51
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
52
|
Krüger R, Merz B, Rist MJ, Ferrario PG, Bub A, Kulling SE, Watzl B. Associations of current diet with plasma and urine TMAO in the KarMeN study: direct and indirect contributions. Mol Nutr Food Res 2017; 61. [PMID: 28755411 DOI: 10.1002/mnfr.201700363] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/12/2022]
Abstract
SCOPE Knowledge on the influence of current diet on trimethylamine-N-oxide (TMAO) levels in humans is still inconsistent. Thus, we aimed to investigate associations of current diet with urine and plasma TMAO levels and to determine the effect of different foods on TMAO variation. METHODS AND RESULTS TMAO concentrations of 297 healthy individuals were assessed using 1 H-NMR spectroscopy for 24 h urine collection and spot urine, and LC-MS for plasma. Of 35 assessed food groups, those with a correlation of ρ >|0.15| with plasma or urine TMAO levels were further investigated in multivariate linear regression models showing current fish and (red) meat consumption as plausible dietary sources of TMAO. Overall, explained variance of TMAO levels by current diet and co-variables (age, sex, lean body mass, glomerular filtration rate) was small. Associations with urine and plasma concentrations differed depending on the TMAO source. Fish consumption was associated with urine and plasma TMAO concentrations, whereas meat consumption was only associated with TMAO concentrations in plasma. Furthermore, associations of plasma TMAO concentration with fish consumption were two times stronger than with meat consumption. CONCLUSION Meat and fish consumption differentially affects TMAO concentrations in body fluids. Only a small fraction of variance is explained by current diet.
Collapse
Affiliation(s)
- Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Germany
| | - Benedikt Merz
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Germany
| | - Manuela J Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Germany
| | - Paola G Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Germany
| |
Collapse
|
53
|
Lan Y, Sun J, Tian R, Bartlett DH, Li R, Wong YH, Zhang W, Qiu JW, Xu T, He LS, Tabata HG, Qian PY. Molecular adaptation in the world's deepest-living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas. Mol Ecol 2017; 26:3732-3743. [PMID: 28429829 DOI: 10.1111/mec.14149] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022]
Abstract
The Challenger Deep in the Mariana Trench is the deepest point in the oceans of our planet. Understanding how animals adapt to this harsh environment characterized by high hydrostatic pressure, food limitation, dark and cold is of great scientific interest. Of the animals dwelling in the Challenger Deep, amphipods have been captured using baited traps. In this study, we sequenced the transcriptome of the amphipod Hirondellea gigas collected at a depth of 10,929 m from the East Pond of the Challenger Deep. Assembly of these sequences resulted in 133,041 contigs and 22,046 translated proteins. Functional annotation of these contigs was made using the go and kegg databases. Comparison of these translated proteins with those of four shallow-water amphipods revealed 10,731 gene families, of which 5659 were single-copy orthologs. Base substitution analysis on these single-copy orthologs showed that 62 genes are positively selected in H. gigas, including genes related to β-alanine biosynthesis, energy metabolism and genetic information processing. For multiple-copy orthologous genes, gene family expansion analysis revealed that cold-inducible proteins (i.e., transcription factors II A and transcription elongation factor 1) as well as zinc finger domains are expanded in H. gigas. Overall, our results indicate that genetic adaptation to the hadal environment by H. gigas may be mediated by both gene family expansion and amino acid substitutions of specific proteins.
Collapse
Affiliation(s)
- Yi Lan
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jin Sun
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Renmao Tian
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Douglas H Bartlett
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yue Him Wong
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Li-Sheng He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Harry G Tabata
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
54
|
Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, Slimani N, Zamora-Ros R, Rundle M, Frost G, Gibbons H, Carr E, Brennan L, Cross AJ, Pala V, Panico S, Sacerdote C, Palli D, Tumino R, Kühn T, Kaaks R, Boeing H, Floegel A, Mancini F, Boutron-Ruault MC, Baglietto L, Trichopoulou A, Naska A, Orfanos P, Scalbert A. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr 2017; 105:600-608. [PMID: 28122782 DOI: 10.3945/ajcn.116.146639] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/27/2016] [Indexed: 11/14/2022] Open
Abstract
Background: Meat and fish intakes have been associated with various chronic diseases. The use of specific biomarkers may help to assess meat and fish intake and improve subject classification according to the amount and type of meat or fish consumed.Objective: A metabolomic approach was applied to search for biomarkers of meat and fish intake in a dietary intervention study and in free-living subjects from the European Prospective Investigation into Cancer and Nutrition (EPIC) study.Design: In the dietary intervention study, 4 groups of 10 subjects consumed increasing quantities of chicken, red meat, processed meat, and fish over 3 successive weeks. Twenty-four-hour urine samples were collected during each period and analyzed by high-resolution liquid chromatography-mass spectrometry. Signals characteristic of meat or fish intake were replicated in 50 EPIC subjects for whom a 24-h urine sample and 24-h dietary recall were available and who were selected for their exclusive intake or no intake of any of the 4 same foods.Results: A total of 249 mass spectrometric features showed a positive dose-dependent response to meat or fish intake in the intervention study. Eighteen of these features best predicted intake of the 4 food groups in the EPIC urine samples on the basis of partial receiver operator curve analyses with permutation testing (areas under the curve ranging between 0.61 and 1.0). Of these signals, 8 metabolites were identified. Anserine was found to be specific for chicken intake, whereas trimethylamine-N-oxide showed good specificity for fish. Carnosine and 3 acylcarnitines (acetylcarnitine, propionylcarnitine, and 2-methylbutyrylcarnitine) appeared to be more generic indicators of meat and meat and fish intake, respectively.Conclusion: The meat and fish biomarkers identified in this work may be used to study associations between meat and fish intake and disease risk in epidemiologic studies. This trial was registered at clinicaltrials.gov as NCT01684917.
Collapse
Affiliation(s)
- William Cheung
- International Agency for Research on Cancer, Lyon, France
| | | | - Nada Assi
- International Agency for Research on Cancer, Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer, Lyon, France
| | | | - Sabina Rinaldi
- International Agency for Research on Cancer, Lyon, France
| | - Nadia Slimani
- International Agency for Research on Cancer, Lyon, France
| | | | - Milena Rundle
- Division of Endocrinology and Metabolism, Nutrition and Dietetic Research Group, and
| | - Gary Frost
- Division of Endocrinology and Metabolism, Nutrition and Dietetic Research Group, and
| | - Helena Gibbons
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Republic of Ireland
| | - Eibhlin Carr
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Republic of Ireland
| | - Lorraine Brennan
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Republic of Ireland
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Valeria Pala
- Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic-M.P.Arezzo" Hospital, Provincial Health Unit, Ragusa, Italy
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anna Floegel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Francesca Mancini
- French National Institute of Health and Medical Research (INSERM), Centre for Research in Epidemiology and Population Health (CESP), Health across Generations Team, U1018, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- French National Institute of Health and Medical Research (INSERM), Centre for Research in Epidemiology and Population Health (CESP), Health across Generations Team, U1018, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- University Paris Sud, UMRS 1018, Villejuif, France
| | - Laura Baglietto
- Cancer Epidemiology Centre, Cancer Council of Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece; and
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Androniki Naska
- Hellenic Health Foundation, Athens, Greece; and
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Philippos Orfanos
- Hellenic Health Foundation, Athens, Greece; and
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
55
|
Fedotova MV, Kruchinin SE, Chuev GN. Hydration structure of osmolyte TMAO: concentration/pressure-induced response. NEW J CHEM 2017. [DOI: 10.1039/c6nj03296f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of solute concentration/pressure on the TMAO hydration structure was studied to understand its protective action under abiotic stressors.
Collapse
Affiliation(s)
- Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry
- The Russian Academy of Sciences
- Ivanovo
- Russia
| | - Sergey E. Kruchinin
- G.A. Krestov Institute of Solution Chemistry
- The Russian Academy of Sciences
- Ivanovo
- Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics
- The Russian Academy of Sciences
- Pushchino
- Russia
| |
Collapse
|
56
|
Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins (Basel) 2016; 8:toxins8110326. [PMID: 27834801 PMCID: PMC5127123 DOI: 10.3390/toxins8110326] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is a small colorless amine oxide generated from choline, betaine, and carnitine by gut microbial metabolism. It accumulates in the tissue of marine animals in high concentrations and protects against the protein-destabilizing effects of urea. Plasma level of TMAO is determined by a number of factors including diet, gut microbial flora and liver flavin monooxygenase activity. In humans, a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events and death is reported. The atherogenic effect of TMAO is attributed to alterations in cholesterol and bile acid metabolism, activation of inflammatory pathways and promotion foam cell formation. TMAO levels increase with decreasing levels of kidney function and is associated with mortality in patients with chronic kidney disease. A number of therapeutic strategies are being explored to reduce TMAO levels, including use of oral broad spectrum antibiotics, promoting the growth of bacteria that utilize TMAO as substrate and the development of target-specific molecules with varying level of success. Despite the accumulating evidence, it is questioned whether TMAO is the mediator of a bystander in the disease process. Thus, it is important to undertake studies examining the cellular signaling in physiology and pathological states in order to establish the role of TMAO in health and disease in humans.
Collapse
|
57
|
Usui K, Nagata Y, Hunger J, Bonn M, Sulpizi M. A new force field including charge directionality for TMAO in aqueous solution. J Chem Phys 2016. [DOI: 10.1063/1.4960207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kota Usui
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marialore Sulpizi
- Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany
| |
Collapse
|
58
|
Affiliation(s)
- Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
59
|
Zhang SD, Santini CL, Zhang WJ, Barbe V, Mangenot S, Guyomar C, Garel M, Chen HT, Li XG, Yin QJ, Zhao Y, Armengaud J, Gaillard JC, Martini S, Pradel N, Vidaud C, Alberto F, Médigue C, Tamburini C, Wu LF. Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200. Extremophiles 2016; 20:301-10. [PMID: 27039108 DOI: 10.1007/s00792-016-0822-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.
Collapse
Affiliation(s)
- Sheng-Da Zhang
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Claire-Lise Santini
- LCB UMR 7257, Aix-Marseille Université, CNRS, IMM, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Wei-Jia Zhang
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | | | | | - Charlotte Guyomar
- LCB UMR 7257, Aix-Marseille Université, CNRS, IMM, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Marc Garel
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288, Marseille, France
| | - Hai-Tao Chen
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Xue-Gong Li
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Qun-Jian Yin
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Yuan Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | - Séverine Martini
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288, Marseille, France
| | - Nathalie Pradel
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288, Marseille, France
| | | | - François Alberto
- LCB UMR 7257, Aix-Marseille Université, CNRS, IMM, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Claudine Médigue
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CEA/DSV/IG/Genoscope and CNRS-UMR 8030 and Univ. Evry Val d'Esssone, Evry, France
| | - Christian Tamburini
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288, Marseille, France
| | - Long-Fei Wu
- LCB UMR 7257, Aix-Marseille Université, CNRS, IMM, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France. .,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China.
| |
Collapse
|
60
|
Röthig T, Ochsenkühn MA, Roik A, van der Merwe R, Voolstra CR. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol Ecol 2016; 25:1308-23. [PMID: 26840035 PMCID: PMC4804745 DOI: 10.1111/mec.13567] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 01/03/2023]
Abstract
Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.
Collapse
Affiliation(s)
- Till Röthig
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Michael A Ochsenkühn
- Biological and Organometallic Catalysis Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Riaan van der Merwe
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
61
|
Sasaki Y, Horikawa Y, Tokushima T, Okada K, Oura M, Aida M. Hydration structure of trimethylamine N-oxide in aqueous solutions revealed by soft X-ray emission spectroscopy and chemometric analysis. Phys Chem Chem Phys 2016; 18:27648-27653. [DOI: 10.1039/c6cp03750j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft X-ray emission spectroscopy coupled with a quantitative spectral analysis offers a useful technique for probing the solvation structure around the solute which interacts strongly with the solvent.
Collapse
Affiliation(s)
- Yuu Sasaki
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Yuka Horikawa
- RIKEN SPring-8 Center
- Sayo
- Japan
- Department of Physics and Information Science
- Faculty of Science
| | | | - Kazumasa Okada
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | | | - Misako Aida
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
62
|
Jurkowska H, Niewiadomski J, Hirschberger LL, Roman HB, Mazor KM, Liu X, Locasale JW, Park E, Stipanuk MH. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo. Amino Acids 2015; 48:665-676. [PMID: 26481005 DOI: 10.1007/s00726-015-2108-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/26/2015] [Indexed: 01/25/2023]
Abstract
The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation.
Collapse
Affiliation(s)
- Halina Jurkowska
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.,Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Julie Niewiadomski
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Heather B Roman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Kevin M Mazor
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaojing Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Eunkyue Park
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
63
|
Usui K, Hunger J, Sulpizi M, Ohto T, Bonn M, Nagata Y. Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution. J Phys Chem B 2015; 119:10597-606. [DOI: 10.1021/acs.jpcb.5b02579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kota Usui
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Marialore Sulpizi
- Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
64
|
Galland C, Dupuy C, Loizeau V, Danion M, Auffret M, Quiniou L, Laroche J, Pichereau V. Proteomic analysis of the European flounder Platichthys flesus response to experimental PAH-PCB contamination. MARINE POLLUTION BULLETIN 2015; 95:646-657. [PMID: 25912264 DOI: 10.1016/j.marpolbul.2015.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
Platichthys flesus is often used as a sentinel species to monitor the estuarine water quality. In this study, we carried out an experimental contamination of fish using a PAHs/PCBs mixture, which was designed to mimic the concentrations found in the Seine estuary (C1) and 10 times these concentrations (C2). We used a proteomic approach to understand the molecular mechanisms implied in the response of P. flesus to these xenobiotics. We showed that 54 proteins were differentially accumulated in one or several conditions, which 34 displayed accumulation factors higher than two. 18 of these proteins were identified by MALDI TOF-TOF mass spectrometry. The results indicated the deregulation of oxidative stress- and glutathione metabolism-(GST, GPx) proteins as well as of several proteins belonging to the betaine demethylation pathway and the methionine cycle (BHMT, SHMT, SAHH), suggesting a role for these different pathways in the P. flesus response to chemical contamination.
Collapse
Affiliation(s)
- Claire Galland
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Célie Dupuy
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Véronique Loizeau
- Unité de Biogéochimie et Ecotoxicologie, IFREMER, Centre de Brest, BP70, 29280 Plouzané, France
| | - Morgane Danion
- ANSES, Agence nationale de sécurité sanitaire de l'alimentation et de l'environnement et du travail, site de Ploufragan-Plouzané-Technopole Brest Iroise, 29280 Plouzané, France
| | - Michel Auffret
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Louis Quiniou
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Jean Laroche
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Vianney Pichereau
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France.
| |
Collapse
|
65
|
Moskovitz Y, Yang H. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers. SOFT MATTER 2015; 11:2125-2138. [PMID: 25612767 DOI: 10.1039/c4sm02667e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar and at a temperature of 310 K. Xenon and argon have been tested as model gases for general anaesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremors in hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of the gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor, while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar order parameter patterns for both DOPC acyl chains, which are opposite of the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the 'critical volume' hypothesis of anaesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1-100 bar could be associated with the possible manifestation of neurological tremors at the atomic scale. The non-immobiliser neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing the monolayer undulation rate, which indicates that enhanced diffusivity rather than atomic size is the key factor.
Collapse
Affiliation(s)
- Yevgeny Moskovitz
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37130, USA
| | | |
Collapse
|
66
|
Cipriano RC, Smith ML, Vermeersch KA, Dove ADM, Styczynski MP. Differential metabolite levels in response to spawning-induced inappetence in Atlantic salmon Salmo salar. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:52-9. [PMID: 25668602 DOI: 10.1016/j.cbd.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/23/2022]
Abstract
Atlantic salmon Salmo salar undergo months-long inappetence during spawning, but it is not known whether this inappetence is a pathological state or one for which the fish are adapted. Recent work has shown that inappetent whale sharks can exhibit circulating metabolite profiles similar to ketosis known to occur in humans during starvation. In this work, metabolite profiling was used to explore differences in analyte profiles between a cohort of inappetent spawning run Atlantic salmon and captively reared animals that were fed up to and through the time of sampling. The two classes of animals were easily distinguished by their metabolite profiles. The sea-run fish had elevated ɷ-9 fatty acids relative to the domestic feeding animals, while other fatty acid concentrations were reduced. Sugar alcohols were generally elevated in inappetent animals, suggesting potentially novel metabolic responses or pathways in fish that feature these compounds. Compounds expected to indicate a pathological catabolic state were not more abundant in the sea-run fish, suggesting that the animals, while inappetent, were not stressed in an unnatural way. These findings demonstrate the power of discovery-based metabolomics for exploring biochemistry in poorly understood animal models.
Collapse
Affiliation(s)
- Rocco C Cipriano
- USGS/National Fish Health Research Laboratory, 11649 Leetown Rd, Kearneysville, WV 25430, USA
| | - McKenzie L Smith
- School of Chemical & Biomolecular Engineering and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Kathleen A Vermeersch
- School of Chemical & Biomolecular Engineering and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Alistair D M Dove
- Georgia Aquarium Research Center, 225 Baker Street, Atlanta, GA 30313, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332, USA.
| |
Collapse
|
67
|
Bruździak P, Adamczak B, Kaczkowska E, Czub J, Stangret J. Are stabilizing osmolytes preferentially excluded from the protein surface? FTIR and MD studies. Phys Chem Chem Phys 2015; 17:23155-64. [DOI: 10.1039/c5cp03065j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stabilizing osmolytes are not always preferentially excluded and can interact with the protein surface in two ways: indirectly or directly.
Collapse
Affiliation(s)
- P. Bruździak
- Department of Physical Chemistry
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| | - B. Adamczak
- Department of Physical Chemistry
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| | - E. Kaczkowska
- Department of Physical Chemistry
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| | - J. Czub
- Department of Physical Chemistry
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| | - J. Stangret
- Department of Physical Chemistry
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| |
Collapse
|
68
|
Stipanuk MH, Jurkowska H, Roman HB, Niewiadomski J, Hirschberger LL. Insights into Taurine Synthesis and Function Based on Studies with Cysteine Dioxygenase (CDO1) Knockout Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:29-39. [PMID: 25833485 DOI: 10.1007/978-3-319-15126-7_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA,
| | | | | | | | | |
Collapse
|
69
|
Trimethylamine-N-Oxide: A Carnitine-Derived Metabolite That Prolongs the Hypertensive Effect of Angiotensin II in Rats. Can J Cardiol 2014; 30:1700-5. [DOI: 10.1016/j.cjca.2014.09.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/02/2023] Open
|
70
|
Transcriptome of the Deep-Sea Black Scabbardfish, Aphanopus carbo (Perciformes: Trichiuridae): Tissue-Specific Expression Patterns and Candidate Genes Associated to Depth Adaptation. Int J Genomics 2014; 2014:267482. [PMID: 25309900 PMCID: PMC4182897 DOI: 10.1155/2014/267482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/19/2014] [Indexed: 11/29/2022] Open
Abstract
Deep-sea fishes provide a unique opportunity to study the physiology and evolutionary adaptation to extreme environments. We carried out a high throughput sequencing analysis on a 454 GS-FLX titanium plate using unnormalized cDNA libraries from six tissues of A. carbo. Assemblage and annotations were performed by Newbler and InterPro/Pfam analyses, respectively. The assembly of 544,491 high quality reads provided 8,319 contigs, 55.6% of which retrieved blast hits against the NCBI nonredundant database or were annotated with ESTscan. Comparison of functional genes at both the protein sequences and protein stability levels, associated with adaptations to depth, revealed similarities between A. carbo and other bathypelagic fishes. A selection of putative genes was standardized to evaluate the correlation between number of contigs and their normalized expression, as determined by qPCR amplification. The screening of the libraries contributed to the identification of new EST simple-sequence repeats (SSRs) and to the design of primer pairs suitable for population genetic studies as well as for tagging and mapping of genes. The characterization of the deep-sea fish A. carbo first transcriptome is expected to provide abundant resources for genetic, evolutionary, and ecological studies of this species and the basis for further investigation of depth-related adaptation processes in fishes.
Collapse
|
71
|
Jain R, Sharma D, Kumar S, Kumar R. Factor Defining the Effects of Glycine Betaine on the Thermodynamic Stability and Internal Dynamics of Horse Cytochrome c. Biochemistry 2014; 53:5221-35. [DOI: 10.1021/bi500356c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rishu Jain
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Deepak Sharma
- Council
of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Sandeep Kumar
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Rajesh Kumar
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| |
Collapse
|
72
|
Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc 2014; 89:406-26. [PMID: 24118851 PMCID: PMC4158864 DOI: 10.1111/brv.12061] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 12/01/2022]
Abstract
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| |
Collapse
|
73
|
Ye Y, An Y, Li R, Mu C, Wang C. Strategy of metabolic phenotype modulation in Portunus trituberculatus exposed to low salinity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3496-3503. [PMID: 24655103 DOI: 10.1021/jf405668a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Extreme low salinity influences normal crab growth, morphogenesis, and production. Some individuals of swimming crab Portunus trituberculatus have, however, an inherent ability to adapt to such a salinity fluctuation. This study investigated the dynamic metabolite alterations of two P. trituberculatus strains, namely, a wild one and a screened (low-salinity tolerant) one in response to low-salinity challenge by combined use of NMR spectroscopy and high-throughput data analysis. The dominant metabolites in crab muscle were found to comprise amino acids, sugars, carboxylic acids, betaine, trimethylamine-N-oxide, 2-pyridinemethanol, trigonelline, and nucleotides. These results further showed that the strategy of metabolic modulation of P. trituberculatus after low-salinity stimulus includes osmotic rebalancing, enhanced gluconeogenesis from amino acids, and energy accumulation. These metabolic adaptations were manifested in the accumulation of trimethylamine-N-oxide, ATP, 2-pyridinemethanol, and trigonelline and in the depletion of the amino acid pool as well as in the fluctuation of inosine levels. This lends support to the fact that the low-salinity training accelerates the responses of crabs to low-salinity stress. These findings provide a comprehensive insight into the mechanisms of metabolic modulation in P. trituberculatus in response to low salinity. This work highlights the approach of NMR-based metabonomics in conjunction with multivariate data analysis and univariate data analysis in understanding the strategy of metabolic phenotype modulation against stressors.
Collapse
Affiliation(s)
- Yangfang Ye
- School of Marine Sciences, Ningbo University , Ningbo 315211, China
| | | | | | | | | |
Collapse
|
74
|
Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci U S A 2014; 111:4461-5. [PMID: 24591588 PMCID: PMC3970477 DOI: 10.1073/pnas.1322003111] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
No fish have been found in the deepest 25% of the ocean (8,400-11,000 m). This apparent absence has been attributed to hydrostatic pressure, although direct evidence is wanting because of the lack of deepest-living species to study. The common osmolyte trimethylamine N-oxide (TMAO) stabilizes proteins against pressure and increases with depth, going from 40 to 261 mmol/kg in teleost fishes from 0 to 4,850 m. TMAO accumulation with depth results in increasing internal osmolality (typically 350 mOsmol/kg in shallow species compared with seawater's 1,100 mOsmol/kg). Preliminary extrapolation of osmolalities of predicted isosmotic state at 8,000-8,500 m may indicate a possible physiological limit, as greater depths would require reversal of osmotic gradients and, thus, osmoregulatory systems. We tested this prediction by capturing five of the second-deepest known fish, the hadal snailfish (Notoliparis kermadecensis; Liparidae), from 7,000 m in the Kermadec Trench. We found their muscles to have a TMAO content of 386 ± 18 mmol/kg and osmolality of 991 ± 22 mOsmol/kg. These data fit previous extrapolations and, combined with new osmolalities from bathyal and abyssal fishes, predict isosmotic state at 8,200 m. This is previously unidentified evidence that biochemistry could constrain the depth of a large, complex taxonomic group.
Collapse
Affiliation(s)
- Paul H. Yancey
- Biology Department, Whitman College, Walla Walla, WA 99362
| | - Mackenzie E. Gerringer
- Biology Department, Whitman College, Walla Walla, WA 99362
- Department of Oceanography, University of Hawaii, Honolulu, HI 96822
| | - Jeffrey C. Drazen
- Department of Oceanography, University of Hawaii, Honolulu, HI 96822
| | - Ashley A. Rowden
- National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand; and
| | - Alan Jamieson
- Oceanlab, Institute of Biological and Environmental Sciences, University of Aberdeen, Newburgh, Aberdeenshire AB41 6AA, United Kingdom
| |
Collapse
|
75
|
Satoh Née Okihara R, Saito T, Ogata H, Ohsaki A, Iida T, Asahina K, Mitamura K, Ikegawa S, Hofmann AF, Hagey LR. N-Methyltaurine N-acyl amidated bile acids and deoxycholic acid in the bile of angelfish (Pomacanthidae): a novel bile acid profile in Perciform fish. Steroids 2014; 80:15-23. [PMID: 24291417 DOI: 10.1016/j.steroids.2013.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 01/30/2023]
Abstract
Two novel N-acyl amidated bile acids, N-methyltaurine conjugated cholic acid and N-methyltaurine conjugated deoxycholic acid, were found to be major biliary bile acids in two species of angelfish the regal (Pygoplites diacanthus) and the blue-girdled (Pomacanthus navarchus) angelfish. The identification was based on their having MS and NMR spectra identical to those of synthetic standards. A survey of biliary bile acids of 10 additional species of angelfish found 7 with N-methyltaurine conjugation. In all 12 species, conjugated deoxycholic acid (known to be formed by bacterial 7-dehydroxylation of cholic acid) was a major bile acid. In all previous studies of biliary bile acids in fish, deoxycholic acid has been present in only trace proportions. In addition, bile acid conjugation with N-methyltaurine has not been detected previously in any known vertebrate. N-methyltaurine conjugated bile acids are resistant to bacterial deconjugation and dehydroxylation, and such resistance to bacterial enzymes should aid in the maintenance of high concentrations of bile acids during lipid digestion. Our findings suggest that these species of angelfish have a novel microbiome in their intestine containing anaerobic bacteria, and describe the presence of N-methyltaurine conjugated bile acids that are resistant to bacterial attack.
Collapse
Affiliation(s)
- Rika Satoh Née Okihara
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan
| | - Tetsuya Saito
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan
| | - Hiroaki Ogata
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan
| | - Ayumi Ohsaki
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan
| | - Takashi Iida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan.
| | - Kiyoshi Asahina
- Department of Marine Science and Resource, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa 274-8555, Japan
| | - Kuniko Mitamura
- Faculty of Pharmaceutical Sciences, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Shigeo Ikegawa
- Faculty of Pharmaceutical Sciences, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Alan F Hofmann
- Department of Medicine, University of California, La Jolla, San Diego, CA 92093-0063, USA
| | - Lee R Hagey
- Department of Medicine, University of California, La Jolla, San Diego, CA 92093-0063, USA.
| |
Collapse
|
76
|
Effect of TMAO and betaine on the energy landscape of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:849-56. [PMID: 24440559 DOI: 10.1016/j.bbabio.2014.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/30/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
The accumulation of organic co-solvents in cells is a basic strategy for organisms from various species to increase stress tolerance in extreme environments. Widespread representatives of this class of co-solvents are trimethylamine-N-oxide (TMAO) and betaine; these small molecules are able to stabilize the native conformation of proteins and prevent their aggregation. Despite their importance, detailed experimental studies on the impact of these co-solvents on the energy landscape of proteins have not yet been carried out. We use single-molecule spectroscopy at cryogenic temperatures to examine the influence of these physiological relevant co-solvents on photosystem I (PSI) from Thermosynechococcus elongatus. In contrast to PSI ensemble spectra, which are almost unaffected by the addition of TMAO and betaine, statistical analysis of the fluorescence emission from individual PSI trimers yields insight into the interaction of the co-solvents with PSI. The results show an increased homogeneity upon addition of TMAO or betaine. The number of detectable zero-phonon lines (ZPLs) is reduced, indicating spectral diffusion processes with faster rates. In the framework of energy landscape model these findings indicate that co-solvents lead to reduced barrier heights between energy valleys, and thus efficient screening of protein conformations can take place.
Collapse
|
77
|
Agnello G, Chang LL, Lamb CM, Georgiou G, Stone EM. Discovery of a substrate selectivity motif in amino acid decarboxylases unveils a taurine biosynthesis pathway in prokaryotes. ACS Chem Biol 2013; 8:2264-71. [PMID: 23972067 DOI: 10.1021/cb400335k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Taurine, the most abundant free amino acid in mammals, with many critical roles such as neuronal development, had so far only been reported to be synthetized in eukaryotes. Taurine is the major product of cysteine metabolism in mammals, and its biosynthetic pathway consists of cysteine dioxygenase and cysteine sulfinic acid decarboxylase (hCSAD). Sequence, structural, and mutational analyses of the structurally and sequentially related hCSAD and human glutamic acid decarboxylase (hGAD) enzymes revealed a three residue substrate recognition motif (X1aa19X2aaX3), within the active site that is responsible for coordinating their respective preferred amino acid substrates. Introduction of the cysteine sulfinic acid (CSA) motif into hGAD (hGAD-S192F/N212S/F214Y) resulted in an enzyme with a >700 fold switch in selectivity toward the decarboxylation of CSA over its preferred substrate, l-glutamic acid. Surprisingly, we found this CSA recognition motif in the genome sequences of several marine bacteria, prompting us to evaluate the catalytic properties of bacterial amino acid decarboxylases that were predicted by sequence motif to decarboxylate CSA but had been annotated as GAD enzymes. We show that CSAD from Synechococcus sp. PCC 7335 specifically decarboxylated CSA and that the bacteria accumulated intracellular taurine. The fact that CSAD homologues exist in certain bacteria and are frequently found in operons containing the recently discovered bacterial cysteine dioxygenases that oxidize l-cysteine to CSA supports the idea that a bona fide bacterial taurine biosynthetic pathway exists in prokaryotes.
Collapse
Affiliation(s)
- Giulia Agnello
- Departments
of Biomedical and Chemical Engineering, ‡Section of Molecular Genetics and
Microbiology and §Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Leslie L. Chang
- Departments
of Biomedical and Chemical Engineering, ‡Section of Molecular Genetics and
Microbiology and §Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Candice M. Lamb
- Departments
of Biomedical and Chemical Engineering, ‡Section of Molecular Genetics and
Microbiology and §Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - George Georgiou
- Departments
of Biomedical and Chemical Engineering, ‡Section of Molecular Genetics and
Microbiology and §Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Everett M. Stone
- Departments
of Biomedical and Chemical Engineering, ‡Section of Molecular Genetics and
Microbiology and §Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
78
|
Larini L, Shea JE. Double Resolution Model for Studying TMAO/Water Effective Interactions. J Phys Chem B 2013; 117:13268-77. [DOI: 10.1021/jp403635g] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luca Larini
- Department of Chemistry
and Biochemistry
and of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United
States
| | - Joan-Emma Shea
- Department of Chemistry
and Biochemistry
and of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United
States
| |
Collapse
|
79
|
Moeller KT, Butler MW, Denardo DF. The effect of hydration state and energy balance on innate immunity of a desert reptile. Front Zool 2013; 10:23. [PMID: 23642164 PMCID: PMC3660207 DOI: 10.1186/1742-9994-10-23] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/24/2013] [Indexed: 11/24/2022] Open
Abstract
Introduction Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Results Using agglutination and lysis assays as measures of an organism’s plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Conclusions Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species.
Collapse
Affiliation(s)
- Karla T Moeller
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | | | | |
Collapse
|
80
|
Paracoccus denitrificans PD1222 utilizes hypotaurine via transamination followed by spontaneous desulfination to yield acetaldehyde and, finally, acetate for growth. J Bacteriol 2013; 195:2921-30. [PMID: 23603744 DOI: 10.1128/jb.00307-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypotaurine (HT; 2-aminoethane-sulfinate) is known to be utilized by bacteria as a sole source of carbon, nitrogen, and energy for growth, as is taurine (2-aminoethane-sulfonate); however, the corresponding HT degradation pathway has remained undefined. Genome-sequenced Paracoccus denitrificans PD1222 utilized HT (and taurine) quantitatively for heterotrophic growth and released the HT sulfur as sulfite (and sulfate) and HT nitrogen as ammonium. Enzyme assays with cell extracts suggested that an HT-inducible HT:pyruvate aminotransferase (Hpa) catalyzes the deamination of HT in an initial reaction step. Partial purification of the Hpa activity and peptide fingerprinting-mass spectrometry (PF-MS) identified the Hpa candidate gene; it encoded an archetypal taurine:pyruvate aminotransferase (Tpa). The same gene product was identified via differential PAGE and PF-MS, as was the gene of a strongly HT-inducible aldehyde dehydrogenase (Adh). Both genes were overexpressed in Escherichia coli. The overexpressed, purified Hpa/Tpa showed HT:pyruvate-aminotransferase activity. Alanine, acetaldehyde, and sulfite were identified as the reaction products but not sulfinoacetaldehyde; the reaction of Hpa/Tpa with taurine yielded sulfoacetaldehyde, which is stable. The overexpressed, purified Adh oxidized the acetaldehyde generated during the Hpa reaction to acetate in an NAD(+)-dependent reaction. Based on these results, the following degradation pathway for HT in strain PD1222 can be depicted. The identified aminotransferase converts HT to sulfinoacetaldehyde, which desulfinates spontaneously to acetaldehyde and sulfite; the inducible aldehyde dehydrogenase oxidizes acetaldehyde to yield acetate, which is metabolized, and sulfite, which is excreted.
Collapse
|
81
|
Lampel A, Bram Y, Levy-Sakin M, Bacharach E, Gazit E. The effect of chemical chaperones on the assembly and stability of HIV-1 capsid protein. PLoS One 2013; 8:e60867. [PMID: 23577173 PMCID: PMC3618117 DOI: 10.1371/journal.pone.0060867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
Chemical chaperones are small organic molecules which accumulate in a broad range of organisms in various tissues under different stress conditions and assist in the maintenance of a correct proteostasis under denaturating environments. The effect of chemical chaperones on protein folding and aggregation has been extensively studied and is generally considered to be mediated through non-specific interactions. However, the precise mechanism of action remains elusive. Protein self-assembly is a key event in both native and pathological states, ranging from microtubules and actin filaments formation to toxic amyloids appearance in degenerative disorders, such as Alzheimer's and Parkinson's diseases. Another pathological event, in which protein assembly cascade is a fundamental process, is the formation of virus particles. In the late stage of the virus life cycle, capsid proteins self-assemble into highly-ordered cores, which encapsulate the viral genome, consequently protect genome integrity and mediate infectivity. In this study, we examined the effect of different groups of chemical chaperones on viral capsid assembly in vitro, focusing on HIV-1 capsid protein as a system model. We found that while polyols and sugars markedly inhibited capsid assembly, methylamines dramatically enhanced the assembly rate. Moreover, chemical chaperones that inhibited capsid core formation, also stabilized capsid structure under thermal denaturation. Correspondingly, trimethylamine N-oxide, which facilitated formation of high-order assemblies, clearly destabilized capsid structure under similar conditions. In contrast to the prevailing hypothesis suggesting that chemical chaperones affect proteins through preferential exclusion, the observed dual effects imply that different chaperones modify capsid assembly and stability through different mechanisms. Furthermore, our results indicate a correlation between the folding state of capsid to its tendency to assemble into highly-ordered structures.
Collapse
Affiliation(s)
- Ayala Lampel
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Bram
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michal Levy-Sakin
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EB); (EG)
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EB); (EG)
| |
Collapse
|
82
|
Towey JJ, Soper AK, Dougan L. What happens to the structure of water in cryoprotectant solutions? Faraday Discuss 2013; 167:159-76. [DOI: 10.1039/c3fd00084b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
83
|
Hailu TT, Foit L, Bardwell JCA. In vivo detection and quantification of chemicals that enhance protein stability. Anal Biochem 2012; 434:181-6. [PMID: 23219982 PMCID: PMC3670414 DOI: 10.1016/j.ab.2012.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 11/15/2022]
Abstract
We have devised protein-folding sensors that link protein stability to TEM-1 β-lactamase activity. The addition of osmolytes and other compounds with chemical chaperone activity to the growth medium of bacteria containing these sensors increases β-lactamase activity up to 207-fold in a dose-dependent manner. This enables the rapid detection and sensitive quantification of compounds that enhance in vivo protein stability.
Collapse
Affiliation(s)
- Tsinatkeab T Hailu
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
84
|
Sarma R, Paul S. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions. J Chem Phys 2012; 137:094502. [DOI: 10.1063/1.4748101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
85
|
Stopa JD, Chandani S, Tolan DR. Stabilization of the predominant disease-causing aldolase variant (A149P) with zwitterionic osmolytes. Biochemistry 2011; 50:663-71. [PMID: 21166391 DOI: 10.1021/bi101523x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary fructose intolerance (HFI) is a disease of carbohydrate metabolism that can result in hyperuricemia, hypoglycemia, liver and kidney failure, coma, and death. Currently, the only treatment for HFI is a strict fructose-free diet. HFI arises from aldolase B deficiency, and the most predominant HFI mutation is an alanine to proline substitution at position 149 (A149P). The resulting aldolase B with the A149P substitution (AP-aldolase) has activity that is <100-fold that of the wild type. The X-ray crystal structure of AP-aldolase at both 4 and 18 °C reveals disordered adjacent loops of the (α/β)(8) fold centered around the substitution, which leads to a dimeric structure as opposed to the wild-type tetramer. The effects of osmolytes were tested for restoration of structure and function. An initial screen of osmolytes (glycerol, sucrose, polyethylene glycol, 2,4-methylpentanediol, glutamic acid, arginine, glycine, proline, betaine, sarcosine, and trimethylamine N-oxide) reveals that glycine, along with similarly structured compounds, betaine and sarcosine, protects AP-aldolase structure and activity from thermal inactivation. The concentration and functional moieties required for thermal protection show a zwitterion requirement. The effects of osmolytes in restoring structure and function of AP-aldolase are described. Testing of zwitterionic osmolytes of increasing size and decreasing fractional polar surface area suggests that osmolyte-mediated AP-aldolase stabilization occurs neither primarily through excluded volume effects nor through transfer free energy effects. These data suggest that AP-aldolase is stabilized by binding to the native structure, and they provide a foundation for developing stabilizing compounds for potential therapeutics for HFI.
Collapse
Affiliation(s)
- Jack D Stopa
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, 5 Cummington Street, Boston, Massachusetts 02215, United States
| | | | | |
Collapse
|
86
|
Morita T. High-pressure adaptation of muscle proteins from deep-sea fishes, Coryphaenoides yaquinae and C. armatus. Ann N Y Acad Sci 2010; 1189:91-4. [PMID: 20233373 DOI: 10.1111/j.1749-6632.2009.05181.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolutionary adaptations of functional genes to life at high pressures are not well understood. To elucidate the mechanisms of protein adaptation to high pressures, we isolated two muscle protein-encoding cDNAs, alpha-actin and myosin heavy chain (MyHC), derived from skeletal muscles of two deep-sea fishes, Coryphaenoides yaquinae and C. armatus, and two non-deep-sea fishes, C. acrolepis and C. cinereus. The alpha-actins from two deep-sea fishes have three amino acid substitutions in comparison to those of non-deep-sea fishes. These substitutions enable the deep-sea fish actins to function even at 60 MPa. The MyHCs of the two deep-sea fishes have a proline residue in the loop-1 region and have a shorter loop-2 region than the non-deep-sea fishes. Additionally, the MyHCs of deep-sea fishes have biased amino acid substitutions at core positions within the coiled-coil structure of the rod region. The roles of these substitutions in the deep-sea fishes MyHCs, however, remain unclear.
Collapse
Affiliation(s)
- Takami Morita
- National Research Institute of Fisheries Science, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| |
Collapse
|
87
|
Krejčík Z, Hollemeyer K, Smits THM, Cook AM. Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase. MICROBIOLOGY-SGM 2010; 156:1547-1555. [PMID: 20133363 DOI: 10.1099/mic.0.036699-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial generation of isethionate (2-hydroxyethanesulfonate) from taurine (2-aminoethanesulfonate) by anaerobic gut bacteria was established in 1980. That phenomenon in pure culture was recognized as a pathway of assimilation of taurine-nitrogen. Based on the latter work, we predicted from genome-sequence data that the marine gammaproteobacterium Chromohalobacter salexigens DSM 3043 would exhibit this trait. Quantitative conversion of taurine to isethionate, identified by mass spectrometry, was confirmed, and the taurine-nitrogen was recovered as cell material. An eight-gene cluster was predicted to encode the inducible vectorial, scalar and regulatory enzymes involved, some of which were known from other taurine pathways. The genes (Csal_0153-Csal_0156) encoding a putative ATP-binding-cassette (ABC) transporter for taurine (TauAB(1)B(2)C) were shown to be inducibly transcribed by reverse transcription (RT-) PCR. An inducible taurine : 2-oxoglutarate aminotransferase [EC 2.6.1.55] was found (Csal_0158); the reaction yielded glutamate and sulfoacetaldehyde. The sulfoacetaldehyde was reduced to isethionate by NADPH-dependent sulfoacetaldehyde reductase (IsfD), a member of the short-chain alcohol dehydrogenase superfamily. The 27 kDa protein (SDS-PAGE) was identified by peptide-mass fingerprinting as the gene product of Csal_0161. The putative exporter of isethionate (IsfE) is encoded by Csal_0160; isfE was inducibly transcribed (RT-PCR). The presumed transcriptional regulator, TauR (Csal_0157), may autoregulate its own expression, typical of GntR-type regulators. Similar gene clusters were found in several marine and terrestrial gammaproteobacteria, which, in the gut canal, could be the source of not only mammalian, but also arachnid and cephalopod isethionate.
Collapse
Affiliation(s)
- Zdeněk Krejčík
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-16637 Prague, Czech Republic.,Department of Biology, The University, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- Institute of Biochemical Engineering, Saarland University, Box 50 11 50, D-66041 Saarbrücken, Germany
| | - Theo H M Smits
- Agroscope Changins-Wädenswil ACW, Schloss, Postfach, CH-8820 Wädenswil, Switzerland.,Department of Biology, The University, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
88
|
Paul S. Liquid–vapour interfaces of aqueous trimethylamine-N-oxide solutions: A molecular dynamics simulation study. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2009.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
89
|
Kumar R. Role of naturally occurring osmolytes in protein folding and stability. Arch Biochem Biophys 2009; 491:1-6. [DOI: 10.1016/j.abb.2009.09.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 11/24/2022]
|
90
|
Panuszko A, Bruździak P, Zielkiewicz J, Wyrzykowski D, Stangret J. Effects of Urea and Trimethylamine-N-oxide on the Properties of Water and the Secondary Structure of Hen Egg White Lysozyme. J Phys Chem B 2009; 113:14797-809. [DOI: 10.1021/jp904001m] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aneta Panuszko
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Piotr Bruździak
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Jan Zielkiewicz
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Janusz Stangret
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| |
Collapse
|
91
|
Yancey PH, Ishikawa J, Meyer B, Girguis PR, Lee RW. Thiotaurine and hypotaurine contents in hydrothermal-vent polychaetes without thiotrophic endosymbionts: correlation With sulfide exposure. ACTA ACUST UNITED AC 2009; 311:439-47. [DOI: 10.1002/jez.541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
92
|
Foster C, Amado EM, Souza MM, Freire CA. Do osmoregulators have lower capacity of muscle water regulation than osmoconformers? A study on decapod crustaceans. ACTA ACUST UNITED AC 2009; 313:80-94. [DOI: 10.1002/jez.575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
Ortega JA, Ortega JM, Julian D. Hypotaurine and sulfhydryl-containing antioxidants reduce H2S toxicity in erythrocytes from a marine invertebrate. J Exp Biol 2008; 211:3816-25. [DOI: 10.1242/jeb.021303] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SUMMARY
Hypotaurine (HT) has been proposed to reduce sulfide toxicity in some deep-sea invertebrates by scavenging free radicals produced from sulfide oxidation or by scavenging sulfide via the reaction of HT with sulfide, forming thiotaurine (ThT). We tested whether HT or several antioxidants could reduce the total dissolved sulfide concentration in buffered seawater exposed to H2S, and whether HT, ThT or antioxidants could increase the viability of Glycera dibranchiataerythrocytes exposed to H2S in vitro. We found that 5 and 50 mmol l–1 HT reduced the dissolved sulfide in cell-free buffer exposed to H2S by up to 80% whereas the antioxidants glutathione ethyl ester (GEE), N-acetylcysteine (NAC), l-ascorbic acid (ASC), Tempol and Trolox had no consistent effect. Exposure of erythrocytes to 0.10%–3.2% H2S (producing 0.18–4.8 mmol l–1 sulfide) decreased the fraction of viable cells, as evidenced by loss of plasma membrane integrity, with virtually no cells remaining viable at 1.0% or more H2S. Addition of HT (0.5–50 mmol l–1) significantly increased the fraction of viable cells (e.g. from 0.01 to 0.84 at 0.32% H2S) whereas ThT (0.5 and 5 mmol l–1) decreased cell viability. GEE (0.03–3 mmol l–1) and NAC (0.001–1 mmol l–1), which contain sulfhydryl groups, increased cell viability during H2S exposure but to a lesser extent than HT whereas ASC, Tempol and Trolox, which do not contain sulfhydryl groups, decreased viability or had no effect. These data show that HT can protect cells from sulfide in vitro and suggest that sulfide scavenging, rather than free radical scavenging, is the most important mechanism of protection.
Collapse
Affiliation(s)
- J. A. Ortega
- University of Florida, P.O. Box 118525, Department of Zoology,Gainesville, FL 32611, USA
| | - J. M. Ortega
- University of Florida, P.O. Box 118525, Department of Zoology,Gainesville, FL 32611, USA
| | - D. Julian
- University of Florida, P.O. Box 118525, Department of Zoology,Gainesville, FL 32611, USA
| |
Collapse
|
94
|
Krywka C, Sternemann C, Paulus M, Tolan M, Royer C, Winter R. Effect of Osmolytes on Pressure-Induced Unfolding of Proteins: A High-Pressure SAXS Study. Chemphyschem 2008; 9:2809-15. [DOI: 10.1002/cphc.200800522] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
95
|
Morita T. Comparative sequence analysis of myosin heavy chain proteins from congeneric shallow- and deep-living rattail fish (genus Coryphaenoides). ACTA ACUST UNITED AC 2008; 211:1362-7. [PMID: 18424669 DOI: 10.1242/jeb.017137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The evolutionary adaptations of functional genes to life at high pressure are not well understood. To elucidate the mechanisms of protein adaptation to high pressure, we cloned the myosin heavy chain (MyHC) cDNA from skeletal muscle of two deep-sea fishes, Coryphaenoides yaquinae and C. armatus, and two non-deep-sea fishes, C. acrolepis and C. cinereus. The MyHCs of deep-sea fishes have a unique structure in two loop regions, loop-1 and loop-2, in comparison with those of non-deep-sea fishes. The loop-1 region of deep-sea fishes has a Pro residue and the loop-2 region, which is an actin-binding site, is shorter than the same region in non-deep-sea fishes. The amino acid substitution in the loop-1 region is expected to be mainly involved in ATPase activity, whereas the deletion in the loop-2 region affects the association of MyHC with actin filaments at high pressure. In addition, the MyHC of deep-sea fishes has biased amino acid substitutions at core positions in the coiled-coil structure of the rod region. These amino acid substitutions are likely to decrease the cavities in the coiled-coil structure and consequently make the structure more compact and unaffected by high pressure. Together, these results indicate that amino acid substitutions can adaptively alter the pressure sensitivity of a protein even if they do not directly influence core structure.
Collapse
Affiliation(s)
- Takami Morita
- National Research Institute of Fisheries Science, Fukuura 2-12-4, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| |
Collapse
|
96
|
Abstract
Systemic osmoregulation is a vital process whereby changes in plasma osmolality, detected by osmoreceptors, modulate ingestive behaviour, sympathetic outflow and renal function to stabilize the tonicity and volume of the extracellular fluid. Furthermore, changes in the central processing of osmosensory signals are likely to affect the hydro-mineral balance and other related aspects of homeostasis, including thermoregulation and cardiovascular balance. Surprisingly little is known about how the brain orchestrates these responses. Here, recent advances in our understanding of the molecular, cellular and network mechanisms that mediate the central control of osmotic homeostasis in mammals are reviewed.
Collapse
Affiliation(s)
- Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Room L7-216, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
97
|
Krejcík Z, Denger K, Weinitschke S, Hollemeyer K, Paces V, Cook AM, Smits THM. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 2008; 190:159-68. [PMID: 18506422 DOI: 10.1007/s00203-008-0386-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 05/05/2008] [Indexed: 11/25/2022]
Abstract
Taurine (2-aminoethanesulfonate) is a widespread natural product whose nitrogen moiety was recently shown to be assimilated by bacteria, usually with excretion of an organosulfonate via undefined novel pathways; other data involve transcriptional regulator TauR in taurine metabolism. A screen of genome sequences for TauR with the BLAST algorithm allowed the hypothesis that the marine gammaproteobacterium Neptuniibacter caesariensis MED92 would inducibly assimilate taurine-nitrogen and excrete sulfoacetate. The pathway involved an ABC transporter (TauABC), taurine:pyruvate aminotransferase (Tpa), a novel sulfoacetaldehyde dehydrogenase (SafD) and exporter(s) of sulfoacetate (SafE) (DUF81). Ten candidate genes in two clusters involved three sets of paralogues (for TauR, Tpa and SafE). Inducible Tpa and SafD were detected in cell extracts. SafD was purified 600-fold to homogeneity in two steps. The monomer had a molecular mass of 50 kDa (SDS-PAGE); data from gel filtration chromatography indicated a tetrameric native protein. SafD was specific for sulfoacetaldehyde with a K (m)-value of 0.12 mM. The N-terminal amino acid sequence of SafD confirmed the identity of the safD gene. The eight pathway genes were transcribed inducibly, which indicated expression of the whole hypothetical pathway. We presume that this pathway is one source of sulfoacetate in nature, where this compound is dissimilated by many bacteria.
Collapse
Affiliation(s)
- Zdenĕk Krejcík
- Department of Biology, The University, 78457, Constance, Germany
| | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Cells of almost all organisms accumulate organic osmolytes when exposed to hyperosmolality, most often in the form of high salt or urea. In this review, we discuss 1) how the organic osmolytes protect; 2) the identity of osmolytes in Archaea, bacteria, yeast, plants, marine animals, and mammals; 3) the mechanisms by which they are accumulated; 4) sensors of osmolality; 5) the signaling pathways involved; and 6) mutual counteraction by urea and methylamines.
Collapse
Affiliation(s)
- Maurice B Burg
- Department of Health and Human Services, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1603, USA.
| | | |
Collapse
|
99
|
Burg MB, Ferraris JD. Intracellular organic osmolytes: function and regulation. J Biol Chem 2008. [PMID: 18256030 DOI: 10.1974/jbc.r700042200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells of almost all organisms accumulate organic osmolytes when exposed to hyperosmolality, most often in the form of high salt or urea. In this review, we discuss 1) how the organic osmolytes protect; 2) the identity of osmolytes in Archaea, bacteria, yeast, plants, marine animals, and mammals; 3) the mechanisms by which they are accumulated; 4) sensors of osmolality; 5) the signaling pathways involved; and 6) mutual counteraction by urea and methylamines.
Collapse
Affiliation(s)
- Maurice B Burg
- Department of Health and Human Services, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1603, USA.
| | | |
Collapse
|
100
|
|