51
|
O’Bryan CA, Pendleton SJ, Crandall PG, Ricke SC. Potential of Plant Essential Oils and Their Components in Animal Agriculture - in vitro Studies on Antibacterial Mode of Action. Front Vet Sci 2015; 2:35. [PMID: 26664964 PMCID: PMC4672195 DOI: 10.3389/fvets.2015.00035] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 01/09/2023] Open
Abstract
The antimicrobial activity of essential oils and their components has been recognized for several years. Essential oils are produced as secondary metabolites by many plants and can be distilled from all different portions of plants. The recent emergence of bacteria resistant to multiple antibiotics has spurred research into the use of essential oils as alternatives. Recent research has demonstrated that many of these essential oils have beneficial effects for livestock, including reduction of foodborne pathogens in these animals. Numerous studies have been made into the mode of action of essential oils, and the resulting elucidation of bacterial cell targets has contributed to new perspectives on countering antimicrobial resistance and pathogenicity of these bacteria. In this review, an overview of the current knowledge about the antibacterial mode of action of essential oils and their constituents is provided.
Collapse
Affiliation(s)
- Corliss A. O’Bryan
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Sean J. Pendleton
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Philip G. Crandall
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Steven C. Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
52
|
Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6:841. [PMID: 26347727 PMCID: PMC4542319 DOI: 10.3389/fmicb.2015.00841] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Agapi Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| | - Hülya Ölmez
- TÜBİTAK Marmara Research Center, Food Institute, Gebze, Kocaeli, Turkey
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
53
|
Khemiri A, Jouenne T, Cosette P. Proteomics dedicated to biofilmology: What have we learned from a decade of research? Med Microbiol Immunol 2015; 205:1-19. [PMID: 26068406 DOI: 10.1007/s00430-015-0423-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
Abstract
Advances in proteomics techniques over the past decade, closely integrated with genomic and physicochemical approach, have played a great role in developing knowledge of the biofilm lifestyle of bacteria. Despite bacterial proteome versatility, many studies have demonstrated the ability of proteomics approaches to elucidating the biofilm phenotype. Though these investigations have been largely used for biofilm studies in the last decades, they represent, however, a very low percentage of proteomics works performed up to now. Such approaches have offered new targets for combating microbial biofilms by providing a comprehensive quantitative and qualitative overview of their protein cell content. Herein, we summarized the state of the art in knowledge about biofilm physiology after one decade of proteomic analysis. In a second part, we highlighted missing research tracks for the next decade, emphasizing the emergence of posttranslational modifications in proteomic studies stemming from recent advances in mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Arbia Khemiri
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France.
- University of Normandy, UR, Mont-Saint-Aignan, France.
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France.
| | - Thierry Jouenne
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Pascal Cosette
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| |
Collapse
|
54
|
Lyon P. The cognitive cell: bacterial behavior reconsidered. Front Microbiol 2015; 6:264. [PMID: 25926819 PMCID: PMC4396460 DOI: 10.3389/fmicb.2015.00264] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/16/2015] [Indexed: 01/28/2023] Open
Abstract
Research on how bacteria adapt to changing environments underlies the contemporary biological understanding of signal transduction (ST), and ST provides the foundation of the information-processing approach that is the hallmark of the ‘cognitive revolution,’ which began in the mid-20th century. Yet cognitive scientists largely remain oblivious to research into microbial behavior that might provide insights into problems in their own domains, while microbiologists seem equally unaware of the potential importance of their work to understanding cognitive capacities in multicellular organisms, including vertebrates. Evidence in bacteria for capacities encompassed by the concept of cognition is reviewed. Parallels exist not only at the heuristic level of functional analogue, but also at the level of molecular mechanism, evolution and ecology, which is where fruitful cross-fertilization among disciplines might be found.
Collapse
Affiliation(s)
- Pamela Lyon
- Southgate Institute for Health, Society and Equity, School of Medicine, Flinders University Adelaide, SA, Australia
| |
Collapse
|
55
|
Percival SL, Finnegan S, Donelli G, Vuotto C, Rimmer S, Lipsky BA. Antiseptics for treating infected wounds: Efficacy on biofilms and effect of pH. Crit Rev Microbiol 2014; 42:293-309. [DOI: 10.3109/1040841x.2014.940495] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
56
|
Jahid IK, Ha SD. The Paradox of Mixed-Species Biofilms in the Context of Food Safety. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12087] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iqbal Kabir Jahid
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri, Daedeok-Myun Anseong-Si Gyeonggi-do 456-756 South Korea
- Dept. of Microbiology; Jessore Univ. of Science and Technology; Jessore-7408 Bangladesh
| | - Sang-Do Ha
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri, Daedeok-Myun Anseong-Si Gyeonggi-do 456-756 South Korea
| |
Collapse
|
57
|
N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. BIOMED RESEARCH INTERNATIONAL 2014; 2014:162584. [PMID: 25147787 PMCID: PMC4131561 DOI: 10.1155/2014/162584] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 11/17/2022]
Abstract
Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors.
Collapse
|
58
|
Dall'Agnol LT, Cordas CM, Moura JJ. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism. Bioelectrochemistry 2014; 97:43-51. [DOI: 10.1016/j.bioelechem.2013.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022]
|
59
|
The Inhibitory Effects of Catechins on Biofilm Formation by the Periodontopathogenic Bacterium,Eikenella corrodens. Biosci Biotechnol Biochem 2014; 74:2445-50. [DOI: 10.1271/bbb.100499] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
60
|
Abadian PN, Tandogan N, Jamieson JJ, Goluch ED. Using surface plasmon resonance imaging to study bacterial biofilms. BIOMICROFLUIDICS 2014; 8:021804. [PMID: 24753735 PMCID: PMC3977793 DOI: 10.1063/1.4867739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/21/2014] [Indexed: 05/28/2023]
Abstract
This paper describes the use of Surface Plasmon Resonance imaging (SPRi) as an emerging technique to study bacterial physiology in real-time without labels. The overwhelming majority of bacteria on earth exist in large multicellular communities known as biofilms. Biofilms are especially problematic because they facilitate the survival of pathogens, leading to chronic and recurring infections as well as costly industrial complications. Monitoring biofilm accumulation and removal is therefore critical in these and other applications. SPRi uniquely provides label-free, high-resolution images of biomass coverage on large channel surfaces up to 1 cm(2) in real time, which allow quantitative assessment of biofilm dynamics. The rapid imaging capabilities of this technique are particularly relevant for multicellular bacterial studies, as these cells can swim several body lengths per second and divide multiple times per hour. We present here the first application of SPRi to image Escherichia coli and Pseudomonas aeruginosa cells moving, attaching, and forming biofilms across a large surface. This is also the first time that biofilm removal has been visualized with SPRi, which has important implications for monitoring the biofouling and regeneration of fluidic systems. Initial images of the removal process show that the biofilm releases from the surface as a wave along the direction of the fluid flow.
Collapse
Affiliation(s)
- Pegah N Abadian
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313SN, Boston, Massachusetts 02115, USA
| | - Nil Tandogan
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313SN, Boston, Massachusetts 02115, USA
| | - John J Jamieson
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313SN, Boston, Massachusetts 02115, USA
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313SN, Boston, Massachusetts 02115, USA
| |
Collapse
|
61
|
Ho KKK, Chen R, Willcox MDP, Rice SA, Cole N, Iskander G, Kumar N. Quorum sensing inhibitory activities of surface immobilized antibacterial dihydropyrrolones via click chemistry. Biomaterials 2013; 35:2336-45. [PMID: 24345737 DOI: 10.1016/j.biomaterials.2013.11.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 11/17/2022]
Abstract
Device-related infection remains a major barrier to the use of biomaterial implants as life-saving devices. This study aims to examine the effectiveness and mechanism of action of surface attached dihydropyrrolones (DHPs), a quorum sensing (QS) inhibitor, against bacterial colonization. DHPs were covalently attached on glass surfaces via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) click reaction. The covalent attachment of DHP surfaces was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements, and the antimicrobial efficacy of the DHP coatings was assessed by confocal laser scanning microscopy (CLSM) and image analysis. The results demonstrated that covalently bound DHP compounds are effective in reducing the adhesion by up to 97% (p < 0.05) for both Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, using the green fluorescent protein (Gfp)-based reporter technology, it is demonstrated that surface attached DHPs were able to repress the expression of a lasB-gfp reporter fusion of P. aeruginosa by 72% (p < 0.001) without affecting cell viability. This demonstrates the ability of the covalently bound QS inhibitor to inhibit QS and suggests the existence of a membrane-based pathway(s) for QS inhibition. Hence, strategies based on incorporation of QS inhibitors such as DHPs represent a potential approach for prevention of device-related infections.
Collapse
Affiliation(s)
- Kitty K K Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Renxun Chen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A Rice
- School of Biotechnology and Biomolecular Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia; The Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Nerida Cole
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - George Iskander
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
62
|
Husain FM, Ahmad I, Asif M, Tahseen Q. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci 2013; 38:835-44. [DOI: 10.1007/s12038-013-9385-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
63
|
Karim MM, Hisamoto T, Matsunaga T, Asahi Y, Noiri Y, Ebisu S, Kato A, Azakami H. LuxS affects biofilm maturation and detachment of the periodontopathogenic bacterium Eikenella corrodens. J Biosci Bioeng 2013; 116:313-8. [DOI: 10.1016/j.jbiosc.2013.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/08/2013] [Accepted: 03/19/2013] [Indexed: 01/25/2023]
|
64
|
Giaouris E, Heir E, Hébraud M, Chorianopoulos N, Langsrud S, Møretrø T, Habimana O, Desvaux M, Renier S, Nychas GJ. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 2013; 97:298-309. [PMID: 23747091 DOI: 10.1016/j.meatsci.2013.05.023] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Attachment of potential spoilage and pathogenic bacteria to food contact surfaces and the subsequent biofilm formation represent serious challenges to the meat industry, since these may lead to cross-contamination of the products, resulting in lowered-shelf life and transmission of diseases. In meat processing environments, microorganisms are sometimes associated to surfaces in complex multispecies communities, while bacterial interactions have been shown to play a key role in cell attachment and detachment from biofilms, as well as in the resistance of biofilm community members against antimicrobial treatments. Disinfection of food contact surfaces in such environments is a challenging task, aggravated by the great antimicrobial resistance of biofilm associated bacteria. In recent years, several alternative novel methods, such as essential oils and bacteriophages, have been successfully tested as an alternative means for the disinfection of microbial-contaminated food contact surfaces. In this review, all these aspects of biofilm formation in meat processing environments are discussed from a microbial meat-quality and safety perspective.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, University of the Aegean, Myrina, Lemnos 81400, Greece.
| | - Even Heir
- Nofima Mat AS, Osloveien 1, N-1430 Ås, Norway
| | - Michel Hébraud
- Institut National de la Recherche Agronomique, site de Theix, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Nikos Chorianopoulos
- Veterinary Research Institute of Athens, Greek Agricultural Organization "Demeter", Aghia Paraskeui15310, Greece
| | | | | | | | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, site de Theix, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Sandra Renier
- Institut National de la Recherche Agronomique, site de Theix, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
65
|
Li PF, Li SG, Li ZF, Zhao L, Wang T, Pan HW, Liu H, Wu ZH, Li YZ. Co-cultivation ofSorangium cellulosumstrains affects cellular growth and biosynthesis of secondary metabolite epothilones. FEMS Microbiol Ecol 2013; 85:358-68. [DOI: 10.1111/1574-6941.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peng-fei Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Shu-guang Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Lin Zhao
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Ting Wang
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Hong-wei Pan
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Hong Liu
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Zhi-hong Wu
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| |
Collapse
|
66
|
Gilan I, Sivan A. Effect of proteases on biofilm formation of the plastic-degrading actinomyceteRhodococcus ruberC208. FEMS Microbiol Lett 2013; 342:18-23. [DOI: 10.1111/1574-6968.12114] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 01/21/2023] Open
Affiliation(s)
- Irit Gilan
- Department of Biotechnology Engineering; Ben-Gurion University of the Negev; Beer-Sheva; Israel
| | - Alex Sivan
- Department of Biotechnology Engineering; Ben-Gurion University of the Negev; Beer-Sheva; Israel
| |
Collapse
|
67
|
Abstract
Quorum sensing(QS) is a mechanism of microbes to coordinate their activities, which allows them to function as multi-cellular systems. Recently, many researches have proved that the engineered QS system have a wide range of applications such as bioremediation of oil and heavy metal contaminated soils, and prevention of biofouling. Here we review the function of QS signals produced by bacteria, and the principle of enhancing degradative capacities of microbe. Specifically, we describe how QS system regulate the formation and dispersion of biofilms, which are reversible process that biofilms may be generated and removed as desired. The development of strategies to disrupt and manipulate QS are also implicated. Cells can be engineered to secrete QS signals to affect the behavior of neighboring cells in a consortium via engineered cellular communication. The complete genetic basis of QS may be used to control these communities of associated cells for bioremediation applications.
Collapse
|
68
|
Woodcock S, Besemer K, Battin TJ, Curtis TP, Sloan WT. Modelling the effects of dispersal mechanisms and hydrodynamic regimes upon the structure of microbial communities within fluvial biofilms. Environ Microbiol 2012; 15:1216-25. [PMID: 23240857 DOI: 10.1111/1462-2920.12055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 11/27/2022]
Abstract
The spatial distribution of microbial taxa is determined primarily by physical and chemical environments and by dispersal. In a homogeneous landscape with limited dispersal, the similarity in abundance of taxa in samples declines with separation distance. We present a one-dimensional model for the spatial autocorrelation in abundances arising from immigration from some remote community and dispersal between environmentally similar landscape patches. Spatial correlation in taxa abundances were calculated from biofilms from the beds of two flumes which differed only in their bedform profiles; one flat and the other a periodic sawtooth shape. The hydraulic regime is approximately uniform over the flat bed, whereas the sawtooth induces fast flow over the peaks and recirculation in the troughs. On the flat bed, the correlation decline between samples was reproduced by a model using one biologically reasonable parameter. A decline was apparent in the other flume; however, a better fit was achieved when dispersal was not assumed constant everywhere. However, analysis of finer-resolution data for the heterogeneous flume suggested even this model did not adequately capture the community's complexity. We conclude that hydrodynamics are a strong driver of taxa-abundance patterns in stream biofilms. However, local adaptability must also be considered to build up a complete mechanistic model.
Collapse
Affiliation(s)
- Stephen Woodcock
- School of Mathematical Sciences, University of Technology Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
69
|
Anbazhagan D, Mansor M, Yan GOS, Md Yusof MY, Hassan H, Sekaran SD. Detection of quorum sensing signal molecules and identification of an autoinducer synthase gene among biofilm forming clinical isolates of Acinetobacter spp. PLoS One 2012; 7:e36696. [PMID: 22815678 PMCID: PMC3398020 DOI: 10.1371/journal.pone.0036696] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/05/2012] [Indexed: 01/11/2023] Open
Abstract
Background Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules. Methodology/Principal Findings Biofilm formation among clinical isolates of Acinetobacter spp. was assessed and the production of signal molecules were detected with Chromobacterium violaceum CV026 biosensor system. Characterisation of autoinducers was carried out by mass spectrometric analysis. We have also reported the identification of an autoinducer synthase gene, abaΙ among the isolates that produce quorum sensing signal molecules and have reported that the mutation in the abaI gene influences their biofilm forming capabilities. Using a microtitre-plate assay it was shown that 60% of the 50 Acinetobacter spp. isolates significantly formed biofilms. Further detection with the biosensor strain showed that some of these isolates produced long chain signal molecules. Mass spectrometric analysis revealed that five of these isolates produced N-decanoyl homoserine lactone and two isolates produced acyl-homoserine lactone with a chain length equal to C12. The abaΙ gene was identified and a tetracycline mutant of the abaΙ gene was created and the inhibition in biofilm formation in the mutant was shown. Conclusions/Significance These data are of great significance as the signal molecules aid in biofilm formation which in turn confer various properties of pathogenicity to the clinical isolates including drug resistance. The use of quorum sensing signal blockers to attenuate bacterial pathogenicity is therefore highly attractive, particularly with respect to the emergence of multi antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Deepa Anbazhagan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Marzida Mansor
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gracie Ong Siok Yan
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Yasim Md Yusof
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamimah Hassan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
70
|
Monitoring of biofilm production by Pseudomonas aeruginosa strains under different conditions of UVC irradiation and phage infection. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0487-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
71
|
Kostaki M, Chorianopoulos N, Braxou E, Nychas GJ, Giaouris E. Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl Environ Microbiol 2012; 78:2586-95. [PMID: 22307304 PMCID: PMC3318796 DOI: 10.1128/aem.07099-11] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/25/2012] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate the possible influence of bacterial intra- and interspecies interactions on the ability of Listeria monocytogenes and Salmonella enterica to develop mixed-culture biofilms on an abiotic substratum, as well as on the subsequent resistance of sessile cells to chemical disinfection. Initially, three strains from each species were selected and left to attach and form biofilms on stainless steel (SS) coupons incubated at 15°C for 144 h, in periodically renewable tryptone soy broth (TSB), under either monoculture or mixed-culture (mono-/dual-species) conditions. Following biofilm formation, mixed-culture sessile communities were subjected to 6-min disinfection treatments with (i) benzalkonium chloride (50 ppm), (ii) sodium hypochlorite (10 ppm), (iii) peracetic acid (10 ppm), and (iv) a mixture of hydrogen peroxide (5 ppm) and peracetic acid (5 ppm). Results revealed that both species reached similar biofilm counts (ca. 10(5) CFU cm(-2)) and that, in general, interspecies interactions did not have any significant effect either on the biofilm-forming ability (as this was assessed by agar plating enumeration of the mechanically detached biofilm bacteria) or on the antimicrobial resistance of each individual species. Interestingly, pulsed-field gel electrophoresis (PFGE) analysis clearly showed that the three L. monocytogenes strains did not contribute at the same level either to the formation of mixed-culture sessile communities (mono-/dual species) or to their antimicrobial recalcitrance. Additionally, the simultaneous existence inside the biofilm structure of S. enterica cells seemed to influence the occurrence and resistance pattern of L. monocytogenes strains. In sum, this study highlights the impact of microbial interactions taking place inside a mixed-culture sessile community on both its population dynamics and disinfection resistance.
Collapse
Affiliation(s)
- Maria Kostaki
- Department of Food Science and Technology, Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens, Athens, Greece
| | - Nikos Chorianopoulos
- Veterinary Research Institute, National Agricultural Research Foundation, Aghia Paraskeui, Athens, Greece
| | - Elli Braxou
- Department of Food Science and Technology, Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Department of Food Science and Technology, Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens, Athens, Greece
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
72
|
Mangwani N, Dash HR, Chauhan A, Das S. Bacterial Quorum Sensing: Functional Features and Potential Applications in Biotechnology. J Mol Microbiol Biotechnol 2012; 22:215-27. [DOI: 10.1159/000341847] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
73
|
Singh BN, Singh HB, Singh A, Singh BR, Mishra A, Nautiyal CS. Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2011; 158:529-538. [PMID: 22117007 DOI: 10.1099/mic.0.052985-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lagerstroemia speciosa (Lythraceae) is a south-east Asian tree more commonly known as 'Jarul'. Research on health benefits suggests that the L. speciosa plant contains phytomolecules that may have antioxidant, anti-diabetic and anti-obesity properties. However, antimicrobial activities have not been reported for this plant. The ability of L. speciosa fruit extract (LSFE) to antagonize cell-to-cell communication, expression of virulence genes and factors, and biofilm formation was evaluated in Pseudomonas aeruginosa strain PAO1. Our results suggested that LSFE caused downregulation of quorum sensing (QS)-related genes (las and rhl) and their respective signalling molecules, N-acylhomoserine lactones, without affecting the growth of P. aeruginosa PAO1. Significant inhibition of virulence factors: LasA protease, LasB elastase, and pyoverdin production, was also recorded. Application of LSFE to P. aeruginosa PAO1 biofilms increased bacterial susceptibility to tobramycin. These data suggest a possible role for quorum-quenching mechanisms unrelated to static or cidal effects, and also suggest that L. speciosa could serve as a cost-effective source in the development of new QS-based antibacterial drugs.
Collapse
Affiliation(s)
- Brahma N Singh
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, The University of Kansas Medical Center, The University of Kansas, Kansas City, 66160 KS, USA
| | - H B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-211 005, India
| | - Akanksha Singh
- Department of Botany, Faculty of Sciences, Banaras Hindu University, Varanasi-211 005, India
| | - Braj R Singh
- DNA Research Chair, Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Aradhana Mishra
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
| | - C S Nautiyal
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
| |
Collapse
|
74
|
Cystic and Non-Cystic Fibrosis Pseudomonas aeruginosa Isolates are not Differentiated by the Quorum-Sensing Signaling and Biofilm Production. Curr Microbiol 2011; 64:81-4. [DOI: 10.1007/s00284-011-0041-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/07/2011] [Indexed: 10/15/2022]
|
75
|
Rogers GB, Hoffman LR, Döring G. Novel concepts in evaluating antimicrobial therapy for bacterial lung infections in patients with cystic fibrosis. J Cyst Fibros 2011; 10:387-400. [PMID: 21775220 DOI: 10.1016/j.jcf.2011.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/04/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022]
Abstract
Cystic fibrosis (CF) patients suffer typically from bacterial infections of their airways. Whilst current antibiotic-based treatment of these infections has brought much benefit to patients, it has been difficult to make either direct or indirect assessments of the in vivo efficacy of any specific treatment used. Traditional culture-based assessment has for example been rarely used to determine the direct impact of therapy on the bacteria in the airways. Instead, the "success" of a treatment is most often gauged through measures of respiratory and general health. New culture-independent approaches though are emerging that offer much promise here however in allowing a more comprehensive evaluation of antimicrobial efficacy. These new methods offer an opportunity to examine bacterial outcomes rather than host outcomes alone. Application of these novel techniques in a systematic way will lead to the rationalisation and, likely greater still individualisation, of therapy for CF patients. This review discusses host and microbiological factors that may influence antibiotic efficacy. Moreover, the degree to which the inherent complexity of CF respiratory infections complicates the process of determining treatment impact and the need to identify more robust microbiological outcome measures will also be reviewed.
Collapse
Affiliation(s)
- Geraint B Rogers
- Molecular Microbiology Research Laboratory, King's College London, United Kingdom.
| | | | | |
Collapse
|
76
|
|
77
|
Flickinger ST, Copeland MF, Downes EM, Braasch AT, Tuson HH, Eun YJ, Weibel DB. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. J Am Chem Soc 2011; 133:5966-75. [PMID: 21434644 DOI: 10.1021/ja111131f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This manuscript describes the fabrication of arrays of spatially confined chambers embossed in a layer of poly(ethylene glycol) diacrylate (PEGDA) and their application to studying quorum sensing between communities of Pseudomonas aeruginosa. We hypothesized that biofilms may produce stable chemical signaling gradients in close proximity to surfaces, which influence the growth and development of nearby microcolonies into biofilms. To test this hypothesis, we embossed a layer of PEGDA with 1.5-mm wide chambers in which P. aeruginosa biofilms grew, secreted homoserine lactones (HSLs, small molecule regulators of quorum sensing), and formed spatial and temporal gradients of these compounds. In static growth conditions (i.e., no flow), nascent biofilms secreted N-(3-oxododecanoyl) HSL that formed a gradient in the hydrogel and was detected by P. aeruginosa cells that were ≤8 mm away. Diffusing HSLs increased the growth rate of cells in communities that were <3 mm away from the biofilm, where the concentration of HSL was >1 μM, and had little effect on communities farther away. The HSL gradient had no observable influence on biofilm structure. Surprisingly, 0.1-10 μM of N-(3-oxododecanoyl) HSL had no effect on cell growth in liquid culture. The results suggest that the secretion of HSLs from a biofilm enhances the growth of neighboring cells in contact with surfaces into communities and may influence their composition, organization, and diversity.
Collapse
Affiliation(s)
- Shane T Flickinger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | |
Collapse
|
78
|
Belessi CEA, Gounadaki AS, Schvartzman S, Jordan K, Skandamis PN. Evaluation of growth/no growth interface of Listeria monocytogenes growing on stainless steel surfaces, detached from biofilms or in suspension, in response to pH and NaCl. Int J Food Microbiol 2011; 145 Suppl 1:S53-60. [DOI: 10.1016/j.ijfoodmicro.2010.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 12/01/2022]
|
79
|
Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLoS Pathog 2011; 7:e1001250. [PMID: 21253572 PMCID: PMC3017118 DOI: 10.1371/journal.ppat.1001250] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 12/06/2010] [Indexed: 12/30/2022] Open
Abstract
Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS. Many Gram-negative bacteria communicate by producing and sensing the presence of chemical signal molecules such as the N-acylhomoserine lactones (AHLs). Bacterial cells use AHLs to convey information about their environment, metabolism and population size. This type of chemical signalling is called ‘quorum sensing’ (QS) and is often used by pathogenic bacteria to promote acute or chronic infections through the control of motility, toxins, tissue degrading enzymes and surface-associated biofilms. Yersinia pseudotuberculosis is a human pathogen which forms biofilms on the surface of the nematode worm, Caenorhabditis elegans. This offers a simple means for investigating biofilm development on living tissues and can be used to identify genetic features of both the pathogen and the host that contribute to biofilm-associated infections. We have discovered that quorum sensing is required for Y. pseudotuberculosis biofilm formation on C. elegans through a regulatory pathway which involves the master motility regulator protein (FlhDC) reciprocally controlling bacterial swimming and the construction of a specialized secretion needle that delivers proteins into mammalian cells to disrupt their normal activities.
Collapse
|
80
|
Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev 2010; 111:117-51. [PMID: 21174435 DOI: 10.1021/cr100370n] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Matthew Thoendel
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
81
|
Microbial contamination of orthodontic buccal tubes from manufacturers. Int J Mol Sci 2010; 11:3349-56. [PMID: 20957099 PMCID: PMC2956099 DOI: 10.3390/ijms11093349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 08/19/2010] [Accepted: 09/10/2010] [Indexed: 01/29/2023] Open
Abstract
This study aimed to test the sterility of new unused orthodontic buccal tubes received from manufacturers. Four different types of buccal tubes were used straight from the manufactures package without any additional sterilizing step. Of these buccal tubes tested, three genera of bacteria, implicated as opportunistic pathogens, namely Micrococcus luteus, Staphylococcus haemolyticus and Acinetobacter calcoaceticus were recovered from these buccal tubes. Our data showing microbial contamination on buccal tubes highlights the need of sterilization before clinical use. We also suggest that manufacturers should list the sterility state of orthodontic buccal tubes on their packaging or instructions stating the need for sterilization.
Collapse
|
82
|
Świątecka D, Małgorzata I, Aleksander Ś, Henryk K, Elżbieta K. The impact of glycated pea proteins on bacterial adhesion. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
83
|
Vikram A, Jesudhasan PR, Jayaprakasha G, Pillai B, Patil BS. Grapefruit bioactive limonoids modulate E. coli O157:H7 TTSS and biofilm. Int J Food Microbiol 2010; 140:109-16. [DOI: 10.1016/j.ijfoodmicro.2010.04.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/07/2010] [Accepted: 04/10/2010] [Indexed: 11/17/2022]
|
84
|
Combining Biofilm-Controlling Compounds and Antibiotics as a Promising New Way to Control Biofilm Infections. Pharmaceuticals (Basel) 2010; 3:1374-1393. [PMID: 27713308 PMCID: PMC4033987 DOI: 10.3390/ph3051374] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/20/2010] [Accepted: 04/30/2010] [Indexed: 12/24/2022] Open
Abstract
Many bacteria grow on surfaces forming biofilms. In this structure, they are well protected and often high dosages of antibiotics cannot clear infectious biofilms. The formation and stabilization of biofilms are mediated by diffusible autoinducers (e.g. N-acyl homoserine lactones, small peptides, furanosyl borate diester). Metabolites interfering with this process have been identified in plants, animals and microbes, and synthetic analogues are known. Additionally, this seems to be not the only way to control biofilms. Enzymes capable of cleaving essential components of the biofilm matrix, e.g. polysaccharides or extracellular DNA, and thus weakening the biofilm architecture have been identified. Bacteria also have mechanisms to dissolve their biofilms and return to planktonic lifestyle. Only a few compounds responsible for the signalling of these processes are known, but they may open a completely novel line of biofilm control. All these approaches lead to the destruction of the biofilm but not the killing of the pathogens. Therefore, a combination of biofilm-destroying compounds and antibiotics to handle biofilm infections is proposed. In this article, different approaches to combine biofilm-controlling compounds and antibiotics to fight biofilm infections are discussed, as well as the balance between biofilm formation and virulence.
Collapse
|
85
|
Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med 2010; 12:e11. [PMID: 20370936 DOI: 10.1017/s1462399410001420] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa is the best described bacterium with regards to quorum sensing (QS), in vitro biofilm formation and the development of antibiotic tolerance. Biofilms composed of P. aeruginosa are thought to be the underlying cause of many chronic infections, including those in wounds and in the lungs of patients with cystic fibrosis. In this review, we provide an overview of the molecular mechanisms involved in QS, QS-enabled virulence, biofilm formation and biofilm-enabled antibiotic tolerance. We now have substantial knowledge of the multicellular behaviour of P. aeruginosa in vitro. A major task for the future is to investigate how such in vitro data correlate with the in vivo behaviour of P. aeruginosa, and how to treat chronic infections of this bacterium in patients.
Collapse
|
86
|
Adav SS, Lin JCT, Yang Z, Whiteley CG, Lee DJ, Peng XF, Zhang ZP. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotechnol Adv 2010; 28:255-80. [DOI: 10.1016/j.biotechadv.2009.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/07/2009] [Accepted: 08/08/2009] [Indexed: 10/20/2022]
|
87
|
Evaluation of enoyl-acyl carrier protein reductase inhibitors as Pseudomonas aeruginosa quorum-quenching reagents. Molecules 2010; 15:780-92. [PMID: 20335945 PMCID: PMC6257111 DOI: 10.3390/molecules15020780] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea epigallocatechin gallate (EGCG), which both function as inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent. EGCG treatment was further shown to be able to attenuate the production of virulence factors and biofilm formation of P. aeruginosa.
Collapse
|
88
|
Jeon Y, Kim S, Hwang I, Kim Y. Effects of initial inoculation density of
Paenibacillus polymyxa
on colony formation and starch‐hydrolytic activity in relation to root rot in ginseng. J Appl Microbiol 2010; 109:461-470. [DOI: 10.1111/j.1365-2672.2010.04674.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Y.H. Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- KT&G Central Research Institute, Daejeon, Korea
| | - S.G. Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - I. Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Y.H. Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| |
Collapse
|
89
|
Abstract
Bacterial autolysis has recently been identified as a key mechanism that regulates different phases of biofilm development including microcolony formation and dispersal. However such autolytic measures are limited to a subfraction of cells within the entire biofilm population. Here we speculate on the role biofilm heterogeneity plays in limiting autolysis within biofilms and further describe the molecular regulation of suicidal and fratricidal mechanisms in biofilm development of Staphylococcus aureus and Enterococcus faecalis.
Collapse
|
90
|
Alberghini S, Polone E, Corich V, Carlot M, Seno F, Trovato A, Squartini A. Consequences of relative cellular positioning on quorum sensing and bacterial cell-to-cell communication. FEMS Microbiol Lett 2009; 292:149-61. [DOI: 10.1111/j.1574-6968.2008.01478.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
91
|
Monds RD, O'Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17:73-87. [PMID: 19162483 DOI: 10.1016/j.tim.2008.11.001] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/28/2022]
Abstract
For the past ten years, the developmental model of microbial biofilm formation has served as the major conceptual framework for biofilm research; however, the paradigmatic value of this model has begun to be challenged by the research community. Here, we critically evaluate recent data to determine whether biofilm formation satisfies the criteria requisite of a developmental system. We contend that the developmental model of biofilm formation must be approached as a model in need of further validation, rather than utilized as a platform on which to base empirical research and scientific inference. With this in mind, we explore the experimental approaches required to further our understanding of the biofilm phenotype, highlighting evolutionary and ecological approaches as a natural complement to rigorous mechanistic studies into the causal basis of biofilm formation. Finally, we discuss a second model of biofilm formation that serves as a counterpoint to our discussion of the developmental model. Our hope is that this article will provide a platform for discussion about the conceptual underpinnings of biofilm formation and the impact of such frameworks on shaping the questions we ask, and the answers we uncover, during our research into these microbial communities.
Collapse
Affiliation(s)
- Russell D Monds
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
92
|
Loh KC, Cao B. Paradigm in biodegradation using Pseudomonas putida—A review of proteomics studies. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
93
|
Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal Bioanal Chem 2008; 391:1619-27. [DOI: 10.1007/s00216-008-2002-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 01/19/2023]
|
94
|
Opr86 is essential for viability and is a potential candidate for a protective antigen against biofilm formation by Pseudomonas aeruginosa. J Bacteriol 2008; 190:3969-78. [PMID: 18390657 DOI: 10.1128/jb.02004-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is one of the most refractory to therapy when it forms biofilms in the airways of cystic fibrosis patients. To date, studies regarding the production of an immunogenic and protective antigen to inhibit biofilm formation by P. aeruginosa have been superficial. The previously uncharacterized outer membrane protein (OMP) Opr86 (PA3648) of P. aeruginosa is a member of the Omp85 family, of which homologs have been found in all gram-negative bacteria. Here we verify the availability of Opr86 as a protective antigen to inhibit biofilm formation by P. aeruginosa PAO1 and several other isolates. A mutant was constructed in which Opr86 expression could be switched on or off through a tac promoter-controlled opr86 gene. The result, consistent with previous Omp85 studies, showed that Opr86 is essential for viability and plays a role in OMP assembly. Depletion of Opr86 resulted in streptococci-like morphological changes and liberation of excess membrane vesicles. A polyclonal antibody against Opr86 which showed reactivity to PAO1 cells was obtained. The antibody inhibited biofilm formation by PAO1 and the other clinical strains tested. Closer examination of early attachment revealed that cells treated with the antibody were unable to attach to the surface. Our data suggest that Opr86 is a critical OMP and a potential candidate as a protective antigen against biofilm formation by P. aeruginosa.
Collapse
|
95
|
In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun 2008; 76:1423-33. [PMID: 18212077 DOI: 10.1128/iai.01373-07] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable magnesium transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.
Collapse
|
96
|
Nautiyal CS, Srivastava S, Chauhan PS. Rhizosphere Colonization: Molecular Determinants from Plant-Microbe Coexistence Perspective. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-75575-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
97
|
Styp von Rekowski K, Hempel M, Philipp B. Quorum sensing by N-acylhomoserine lactones is not required for Aeromonas hydrophila during growth with organic particles in lake water microcosms. Arch Microbiol 2007; 189:475-82. [DOI: 10.1007/s00203-007-0338-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/30/2007] [Accepted: 11/26/2007] [Indexed: 11/24/2022]
|
98
|
Lyon P. From quorum to cooperation: lessons from bacterial sociality for evolutionary theory. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2007; 38:820-833. [PMID: 18053936 DOI: 10.1016/j.shpsc.2007.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The study of cooperation and altruism, almost since its inception, has been carried out without reference to the most numerous, diverse and very possibly most cooperative domain of life on the planet: bacteria. This is starting to change, for good reason. Far from being clonal loners, bacteria are highly social creatures capable of astonishingly complex collective behaviour that is mediated, as it is in colonial insects, by chemical communication. The article discusses recent experiments that explore different facets of current theories of the evolution and maintenance of cooperation using bacterial models. Not only do bacteria hold great promise as experimentally tractable, rapidly evolving systems for testing hypotheses, bacterial experiments have already raised interesting questions about the assumptions on which our current understanding of cooperation and altruism rests.
Collapse
Affiliation(s)
- Pamela Lyon
- University of Adelaide/Australian National University, 20 Wellesley Avenue, Evandale SA 5069, Australia.
| |
Collapse
|
99
|
Bjarnsholt T, Givskov M. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 2007; 362:1213-22. [PMID: 17360273 PMCID: PMC2435584 DOI: 10.1098/rstb.2007.2046] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Conventional antibiotics target the growth and the basal life processes of bacteria leading to growth arrest and cell death. The selective force that is inherently linked to this mode of action eventually selects out antibiotic-resistant variants. The most obvious alternative to antibiotic-mediated killing or growth inhibition would be to attenuate the bacteria with respect to pathogenicity. The realization that Pseudomonas aeruginosa, and a number of other pathogens, controls much of their virulence arsenal by means of extracellular signal molecules in a process denoted quorum sensing (QS) gave rise to a new 'drug target rush'. Recently, QS has been shown to be involved in the development of tolerance to various antimicrobial treatments and immune modulation. The regulation of virulence via QS confers a strategic advantage over host defences. Consequently, a drug capable of blocking QS is likely to increase the susceptibility of the infecting organism to host defences and its clearance from the host. The use of QS signal blockers to attenuate bacterial pathogenicity, rather than bacterial growth, is therefore highly attractive, particularly with respect to the emergence of multi-antibiotic resistant bacteria.
Collapse
|
100
|
Persson GR, Yeates J, Persson RE, Hirschi-Imfeld R, Weibel M, Kiyak HA. The Impact of a Low-Frequency Chlorhexidine Rinsing Schedule on the Subgingival Microbiota (the TEETH clinical trial). J Periodontol 2007; 78:1751-8. [PMID: 17760545 DOI: 10.1902/jop.2007.070138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Information on the efficacy of chlorhexidine (CHX) rinsing on the subgingival microbiota is limited. This study tested if intermittent CHX rinsing over 5 years had an impact on the subgingival microbiota. METHODS Subgingival plaque samples were analyzed by the checkerboard DNA-DNA hybridization method in a double-blind randomized CHX rinse study. RESULTS A total of 210 subjects were included. The mean age of the subjects was 71.7 (+/- 4.1) years, and 56.2% were women. Evidence of alveolar bone loss was found in 39% of subjects. Bacterial loads were not correlated significantly with probing depth. At year 5, subjects in the CHX rinse group with no evidence of bone loss presented with lower total bacterial counts than control subjects with no bone loss. The levels of the following bacteria were significantly lower in the CHX group: Lactobacillus acidophilus (P <0.05), Eikenella corrodens (P <0.05), Fusobacterium nucleatum sp. nucleatum (P <0.01), Treponema denticola (P <0.05), Leptotrichia buccalis (P <0.05), and Eubacterium saburreum (P <0.05). No differences in bacterial loads were found between CHX and control rinse subjects with alveolar bone loss. CONCLUSIONS Older subjects with or without periodontitis carry a large variety of bacteria associated with periodontitis. Intermittent rinsing with CHX may provide a preventive benefit in reducing levels of bacteria but only in subjects without alveolar bone loss.
Collapse
Affiliation(s)
- G Rutger Persson
- Department of Periodontology and Fixed Prosthodontics, Division of Oral Microbiology, School of Dental Medicine, University of Berne, Berne, Switzerland. rutger.persson@zmk
| | | | | | | | | | | |
Collapse
|