
- Jonathan D Buhrman
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
86
|
Marrack P, Kappler JW. Do MHCII-presented neoantigens drive type 1 diabetes and other autoimmune diseases? Cold Spring Harb Perspect Med 2012; 2:a007765. [PMID: 22951444 PMCID: PMC3426820 DOI: 10.1101/cshperspect.a007765] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The strong association between particular MHCII alleles and type 1 diabetes is not fully understood. Two ideas that have been considered for many years are that autoimmunity is driven by (1) low-affinity CD4(+) T cells that escape thymic negative selection and respond to certain autoantigen peptides that are particularly well presented by particular MHCII molecules, or (2) CD4(+) T cells responding to neoantigens that are absent in the thymus, but uniquely created in the target tissue in the periphery and presented by particular MHCII alleles. Here we discuss the recent structural data in favor of the second idea. We review studies suggesting that peptide antigens recognized by autoimmune T cells are uniquely proteolytically processed and/or posttranslationally modified in the target tissue, thus allowing these T cells to escape deletion in the thymus during T-cell development. We postulate that an encounter with these tissue-specific neoantigenic peptides presented by the particular susceptible MHCII alleles in the peripheral tissues when accompanied by the appropriate inflammatory milieu activates these T-cell escapees leading to the onset of autoimmune disease.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, University of Colorado Denver, School of Medicine, Denver, CO 80206, USA
| | | |
Collapse
|
87
|
Lee HM, Bautista JL, Scott-Browne J, Mohan JF, Hsieh CS. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity 2012; 37:475-86. [PMID: 22921379 DOI: 10.1016/j.immuni.2012.07.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/18/2012] [Accepted: 07/10/2012] [Indexed: 12/28/2022]
Abstract
The degree of T cell self-reactivity considered dangerous by the immune system, thereby requiring thymic selection processes to prevent autoimmunity, is unknown. Here, we analyzed a panel of T cell receptors (TCRs) with a broad range of reactivity to ovalbumin (OVA(323-339)) in the rat insulin promoter (RIP)-mOVA self-antigen model for their ability to trigger thymic self-tolerance mechanisms. Thymic regulatory T (Treg) cell generation in vivo was directly correlated with in vitro TCR reactivity to OVA-peptide in a broad ~1,000-fold range. Interestingly, higher TCR affinity was associated with a larger Treg cell developmental "niche" size, even though the amount of antigen should remain constant. The TCR-reactivity threshold to elicit thymic negative selection and peripheral T cell responses was ~100-fold higher than that of Treg cell differentiation. Thus, these data suggest that the broad range of self-reactivity that elicits thymic Treg cell generation is tuned to secure peripheral tolerance to self.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
88
|
Taniguchi RT, DeVoss JJ, Moon JJ, Sidney J, Sette A, Jenkins MK, Anderson MS. Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proc Natl Acad Sci U S A 2012; 109:7847-52. [PMID: 22552229 PMCID: PMC3356674 DOI: 10.1073/pnas.1120607109] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting the display of tissue-specific antigens in the thymus. To study the influence of Aire on thymic selection in a physiological setting, we used tetramer reagents to detect autoreactive T cells specific for the Aire-dependent tissue-specific antigen interphotoreceptor retinoid-binding protein (IRBP), in the polyclonal repertoire. Two class II tetramer reagents were designed to identify T cells specific for two different peptide epitopes of IRBP. Analyses of the polyclonal T-cell repertoire showed a high frequency of activated T cells specific for both IRBP tetramers in Aire(-/-) mice, but not in Aire(+/+) mice. Surprisingly, although one tetramer-binding T-cell population was efficiently deleted in the thymus in an Aire-dependent manner, the second tetramer-binding population was not deleted and could be detected in both the Aire(-/-) and Aire(+/+) T-cell repertoires. We found that Aire-dependent thymic deletion of IRBP-specific T cells relies on intercellular transfer of IRBP between thymic stroma and bone marrow-derived antigen-presenting cells. Furthermore, our data suggest that Aire-mediated deletion relies not only on thymic expression of IRBP, but also on proper antigen processing and presentation of IRBP by thymic antigen-presenting cells.
Collapse
Affiliation(s)
| | - Jason J. DeVoss
- Diabetes Center, University of California, San Francisco, CA 94143
| | - James J. Moon
- Department of Microbiology and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
- Center for Immunology and Inflammatory Diseases and Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and
| | - John Sidney
- Center for Infectious Disease, Allergy and Asthma Research, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Center for Infectious Disease, Allergy and Asthma Research, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Marc K. Jenkins
- Department of Microbiology and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, CA 94143
| |
Collapse
|
89
|
Novel system for in vivo biotinylation and its application to crab antimicrobial protein scygonadin. Biotechnol Lett 2012; 34:1629-35. [PMID: 22566209 DOI: 10.1007/s10529-012-0942-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
BirA is a biotin ligase from Escherichia coli that specifically biotinylates a lysine side-chain within a 15-amino acid acceptor peptide (also known as Avi-tag). We developed a protocol for producing recombinant BirA ligase in E. coli for in vitro biotinylation (Li and Sousa, Prot Expr Purif, 82:162-167, 2012) in which the target protein was expressed as both thioredoxin and MBP fusions, and was released by TEV protease-mediated cleavage. The liberated ligase and the fusion proteins were enzymatically active. Based on that observation, we have now developed a novel system for in vivo biotinylation by co-expressing the Avi-tagged target protein with the MBP-BirA fusion. The effectiveness of this system was demonstrated by the successful in vivo labeling of antimicrobial protein, scygonadin. This new system shows improved efficiency compared with pre-existing one and this is likely attributed to the high expression level and solubility of the co-expressed MBP-BirA.
Collapse
|
90
|
Anikeeva N, Sykulev Y. Mechanisms controlling granule-mediated cytolytic activity of cytotoxic T lymphocytes. Immunol Res 2012; 51:183-94. [PMID: 22058021 DOI: 10.1007/s12026-011-8252-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytotoxic T lymphocytes (CTL) play a critical role in immunity against viruses and cancer. The antigen receptor or T-cell receptor (TCR) on CTL determines the specificity toward target cells. The CD8 co-receptor functions in concert with the TCR to enhance TCR-mediated signaling, accounting for the remarkable sensitivity and swift signaling kinetics of the CTL response. The latter ensures efficient delivery and release of lytic granules, resulting in sensitive and rapid destruction of target cells.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Kimmel Cancer Center and Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
91
|
Isakov D, Dzutsev A, Berzofsky JA, Belyakov IM. Lack of IL-7 and IL-15 signaling affects interferon-γ production by, more than survival of, small intestinal intraepithelial memory CD8+ T cells. Eur J Immunol 2012; 41:3513-28. [PMID: 21928282 DOI: 10.1002/eji.201141453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Survival of antigen-specific CD8(+) T cells in peripheral lymphoid organs during viral infection is known to be dependent predominantly on IL-7 and IL-15. However, little is known about a possible influence of tissue environmental factors on this process. To address this question, we studied survival of memory antigen-specific CD8(+) T cells in the small intestine. Here, we show that 2 months after vaccinia virus infection, B8R(20-27) /H2-K(b) tetramer(+) CD8(+) T cells in the small intestinal intraepithelial (SI-IEL) layer are found in mice deficient in IL-15 expression. Moreover, SI-IEL and lamina propria lymphocytes do not express the receptor for IL-7 (IL-7Rα/CD127). In addition, after in vitro stimulation with B8R(20-27) peptide, SI-IEL cells do not produce high amounts of IFN-γ neither at 5 days nor at 2 months postinfection (p.i.). Importantly, the lack of IL-15 was found to shape the functional activity of antigen-specific CD8(+) T cells, by narrowing the CTL avidity repertoire. Taken together, these results reveal that survival factors, as well as the functional activity, of antigen-specific CD8(+) T cells in the SI-IEL compartments may markedly differ from their counterparts in peripheral lymphoid tissues.
Collapse
Affiliation(s)
- Dmitry Isakov
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
92
|
Rosenthal KM, Edwards LJ, Sabatino JJ, Hood JD, Wasserman HA, Zhu C, Evavold BD. Low 2-dimensional CD4 T cell receptor affinity for myelin sets in motion delayed response kinetics. PLoS One 2012; 7:e32562. [PMID: 22412888 PMCID: PMC3296730 DOI: 10.1371/journal.pone.0032562] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/31/2012] [Indexed: 01/12/2023] Open
Abstract
T cells recognizing self-peptides that mediate autoimmune disease and those that are responsible for efficacious immunity against pathogens may differ in affinity for antigen due to central and peripheral tolerance mechanisms. Here we utilize prototypical self-reactive (myelin) and viral-specific (LCMV) T cells from T cell receptor (TCR) transgenic mice (2D2 and SMARTA, respectively) to explore affinity differences. The T cells responsive to virus possessed >10,000 fold higher 2D affinity as compared to the self-reactive T cells. Despite their dramatically lower affinity for their cognate ligand, 2D2 T cells respond with complete, albeit delayed, activation (proliferation and cytokine production). SMARTA activation occurs rapidly, achieving peak phosphorylation of p38 (1 minute), Erk (30 minutes), and Jun (3 hours) as well as CD69 and CD25 upregulation (3 and 6 hours, respectively), with a corresponding early initiation of proliferation. 2D2 stimulation with MOG results in altered signaling--no phospho-Erk or phospho-p38 accumulation, significantly delayed activation kinetics of Jun (12 hours), and delayed but sustained SHP-1 activity--as well as delayed CD69 and CD25 expression (12-24 hours), and slow initiation of proliferation. This delay was not intrinsic to the 2D2 T cells, as a more potent antigen with >100-fold increased 2D affinity restored rapid response kinetics in line with those identified for the viral antigen. Taken together, these data demonstrate that time can offset low TCR affinity to attain full activation and suggest a mechanism by which low affinity T cells participate in autoimmune disease.
Collapse
Affiliation(s)
- Kristen M. Rosenthal
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Lindsay J. Edwards
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Joseph J. Sabatino
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Jennifer D. Hood
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Heather A. Wasserman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
93
|
Jordan KR, Buhrman JD, Sprague J, Moore BL, Gao D, Kappler JW, Slansky JE. TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines. Cancer Immunol Immunother 2012; 61:1627-38. [PMID: 22350070 PMCID: PMC3410973 DOI: 10.1007/s00262-012-1217-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/30/2012] [Indexed: 12/31/2022]
Abstract
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.
Collapse
Affiliation(s)
- Kimberly R Jordan
- Integrated Department of Immunology, School of Medicine, University of Colorado Denver, 1400 Jackson Street, Room K511, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Ertelt JM, Johanns TM, Mysz MA, Nanton MR, Rowe JH, Aguilera MN, Way SS. Selective culling of high avidity antigen-specific CD4+ T cells after virulent Salmonella infection. Immunology 2012; 134:487-97. [PMID: 22044420 DOI: 10.1111/j.1365-2567.2011.03510.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Typhoid fever is a persistent infection caused by host-adapted Salmonella strains adept at circumventing immune-mediated host defences. Given the importance of T cells in protection, the culling of activated CD4+ T cells after primary infection has been proposed as a potential immune evasion strategy used by this pathogen. We demonstrate that the purging of activated antigen-specific CD4+ T cells after virulent Salmonella infection requires SPI-2 encoded virulence determinants, and is not restricted only to cells with specificity to Salmonella-expressed antigens, but extends to CD4+ T cells primed to expand by co-infection with recombinant Listeria monocytogenes. Unexpectedly, however, the loss of activated CD4+ T cells during Salmonella infection demonstrated using a monoclonal population of adoptively transferred CD4+ T cells was not reproduced among the endogenous repertoire of antigen-specific CD4+ T cells identified with MHC class II tetramer. Analysis of T-cell receptor variable segment usage revealed the selective loss and reciprocal enrichment of defined CD4+ T-cell subsets after Salmonella co-infection that is associated with the purging of antigen-specific cells with the highest intensity of tetramer staining. Hence, virulent Salmonella triggers the selective culling of high avidity activated CD4+ T-cell subsets, which re-shapes the repertoire of antigen-specific T cells that persist later after infection.
Collapse
Affiliation(s)
- James M Ertelt
- Department of Pediatrics, University of Minnesota School of Medicine, Center for Microbiology and Infectious Disease Translational Research, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Li Y, Sousa R. Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation. Protein Expr Purif 2012; 82:162-7. [PMID: 22227598 DOI: 10.1016/j.pep.2011.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/29/2022]
Abstract
The extremely tight binding between biotin and avidin or streptavidin makes labeling proteins with biotin a useful tool for many applications. BirA is the Escherichia coli biotin ligase that site-specifically biotinylates a lysine side chain within a 15-amino acid acceptor peptide (also known as Avi-tag). As a complementary approach to in vivo biotinylation of Avi-tag-bearing proteins, we developed a protocol for producing recombinant BirA ligase for in vitro biotinylation. The target protein was expressed as both thioredoxin and MBP fusions, and was released from the corresponding fusion by TEV protease. The liberated ligase was separated from its carrier using HisTrap HP column. We obtained 24.7 and 27.6 mg BirA ligase per liter of culture from thioredoxin and MBP fusion constructs, respectively. The recombinant enzyme was shown to be highly active in catalyzing in vitro biotinylation. The described protocol provides an effective means for making BirA ligase that can be used for biotinylation of different Avi-tag-bearing substrates.
Collapse
Affiliation(s)
- Yifeng Li
- Protein Production Core Facility, Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | |
Collapse
|
96
|
Stone JD, Artyomov MN, Chervin AS, Chakraborty AK, Eisen HN, Kranz DM. Interaction of streptavidin-based peptide-MHC oligomers (tetramers) with cell-surface TCRs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:6281-90. [PMID: 22102724 PMCID: PMC3237744 DOI: 10.4049/jimmunol.1101734] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The binding of oligomeric peptide-MHC (pMHC) complexes to cell surface TCR can be considered to approximate TCR-pMHC interactions at cell-cell interfaces. In this study, we analyzed the equilibrium binding of streptavidin-based pMHC oligomers (tetramers) and their dissociation kinetics from CD8(pos) T cells from 2C-TCR transgenic mice and from T cell hybridomas that expressed the 2C TCR or a high-affinity mutant (m33) of this TCR. Our results show that the tetramers did not come close to saturating cell-surface TCR (binding only 10-30% of cell-surface receptors), as is generally assumed in deriving affinity values (K(D)), in part because of dissociative losses from tetramer-stained cells. Guided by a kinetic model, the oligomer dissociation rate and equilibrium constants were seen to depend not only on monovalent association and dissociation rates (k(off) and k(on)), but also on a multivalent association rate (μ) and TCR cell-surface density. Our results suggest that dissociation rates could account for the recently described surprisingly high frequency of tetramer-negative, functionally competent T cells in some T cell responses.
Collapse
MESH Headings
- Animals
- Hybridomas
- Major Histocompatibility Complex/genetics
- Major Histocompatibility Complex/immunology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Immunological
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Peptides/metabolism
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Single-Chain Antibodies/metabolism
- Streptavidin/metabolism
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Kurche JS, Haluszczak C, McWilliams JA, Sanchez PJ, Kedl RM. Type I IFN-dependent T cell activation is mediated by IFN-dependent dendritic cell OX40 ligand expression and is independent of T cell IFNR expression. THE JOURNAL OF IMMUNOLOGY 2011; 188:585-93. [PMID: 22156349 DOI: 10.4049/jimmunol.1102550] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination. Rather, the CD4 response is dependent on the expression of type I IFNR (IFNαR) on innate cells. Further, we find that dendritic cell (DC) expression of the TNF superfamily member OX40 ligand was dependent on type I IFN signaling in the DC, resulting in a reduced CD4(+) T cell response that could be substantially rescued by an agonistic Ab to the receptor OX40. Taken together, we show that the IFNαR dependence of the CD4(+) T cell response is accounted for exclusively by defects in DC activation.
Collapse
Affiliation(s)
- Jonathan S Kurche
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
98
|
Scott-Browne JP, Crawford F, Young MH, Kappler JW, Marrack P, Gapin L. Evolutionarily conserved features contribute to αβ T cell receptor specificity. Immunity 2011; 35:526-35. [PMID: 21962492 DOI: 10.1016/j.immuni.2011.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/02/2011] [Accepted: 09/06/2011] [Indexed: 11/17/2022]
Abstract
αβ T cell receptors (TCRs) bind specifically to foreign antigens presented by major histocompatibility complex proteins (MHC) or MHC-like molecules. Accumulating evidence indicates that the germline-encoded TCR segments have features that promote binding to MHC and MHC-like molecules, suggesting coevolution between TCR and MHC molecules. Here, we assess directly the evolutionary conservation of αβ TCR specificity for MHC. Sequence comparisons showed that some Vβs from distantly related jawed vertebrates share amino acids in their complementarity determining region 2 (CDR2). Chimeric TCRs containing amphibian, bony fish, or cartilaginous fish Vβs can recognize antigens presented by mouse MHC class II and CD1d (an MHC-like protein), and this recognition is dependent upon the shared CDR2 amino acids. These results indicate that features of the TCR that control specificity for MHC and MHC-like molecules were selected early in evolution and maintained between species that last shared a common ancestor more than 400 million years ago.
Collapse
Affiliation(s)
- James P Scott-Browne
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
99
|
Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc Natl Acad Sci U S A 2011; 108:16729-34. [PMID: 21949373 DOI: 10.1073/pnas.1113954108] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D), an insulin peptide (B:9-23) is a major target for pathogenic CD4(+) T cells. However, there is no consensus on the relative importance of the various positions or "registers" this peptide can take when bound in the groove of the NOD MHCII molecule, IA(g7). This has hindered structural studies and the tracking of the relevant T cells in vivo with fluorescent peptide-MHCII tetramers. Using mutated B:9-23 peptides and methods for trapping the peptide in particular registers, we show that most, if not all, NOD CD4(+) T cells react to B:9-23 bound in low-affinity register 3. However, these T cells can be divided into two types depending on whether their response is improved or inhibited by substituting a glycine for the B:21 glutamic acid at the p8 position of the peptide. On the basis of these findings, we constructed a set of fluorescent insulin-IA(g7) tetramers that bind to most insulin-specific T-cell clones tested. A mixture of these tetramers detected a high frequency of B:9-23-reactive CD4(+) T cells in the pancreases of prediabetic NOD mice. Our data are consistent with the idea that, within the pancreas, unique processing of insulin generates truncated peptides that lack or contain the B:21 glutamic acid. In the thymus, the absence of this type of processing combined with the low affinity of B:9-23 binding to IA(g7) in register 3 may explain the escape of insulin-specific CD4(+) T cells from the mechanisms that usually eliminate self-reactive T cells.
Collapse
|
100
|
Wen F, Sethi DK, Wucherpfennig KW, Zhao H. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display. Protein Eng Des Sel 2011; 24:701-9. [PMID: 21752831 PMCID: PMC3160208 DOI: 10.1093/protein/gzr035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/26/2011] [Accepted: 06/19/2011] [Indexed: 11/14/2022] Open
Abstract
Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2-MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs.
Collapse
Affiliation(s)
- Fei Wen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Dhruv K. Sethi
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Biochemistry, Chemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|