51
|
Huang W, Beckett BR, Tudorica A, Meyer JM, Afzal A, Chen Y, Mansoor A, Hayden JB, Doung YC, Hung AY, Holtorf ML, Aston TJ, Ryan CW. Evaluation of Soft Tissue Sarcoma Response to Preoperative Chemoradiotherapy Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging. ACTA ACUST UNITED AC 2016; 2:308-316. [PMID: 28066805 PMCID: PMC5215747 DOI: 10.18383/j.tom.2016.00202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aims to assess the utility of quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters in comparison with imaging tumor size for early prediction and evaluation of soft tissue sarcoma response to preoperative chemoradiotherapy. In total, 20 patients with intermediate- to high-grade soft tissue sarcomas received either a phase I trial regimen of sorafenib + chemoradiotherapy (n = 8) or chemoradiotherapy only (n = 12), and underwent DCE-MRI at baseline, after 2 weeks of treatment with sorafenib or after the first chemotherapy cycle, and after therapy completion. MRI tumor size in the longest diameter (LD) was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors) guidelines. Pharmacokinetic analyses of DCE-MRI data were performed using the Shutter-Speed model. After only 2 weeks of treatment with sorafenib or after 1 chemotherapy cycle, Ktrans (rate constant for plasma/interstitium contrast agent transfer) and its percent change were good early predictors of optimal versus suboptimal pathological response with univariate logistic regression C statistics values of 0.90 and 0.80, respectively, whereas RECIST LD percent change was only a fair predictor (C = 0.72). Post-therapy Ktrans, ve (extravascular and extracellular volume fraction), and kep (intravasation rate constant), not RECIST LD, were excellent (C > 0.90) markers of therapy response. Several DCE-MRI parameters before, during, and after therapy showed significant (P < .05) correlations with percent necrosis of resected tumor specimens. In conclusion, absolute values and percent changes of quantitative DCE-MRI parameters provide better early prediction and evaluation of the pathological response of soft tissue sarcoma to preoperative chemoradiotherapy than the conventional measurement of imaging tumor size change.
Collapse
Affiliation(s)
- Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Brooke R Beckett
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Alina Tudorica
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Janelle M Meyer
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Aneela Afzal
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Yiyi Chen
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon; Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, Oregon
| | - Atiya Mansoor
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - James B Hayden
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, Oregon
| | - Yee-Cheen Doung
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, Oregon
| | - Arthur Y Hung
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon
| | - Megan L Holtorf
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Torrie J Aston
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Christopher W Ryan
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
52
|
Sobhani F, Xu C, Murano E, Pan L, Rastegar N, Kamel IR. Hypo-Vascular Liver Metastases Treated with Transarterial chemoembolization: Assessment of Early Response by Volumetric Contrast-Enhanced and Diffusion-Weighted Magnetic Resonance Imaging. Transl Oncol 2016; 9:287-94. [PMID: 27567951 PMCID: PMC5006817 DOI: 10.1016/j.tranon.2016.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE: To evaluate the value of anatomic and volumetric functional magnetic resonance imaging (MRI) in early assessment of response to trans-arterial chemoembolization (TACE) in hypovascular liver metastases. METHODS: This retrospective study included 52 metastatic lesions (42 targeted and 10 non-targeted) in 17 patients who underwent MRI before and early after TACE. Two reviewers reported response by anatomic criteria (Response Evaluation Criteria in Solid Tumor [RECIST], modified RECIST [mRECIST], and European Association for the Study of Liver Disease [EASL]) and functional criteria (volumetric apparent diffusion coefficient and contrast enhancement). Treatment endpoint was RECIST at 6 months. A 2-sample paired t test was used to compare the mean changes after intra-arterial therapy. P < .05 was considered statistically significant. RESULTS: Reduction in mRECIST and EASL at 1 month was significant in the whole cohort as well as in responders by RECIST at 6 months, and the changes fulfilled partial response criteria for both metrics in responders. Responders also had significant changes in volumetric apparent diffusion coefficient (P = .01 and P = .03) and contrast enhancement (P < .0001 and P < .0001) at 1 month for both readers, respectively. CONCLUSION: At 1 month post treatment, responders did not fulfill RECIST criteria but fulfilled mRECIST and EASL criteria. In addition, volumetric contrast-enhanced and diffusion-weighted MRI may be helpful in evaluating early treatment response after TACE in hypovascular liver metastases in patients who have failed to respond to initial chemotherapy.
Collapse
Affiliation(s)
- Fatemeh Sobhani
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Chunmiao Xu
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Radiology, The affiliated tumor hospital of Zhengzhou University, Zhengzhou, Henan, Republic of China
| | - Emi Murano
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Li Pan
- Siemens Healthcare, Baltimore, MD, USA
| | - Neda Rastegar
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ihab R Kamel
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
53
|
Maijer KI, van der Leij C, de Hair MJH, Tas SW, Maas M, Gerlag DM, Tak PP, Lavini C. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Pharmacokinetic Modeling: Initial Experience in Patients With Early Arthritis. Arthritis Rheumatol 2016; 68:587-96. [PMID: 26473331 DOI: 10.1002/art.39469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using pharmacokinetic modeling (PKM) provides quantitative measures that mirror microvessel integrity and can be used as an objective marker of the level of synovial inflammation. The aim of this study was to investigate the PKM parameters K(trans) , kep , and ve in a prospective cohort of disease-modifying antirheumatic drug (DMARD)-naive patients with early arthritis, and to validate the results by assessing their correlation with the number of synovial endothelial cells (ECs). METHODS Forty-seven patients with early arthritis (arthritis duration <1 year, DMARD naive; comprising 14 patients with rheumatoid arthritis, 22 with unclassified arthritis, 6 with spondyloarthritis [SpA], and 5 with other arthritides) were included. At baseline, DCE-MRI was performed on an inflamed knee joint of each patient. These images were used to calculate the K(trans) (volume transfer constant between the plasma and extracellular extravascular space [EES]), the kep (transfer constant between the EES and plasma), and the ve (fractional volume of the EES). Second, markers of disease activity were collected. Finally, vascularity was evaluated by immunohistochemical analysis of synovial tissue samples obtained from the inflamed knee joints, using antibodies to detect von Willebrand factor (vWF), a marker of ECs. RESULTS The 3 PKM parameters differed significantly between diagnostic groups at baseline, with the highest K(trans) value being observed in patients with SpA (median 0.050/minute, interquartile range [IQR] 0.041- 0.069). Furthermore, the K(trans) , kep , and ve values correlated significantly with markers of disease activity. Finally, the PKM parameters K(trans) and kep , but not ve , correlated significantly with synovial expression of vWF (r = 0.647, P = 0.004 for K(trans) ; r = 0.614, P = 0.007 for kep ; r = 0.398, P = 0.102 for ve ). CONCLUSION These results suggest that the K(trans) , kep , and ve can be used to detect synovial inflammation in patients with early arthritis, and these PKM parameters may be helpful in differential diagnosis. This approach may also be useful in translational research analyzing tissue microcirculation and angiogenesis.
Collapse
Affiliation(s)
- Karen I Maijer
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Maria J H de Hair
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander W Tas
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Maas
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniëlle M Gerlag
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul P Tak
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cristina Lavini
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
54
|
Chen YL, Chen F, Zhang XM, Chen TW. Magnetic resonance imaging for quantitative staging and evaluation of chemoradiotherapeutic effect in esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:1469-1476. [DOI: 10.11569/wcjd.v24.i10.1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Esophageal carcinoma is a common digestive malignant tumor. Evaluation of the stage and response to chemoradiotherapy of the carcinoma is very important for the treatment decision making and adjustment of therapeutic protocol. To date, a variety of imaging techniques have been used for staging and monitoring response to therapy, but most of the procedures are invasive or of radiation exposure. Moreover, most of the techniques evaluating esophageal cancer are based on morphologic changes. As a non-invasive and non-ionising examination technique, magnetic resonance imaging can quantitatively evaluate this cancer. Nowadays magnetic resonance quantitative technique has progressed greatly in staging and monitoring response to therapy of esophageal carcinoma. This paper focuses on the quantitative evaluation of stage and chemoradiotherapeutic effect in esophageal carcinoma using magnetic resonance imaging.
Collapse
|
55
|
Reporter nanoparticle that monitors its anticancer efficacy in real time. Proc Natl Acad Sci U S A 2016; 113:E2104-13. [PMID: 27036008 DOI: 10.1073/pnas.1603455113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time. The reporter nanoparticles are engineered from a novel two-staged stimuli-responsive polymeric material with an optimal ratio of an enzyme-cleavable drug or immunotherapy (effector elements) and a drug function-activatable reporter element. The spatiotemporally constrained delivery of the effector and the reporter elements in a single nanoparticle produces maximum signal enhancement due to the availability of the reporter element in the same cell as the drug, thereby effectively capturing the temporal apoptosis process. Using chemotherapy-sensitive and chemotherapy-resistant tumors in vivo, we show that the reporter nanoparticles can provide a real-time noninvasive readout of tumor response to chemotherapy. The reporter nanoparticle can also monitor the efficacy of immune checkpoint inhibition in melanoma. The self-reporting capability, for the first time to our knowledge, captures an anticancer nanoparticle in action in vivo.
Collapse
|
56
|
Tixier F, Vriens D, Cheze-Le Rest C, Hatt M, Disselhorst JA, Oyen WJG, de Geus-Oei LF, Visser EP, Visvikis D. Comparison of Tumor Uptake Heterogeneity Characterization Between Static and Parametric 18F-FDG PET Images in Non-Small Cell Lung Cancer. J Nucl Med 2016; 57:1033-9. [PMID: 26966161 DOI: 10.2967/jnumed.115.166918] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED (18)F-FDG PET is well established in the field of oncology for diagnosis and staging purposes and is increasingly being used to assess therapeutic response and prognosis. Many quantitative indices can be used to characterize tumors on (18)F-FDG PET images, such as SUVmax, metabolically active tumor volume (MATV), total lesion glycolysis, and, more recently, the proposed intratumor uptake heterogeneity features. Although most PET data considered within this context concern the analysis of activity distribution using images obtained from a single static acquisition, parametric images generated from dynamic acquisitions and reflecting radiotracer kinetics may provide additional information. The purpose of this study was to quantify differences between volumetry, uptake, and heterogeneity features extracted from static and parametric PET images of non-small cell lung carcinoma (NSCLC) in order to provide insight on the potential added value of parametric images. METHODS Dynamic (18)F-FDG PET/CT was performed on 20 therapy-naive NSCLC patients for whom primary surgical resection was planned. Both static and parametric PET images were analyzed, with quantitative parameters (MATV, SUVmax, SUVmean, heterogeneity) being extracted from the segmented tumors. Differences were investigated using Spearman rank correlation and Bland-Altman analysis. RESULTS MATV was slightly smaller on static images (-2% ± 7%), but the difference was not significant (P = 0.14). All derived parameters, including those characterizing tumor functional heterogeneity, correlated strongly between static and parametric images (r = 0.70-0.98, P ≤ 0.0006), exhibiting differences of less than ±25%. CONCLUSION In NSCLC primary tumors, parametric and static baseline (18)F-FDG PET images provided strongly correlated quantitative features for both standard (MATV, SUVmax, SUVmean) and heterogeneity quantification. Consequently, heterogeneity quantification on parametric images does not seem to provide significant complementary information compared with static SUV images.
Collapse
Affiliation(s)
- Florent Tixier
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands DACTIM, Medical School, University of Poitiers, Poitiers, France
| | - Dennis Vriens
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Catherine Cheze-Le Rest
- DACTIM, Medical School, University of Poitiers, Poitiers, France Nuclear Medicine, CHU Poitiers, Poitiers, France
| | - Mathieu Hatt
- INSERM, UMR 1101, LaTIM, CHU Morvan, Brest, France
| | - Jonathan A Disselhorst
- Department of Preclinical Imaging, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany; and
| | - Wim J G Oyen
- Institute of Cancer Research, Royal Marsden NHS Trust, London, United Kingdom
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Eric P Visser
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
57
|
Mehrtash A, Gupta SN, Shanbhag D, Miller JV, Kapur T, Fennessy FM, Kikinis R, Fedorov A. Bolus arrival time and its effect on tissue characterization with dynamic contrast-enhanced magnetic resonance imaging. J Med Imaging (Bellingham) 2016; 3:014503. [PMID: 26989759 DOI: 10.1117/1.jmi.3.1.014503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/21/2016] [Indexed: 11/14/2022] Open
Abstract
Matching the bolus arrival time (BAT) of the arterial input function (AIF) and tissue residue function (TRF) is necessary for accurate pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We investigated the sensitivity of volume transfer constant ([Formula: see text]) and extravascular extracellular volume fraction ([Formula: see text]) to BAT and compared the results of four automatic BAT measurement methods in characterization of prostate and breast cancers. Variation in delay between AIF and TRF resulted in a monotonous change trend of [Formula: see text] and [Formula: see text] values. The results of automatic BAT estimators for clinical data were all comparable except for one BAT estimation method. Our results indicate that inaccuracies in BAT measurement can lead to variability among DCE-MRI PK model parameters, diminish the quality of model fit, and produce fewer valid voxels in a region of interest. Although the selection of the BAT method did not affect the direction of change in the treatment assessment cohort, we suggest that BAT measurement methods must be used consistently in the course of longitudinal studies to control measurement variability.
Collapse
Affiliation(s)
- Alireza Mehrtash
- Brigham and Women's Hospital, Department of Radiology, Surgical Planning Laboratory, ASBI, L1-050, 75 Francis Street, Boston, Massachusetts 02115, United States; Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sandeep N Gupta
- General Electric Global Research , Niskayuna, New York 12309, United States
| | - Dattesh Shanbhag
- General Electric Global Research , Niskayuna, New York 12309, United States
| | - James V Miller
- General Electric Global Research , Niskayuna, New York 12309, United States
| | - Tina Kapur
- Brigham and Women's Hospital, Department of Radiology, Surgical Planning Laboratory, ASBI, L1-050, 75 Francis Street, Boston, Massachusetts 02115, United States; Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Fiona M Fennessy
- Brigham and Women's Hospital, Department of Radiology, Surgical Planning Laboratory, ASBI, L1-050, 75 Francis Street, Boston, Massachusetts 02115, United States; Harvard Medical School, Boston, Massachusetts 02115, United States; Dana Farber Cancer Institute, Department of Radiology, Boston, Massachusetts 02115, United States
| | - Ron Kikinis
- Brigham and Women's Hospital, Department of Radiology, Surgical Planning Laboratory, ASBI, L1-050, 75 Francis Street, Boston, Massachusetts 02115, United States; Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Andriy Fedorov
- Brigham and Women's Hospital, Department of Radiology, Surgical Planning Laboratory, ASBI, L1-050, 75 Francis Street, Boston, Massachusetts 02115, United States; Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
58
|
Zhu L, Zhu L, Shi H, Wang H, Yan J, Liu B, Chen W, He J, Zhou Z, Yang X, Liu T. Evaluating early response of cervical cancer under concurrent chemo-radiotherapy by intravoxel incoherent motion MR imaging. BMC Cancer 2016; 16:79. [PMID: 26860361 PMCID: PMC4748551 DOI: 10.1186/s12885-016-2116-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/03/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) MR imaging has been applied in researches of various diseases, however its potential in cervical cancer patients has not been fully explored. The purpose of this study was to investigate the feasibility of IVIM MR imaging to monitor early treatment response in patients receiving concurrent chemo-radiotherapy (CCRT) for advanced cervical cancers. METHODS Twenty-one patients receiving CCRT for advanced cervical cancer were prospectively enrolled. MR examinations including IVIM imaging (with 14 b values, 0 ~ 1000 s/mm(2)) were performed at 4 time points: 1-week prior to, 2-week and 4-week during, as well as immediately post CCRT (within 1 week). The apparent diffusion coefficient (ADC) maps were derived from the mono-exponential model, while the diffusion coefficient (D), perfusion fraction (f) and pseudo-diffusion coefficient (D*) maps were calculated from the bi-exponential model. Dynamic changes of ADC, D, f and D* in cervical cancers were investigated as early surrogate markers for treatment response. RESULTS ADC and D values increased throughout the CCRT course. Both f and D* increased in the first 2 to 3 weeks of CCRT and started to decrease around 4 weeks of CCRT. Significant increase of f value was observed from prior to CCRT (f 1 = 0.12 ± 0.52) to two-week during CCRT (f2 = 0.20 ± 0.90, p = 0.002). CONCLUSIONS IVIM MR imaging has the potential in monitoring early tumor response induced by CCRT in patients with cervical cancers.
Collapse
Affiliation(s)
- Li Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Hua Shi
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Huanhuan Wang
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jing Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | | | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
59
|
Tudorica A, Oh KY, Chui SYC, Roy N, Troxell ML, Naik A, Kemmer KA, Chen Y, Holtorf ML, Afzal A, Springer CS, Li X, Huang W. Early Prediction and Evaluation of Breast Cancer Response to Neoadjuvant Chemotherapy Using Quantitative DCE-MRI. Transl Oncol 2016; 9:8-17. [PMID: 26947876 PMCID: PMC4800060 DOI: 10.1016/j.tranon.2015.11.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 02/03/2023] Open
Abstract
The purpose is to compare quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) metrics with imaging tumor size for early prediction of breast cancer response to neoadjuvant chemotherapy (NACT) and evaluation of residual cancer burden (RCB). Twenty-eight patients with 29 primary breast tumors underwent DCE-MRI exams before, after one cycle of, at midpoint of, and after NACT. MRI tumor size in the longest diameter (LD) was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors) guidelines. Pharmacokinetic analyses of DCE-MRI data were performed with the standard Tofts and Shutter-Speed models (TM and SSM). After one NACT cycle the percent changes of DCE-MRI parameters Ktrans (contrast agent plasma/interstitium transfer rate constant), ve (extravascular and extracellular volume fraction), kep (intravasation rate constant), and SSM-unique τi (mean intracellular water lifetime) are good to excellent early predictors of pathologic complete response (pCR) vs. non-pCR, with univariate logistic regression C statistics value in the range of 0.804 to 0.967. ve values after one cycle and at NACT midpoint are also good predictors of response, with C ranging 0.845 to 0.897. However, RECIST LD changes are poor predictors with C = 0.609 and 0.673, respectively. Post-NACT Ktrans, τi, and RECIST LD show statistically significant (P < .05) correlations with RCB. The performances of TM and SSM analyses for early prediction of response and RCB evaluation are comparable. In conclusion, quantitative DCE-MRI parameters are superior to imaging tumor size for early prediction of therapy response. Both TM and SSM analyses are effective for therapy response evaluation. However, the τi parameter derived only with SSM analysis allows the unique opportunity to potentially quantify therapy-induced changes in tumor energetic metabolism.
Collapse
Affiliation(s)
- Alina Tudorica
- Diagnostic Radiology, Oregon Health & Science University, Portland, OR, USA
| | - Karen Y Oh
- Diagnostic Radiology, Oregon Health & Science University, Portland, OR, USA
| | - Stephen Y-C Chui
- Medical Oncology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nicole Roy
- Diagnostic Radiology, Oregon Health & Science University, Portland, OR, USA
| | - Megan L Troxell
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Arpana Naik
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Surgical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Kathleen A Kemmer
- Medical Oncology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yiyi Chen
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Megan L Holtorf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aneela Afzal
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles S Springer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Wei Huang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
60
|
ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo. Proc Natl Acad Sci U S A 2016; 113:E1026-33. [PMID: 26787852 DOI: 10.1073/pnas.1518836113] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [(64)Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [(64)Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [(18)F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation.
Collapse
|
61
|
Nowak J, Malzahn U, Baur ADJ, Reichelt U, Franiel T, Hamm B, Durmus T. The value of ADC, T2 signal intensity, and a combination of both parameters to assess Gleason score and primary Gleason grades in patients with known prostate cancer. Acta Radiol 2016; 57:107-14. [PMID: 25505225 DOI: 10.1177/0284185114561915] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 11/08/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND The ability to non-invasively analyze tumor aggressiveness is an important predictor for individual treatment stratification and patient outcome in prostate cancer (PCA). PURPOSE To evaluate: (i) whether apparent diffusion coefficient (ADC), the T2 signal intensity (SI), and a combination of both parameters allow for an improved discrimination of Gleason Score (GS) ≥7 (intermediate and high risk) and GS <7 (low risk) in PCA; and (ii) whether ADC may distinguish between 3 + 4 and 4 + 3 PCA (primary Gleason grades [pGG]). MATERIAL AND METHODS Prostatectomy specimens of 66 patients (mean age, 63 ± 5.6 years; 104 PCA foci) with a preceding multiparametric 1.5 T endorectal coil magnetic resonance imaging (MRI) were included. ADC (b values = 0, 100, 400, 800 s/mm(2)), standardized T2 (T2s), and the ADC/T2s ratio were tested for correlation with GS applying multivariate analysis. ADC cutoff values were calculated for prediction of GS and pGG, and logarithm of the odds (LOGIT) was used to express the probability for GS and pGG. Diagnostic accuracy was assessed by ROC analysis. RESULTS We found an almost linear negative relationship of ADC for GS ≥7 (P = 0.002). The effect of ADC for GS ≥7 (adjusted odds ratio = 0.995) was almost identical for peripheral and transition zone PCA (P = 0.013 and P < 0.001, respectively). ADC showed an AUC of 78.9% for discrimination between GS <7 and GS ≥7. An ADC cutoff of <1.005 × 10(-3 )mm(2)/s indicated a GS ≥7 (90.5% sensitivity, 62.5% specificity). Within the group of GS = 7 PCA, an ADC > 0.762 × 10(-3 )mm(2)/s indicated a pGG of 3 (AUC = 69.6%). CONCLUSION T2s and the ADC/T2s ratio do not provide additional information regarding prediction of GS. ADC values have a good discriminatory power to distinguish tumors with GS ≥7 from GS <7 and to predict pGG in GS = 7 PCA.
Collapse
Affiliation(s)
- Johannes Nowak
- Department of Radiology, Universitätsklinikum Würzburg, Germany
- Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
| | - Uwe Malzahn
- Institute for Clinical Epidemiology and Biometry, Universität Würzburg, Germany
| | - Alexander DJ Baur
- Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
| | - Uta Reichelt
- Institute for Pathology, Vivantes Klinikum am Urban Dieffenbachstrasse, Berlin, Germany
| | - Tobias Franiel
- Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
- Department of Radiology, Universitätsklinikum Jena, Germany
| | - Bernd Hamm
- Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
| | - Tahir Durmus
- Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
| |
Collapse
|
62
|
Liu Y, deSouza NM, Shankar LK, Kauczor HU, Trattnig S, Collette S, Chiti A. A risk management approach for imaging biomarker-driven clinical trials in oncology. Lancet Oncol 2015; 16:e622-8. [PMID: 26678215 DOI: 10.1016/s1470-2045(15)00164-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 11/30/2022]
Abstract
Imaging has steadily evolved in clinical cancer research as a result of improved conventional imaging methods and the innovation of new functional and molecular imaging techniques. Despite this evolution, the design and data quality derived from imaging within clinical trials are not ideal and gaps exist with paucity of optimised methods, constraints of trial operational support, and scarce resources. Difficulties associated with integrating imaging biomarkers into trials have been neglected compared with inclusion of tissue and blood biomarkers, largely because of inherent challenges in the complexity of imaging technologies, safety issues related to new imaging contrast media, standardisation of image acquisition across multivendor platforms, and various postprocessing options available with advanced software. Ignorance of these pitfalls directly affects the quality of the imaging read-out, leading to trial failure, particularly when imaging is a primary endpoint. Therefore, we propose a practical risk-based framework and recommendations for trials driven by imaging biomarkers, which allow identification of risks at trial initiation to better allocate resources and prioritise key tasks.
Collapse
Affiliation(s)
- Yan Liu
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium.
| | - Nandita M deSouza
- Cancer Research UK Cancer Imaging Centre, MRI Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Lalitha K Shankar
- Clinical Trial Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Siegfried Trattnig
- The Center of Excellence for High Field MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Sandra Collette
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Arturo Chiti
- Humanitas University and Nuclear Medicine Department, Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
63
|
Multiparametric fully-integrated 18-FDG PET/MRI of advanced gastric cancer for prediction of chemotherapy response: a preliminary study. Eur Radiol 2015; 26:2771-8. [DOI: 10.1007/s00330-015-4105-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/20/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
|
64
|
Yuan Z, Zhang J, Yang H, Ye XD, Xu LC, Li WT. Diffusion-Weighted MR Imaging of Hepatocellular Carcinoma: Current Value in Clinical Evaluation of Tumor Response to Locoregional Treatment. J Vasc Interv Radiol 2015; 27:20-30; quiz 31. [PMID: 26621785 DOI: 10.1016/j.jvir.2015.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
The established size-based image biomarkers for tumor burden measurement continue to be applied to solid tumors, as size measurement can easily be used in clinical practice. However, in the setting of novel targeted therapies and liver-directed locoregional treatments for hepatocellular carcinoma (HCC), simple tumor anatomic changes can be less informative and usually appear later than biologic changes. Functional magnetic resonance (MR) imaging has the potential to be a promising technique for assessment of HCC response to therapy. Diffusion-weighted MR imaging is now widely used as a standard imaging modality to evaluate the liver. This review discusses the current clinical value of diffusion-weighted MR imaging in the evaluation of tumor response after nonsurgical locoregional treatment of HCC.
Collapse
Affiliation(s)
- Zheng Yuan
- Department of Radiology, Shanghai 85 Hospital; Department of Interventional Radiology, Shanghai Cancer Hospital, Fudan University.
| | - Jian Zhang
- Department of Nuclear Medicine, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Huan Yang
- Department of Interventional Radiology, Shanghai Cancer Hospital, Fudan University
| | - Xiao-Dan Ye
- Department of Radiology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Li-Chao Xu
- Department of Interventional Radiology, Shanghai Cancer Hospital, Fudan University
| | - Wen-Tao Li
- Department of Interventional Radiology, Shanghai Cancer Hospital, Fudan University
| |
Collapse
|
65
|
Seelam SR, Lee JY, Lee YS, Hong MK, Kim YJ, Banka VK, Lee DS, Chung JK, Jeong JM. Development of (68)Ga-labeled multivalent nitroimidazole derivatives for hypoxia imaging. Bioorg Med Chem 2015; 23:7743-50. [PMID: 26643217 DOI: 10.1016/j.bmc.2015.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022]
Abstract
Radiolabeled nitroimidazole (NI) derivatives have been extensively studied for imaging hypoxia. To increase the hypoxic tissue uptake, we developed (68)Ga-labeled agents based on mono-, bis-, and trisnitroimidazole conjugates with the chelating agent 1,4,7-triazacyclononane-1,4,7-tris[methyl(2-carboxyethyl)phosphinic acid] (TRAP). All the three agents showed high radiolabeling yields (>96%) and were found to be stable up to 4h in prepared medium at room temperature and in human serum at 37°C. The trivalent agent showed a significant increase in hypoxic to normoxic uptake ratio (p <0.005) according to the in vitro cell uptake experiments. Immunohistochemical analysis confirmed the presence of hypoxia in xenografted CT26 tumor tissue. The trivalent derivative ((68)Ga-3: 0.17±0.04, (68)Ga-4: 0.33±0.04, (68)Ga-5: 0.45±0.09, and (68)Ga-6: 0.47±0.05% ID/g) showed the highest uptake by tumor cells according to the biodistribution studies in CT-26 xenografted mice. All the nitroimidazole derivatives showed significantly higher uptake by tumor cells than the control agent (p <0.05) at 1h post-injection. The trivalent derivative ((68)Ga-3: 0.10±0.06; (68)Ga-4: 0.20±0.06; (68)Ga-5: 0.33±0.08; (68)Ga-6: 0.59±0.09) also showed the highest standard uptake value for tumor cells at 1h post-injection in animal PET studies using CT-26 xenografted mice. In conclusion, we successfully synthesized multivalent (68)Ga-labeled NI derivatives for imaging hypoxia. Among them, the trivalent agent showed the highest tumor uptake in biodistribution and animal PET studies.
Collapse
Affiliation(s)
- Sudhakara Reddy Seelam
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Youn Lee
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mi Kyung Hong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Kim
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Vinay Kumar Banka
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
66
|
Xu QG, Xian JF. Role of quantitative magnetic resonance imaging parameters in the evaluation of treatment response in malignant tumors. Chin Med J (Engl) 2015; 128:1128-33. [PMID: 25881611 PMCID: PMC4832957 DOI: 10.4103/0366-6999.155127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To elaborate the role of quantitative magnetic resonance imaging (MRI) parameters in the evaluation of treatment response in malignant tumors. DATA SOURCES Data cited in this review were obtained mainly from PubMed in English from 1999 to 2014, with keywords "dynamic contrast-enhanced (DCE)-MRI," "diffusion-weighted imaging (DWI)," "microcirculation," "apparent diffusion coefficient (ADC)," "treatment response" and "oncology." STUDY SELECTION Articles regarding principles of DCE-MRI, principles of DWI, clinical applications as well as opportunity and aspiration were identified, retrieved and reviewed. RESULTS A significant correlation between ADC values and treatment response was reported in most DWI studies. Most quantitative DCE-MRI studies showed a significant correlation between K trans values and treatment response. However, in different tumors and studies, both high and low pretreatment ADC or K trans values were found to be associated with response rate. Both DCE-MRI and DWI demonstrated changes in their parameters hours to days after treatment, showing a decrease in K trans or an increase in ADC associated with response in most cases. CONCLUSIONS Combinations of quantitative MRI play an important role in the evaluation of treatment response of malignant tumors and hold promise for use as a cancer treatment response biomarker. However, validation is hampered by the lack of reproducibility and standardization. MRI acquisition protocols and quantitative image analysis approaches should be properly addressed prior to further testing the clinical use of quantitative MRI parameters in the assessment of treatments.
Collapse
Affiliation(s)
| | - Jun-Fang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
67
|
Role of dynamic contrast enhanced MR perfusion in differentiation between benign and malignant tumors. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2015. [DOI: 10.1016/j.ejrnm.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
68
|
McGee KP, Hu Y, Tryggestad E, Brinkmann D, Witte B, Welker K, Panda A, Haddock M, Bernstein MA. MRI in radiation oncology: Underserved needs. Magn Reson Med 2015; 75:11-4. [PMID: 26173404 DOI: 10.1002/mrm.25826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yanle Hu
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Erik Tryggestad
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Debra Brinkmann
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bob Witte
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kirk Welker
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anshuman Panda
- Department of Radiology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Michael Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
69
|
Yoon RG, Kim HS, Kim DY, Hong GS, Kim SJ. Apparent diffusion coefficient parametric response mapping MRI for follow-up of glioblastoma. Eur Radiol 2015; 26:1037-47. [PMID: 26159871 DOI: 10.1007/s00330-015-3896-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To determine the diagnostic superiority of parametric response mapping of apparent diffusion coefficient (ADCPR) for predicting glioblastoma treatment response, compared to single time point measurement. METHODS Fifty post-treatment glioblastoma patients were enrolled. ADCPR was calculated from serial apparent diffusion coefficient (ADC) maps acquired before and at the time of first detection of an enlarged contrast-enhancing lesion on voxel-by-voxel basis. The percentage-decrease in ADCPR and tenth percentile histogram cutoff value of ADC (ADC10) were compared at subsequent 3-month and 1-year follow-ups. RESULTS The percentage-decrease in ADCPR was significantly higher in the progression group (mean = 33.2-38.3 %) than in the stable-response group (mean = 9.7 %) at 3 months follow-up (corrected p < 0.001 for both readers). ADCPR significantly improved area under the receiver operating characteristic curve from 0.67 to 0.88 (corrected p = 0.037) and from 0.70 to 0.92 (corrected p = 0.020) for both readers, respectively, compared to ADC10 at 3-month follow-up, but did not significantly improve at 1-year follow-up. The inter-reader agreement was higher for ADCPR than ADC10 (intraclass correlation coefficient, 0.93 versus 0.86). CONCLUSION Voxel-based ADCPR appears to be a superior imaging biomarker than ADC, particularly for predicting early tumour progression in patients with glioblastoma. KEY POINTS • Treatment response pattern of glioblastoma was evaluated using voxel-based ADCPR and ADC10. • Voxel-based ADCPR was more accurate in predicting treatment response pattern than ADC10. • Inter-reader agreement was higher in ADCPR calculation than in ADC10 calculation. • Voxel-based ADCPR can be a predictor of early treatment response pattern for glioblastoma.
Collapse
Affiliation(s)
- Ra Gyoung Yoon
- Department of Radiology, Catholic Kwandong University International St. Mary's Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100 beon-gil, Seo-gu, Incheon, 404-834, Republic of Korea.
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea.
| | - Dae Yoon Kim
- Department of Radiology, Bundang Jesaeng Hospital, 20, Seohyeon-ro 180 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-774, Republic of Korea
| | - Gil Sun Hong
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| | - Sang Joon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| |
Collapse
|
70
|
Ree AH, Redalen KR. Personalized radiotherapy: concepts, biomarkers and trial design. Br J Radiol 2015; 88:20150009. [PMID: 25989697 DOI: 10.1259/bjr.20150009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice.
Collapse
Affiliation(s)
- A H Ree
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K R Redalen
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
71
|
Measuring Treatment Response to Systemic Therapy and Predicting Outcome in Biliary Tract Cancer: Comparing Tumor Size, Volume, Density, and Metabolism. AJR Am J Roentgenol 2015; 204:776-81. [DOI: 10.2214/ajr.14.13223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
72
|
Hameeduddin A, Sahdev A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging 2015; 15:3. [PMID: 25889065 PMCID: PMC4432943 DOI: 10.1186/s40644-015-0037-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 01/22/2015] [Indexed: 12/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) has an established role in imaging pelvic gynaecological malignancies. It is routinely used in staging endometrial and cervical cancer, characterizing adnexal masses, selecting optimal treatment, monitoring treatment and detecting recurrent disease. MRI has also been shown to have an excellent performance and an evolving role in surveillance of patients after chemoradiotherapy in cervical cancer, post-trachelectomy, detecting early recurrence and planning exenterative surgery in isolated central recurrences in both cervical and endometrial cancer and in young patients on surveillance for medically managed endometrial cancer. However, conventional MRI still has limitations when the morphological appearance of early recurrent or residual disease overlaps with normal pelvic anatomy or treatment effects in the pelvis. In particular, after chemoradiotherapy for cervical cancer, distinguishing between radiotherapy changes and residual or early recurrent disease within the cervix or the vaginal vault can be challenging on conventional MRI alone. Therefore, there is an emerging need for functional imaging to overcome these limitations. The purpose of this paper is to discuss the emerging functional MRI techniques and their applications in predicting treatment response, detecting residual disease and early recurrent disease to optimize the treatment options available using diffusion-weighted imaging and dynamic contrast enhancement particularly in cervical and endometrial cancer.
Collapse
Affiliation(s)
- Ayshea Hameeduddin
- Imaging Department, St. Bartholomew's Hospital, Barts Health, West Smithfield, London, UK.
| | - Anju Sahdev
- Imaging Department, St. Bartholomew's Hospital, Barts Health, West Smithfield, London, UK.
| |
Collapse
|
73
|
Wang J, Wong KK, Piert M, Stanton P, Frey KA, Kong FM(S. Metabolic response assessment with 18F-FDG PET/CT: inter-method comparison and prognostic significance for patients with non-small cell lung cancer. ACTA ACUST UNITED AC 2015; 4:249-256. [PMID: 26366253 PMCID: PMC4559091 DOI: 10.1007/s13566-015-0184-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/29/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to (1) compare the agreement of two evaluation methods of metabolic response in patients with non-small cell lung cancer (NSCLC) and determine their prognostic value and (2) explore an optimal cutoff of metabolic reduction to distinguish a more favorable subset of responders. METHODS This is a secondary analysis of prospective studies. Enrolled patients underwent 18F-PET/CT within 2 weeks before, during, and months after radiotherapy (post-RT). Metabolic response was assessed using both Peter MacCallum (PM) method of qualitative visual assessment and University of Michigan (UM) method of semiquantitative measurement. The agreement between two methods determined response, and their prediction of outcome was analyzed. RESULTS Forty-four patients with median follow-up of 25.2 months were analyzed. A moderate agreement was observed between PM- and UM-based response assessment (Kappa coefficient = 0.434), unveiling a significant difference in CMR rate (p = 0.001). Categorical responses derived from either method were significantly predictive of overall survival (OS) and progression-free survival (PFS) (p < 0.0001). Numerical percentage decrease of FDG uptake also showed significant correlations with survival, presenting a hazard ratio of 0.97 for both OS and PFS. A 75 % of SUV decrease was found to be the optimal cutoff to predict OS and 2-year progression. CONCLUSIONS There was a modest discrepancy in metabolic response rates between PM and UM criteria, though both could offer predictive classification for survival. The percentage decrease provides an ordinal value that correlates with prolonged survival, recommending 75 % as the optimal threshold at identifying better responders.
Collapse
Affiliation(s)
- Jingbo Wang
- />Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- />Department of Radiation Oncology, Cancer Hospital & Institute, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, People’s Republic of China
| | - Ka Kit Wong
- />Department of Nuclear Medicine, University of Michigan, Ann Arbor, MI USA
| | - Morand Piert
- />Department of Nuclear Medicine, University of Michigan, Ann Arbor, MI USA
| | - Paul Stanton
- />Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Kirk A Frey
- />Department of Nuclear Medicine, University of Michigan, Ann Arbor, MI USA
| | - Feng-Ming (Spring) Kong
- />Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- />Department of Radiation Oncology, GRU Cancer Center,Medical College of Georgia, Georgia Regents University, 821 St. Sebastian Way, HK 112, Augusta, GA 30912 USA
| |
Collapse
|
74
|
Guimaraes MD, Schuch A, Hochhegger B, Gross JL, Chojniak R, Marchiori E. Functional magnetic resonance imaging in oncology: state of the art. Radiol Bras 2015; 47:101-11. [PMID: 25741058 PMCID: PMC4337156 DOI: 10.1590/s0100-39842014000200013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022] Open
Abstract
In the investigation of tumors with conventional magnetic resonance imaging, both
quantitative characteristics, such as size, edema, necrosis, and presence of
metastases, and qualitative characteristics, such as contrast enhancement degree, are
taken into consideration. However, changes in cell metabolism and tissue physiology
which precede morphological changes cannot be detected by the conventional technique.
The development of new magnetic resonance imaging techniques has enabled the
functional assessment of the structures in order to obtain information on the
different physiological processes of the tumor microenvironment, such as oxygenation
levels, cellularity and vascularity. The detailed morphological study in association
with the new functional imaging techniques allows for an appropriate approach to
cancer patients, including the phases of diagnosis, staging, response evaluation and
follow-up, with a positive impact on their quality of life and survival rate.
Collapse
Affiliation(s)
- Marcos Duarte Guimaraes
- MSc and PhD Fellow, MD, Radiologist, Specialist in Chest and Oncological Imaging, Hospital Heliópolis and A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Alice Schuch
- MD, Radiologist, Full Member of Colégio Brasileiro de Radiologia e Diagnóstico por Imagem (CBR), Specialist in Oncological Imaging, MD, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Bruno Hochhegger
- Post-PhD, MD, Associate Professor, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Jefferson Luiz Gross
- PhD, MD, Oncological Surgeon, Head of Thoracic Surgery Department, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Rubens Chojniak
- PhD, Head of Imaging Department, A.C.Camargo Cancer Center, São Paulo, SP. Brazil
| | - Edson Marchiori
- PhD, Full Professor, Universidade Federal Fluminense (UFF), Niterói, RJ, Associate Professor, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
75
|
Whisenant JG, Sorace AG, McIntyre JO, Kang H, Sánchez V, Loveless ME, Yankeelov TE. Evaluating treatment response using DW-MRI and DCE-MRI in trastuzumab responsive and resistant HER2-overexpressing human breast cancer xenografts. Transl Oncol 2014; 7:768-79. [PMID: 25500087 PMCID: PMC4311041 DOI: 10.1016/j.tranon.2014.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/10/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
We report longitudinal diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast enhanced (DCE)-MRI (7 T) studies designed to identify functional changes, prior to volume changes, in trastuzumab-sensitive and resistant HER2 + breast cancer xenografts. Athymic mice (N = 33) were subcutaneously implanted with trastuzumab-sensitive (BT474) or trastuzumab-resistant (HR6) breast cancer cells. Tumor-bearing animals were distributed into four groups: BT474 treated and control, HR6 treated and control. DW- and DCE-MRI were conducted at baseline, day 1, and day 4; trastuzumab (10 mg/kg) or saline was administered at baseline and day 3. Animals were sacrificed on day 4 and tumors resected for histology. Voxel-based DW- and DCE-MRI analyses were performed to generate parametric maps of ADC, Ktrans, and ve. On day 1, no differences in tumor size were observed between any of the groups. On day 4, significant differences in tumor size were observed between treated vs. control BT474, treated BT474 vs. treated HR6, and treated vs. control HR6 (P < .0001). On day 1, ve was significantly higher in the BT474 treated group compared to BT474 control (P = .002) and HR6 treated (P = .004). On day 4, ve and Ktrans were significantly higher in the treated BT474 tumors compared to BT474 controls (P = .0007, P = .02, respectively). A significant decrease in Ki67 staining reinforced response in the BT474 treated group compared to BT474 controls (P = .02). This work demonstrated that quantitative MRI biomarkers have the sensitivity to differentiate treatment response in HER2 + tumors prior to changes in tumor size.
Collapse
Affiliation(s)
- Jennifer G Whisenant
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675
| | - Anna G Sorace
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675
| | - J Oliver McIntyre
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Cancer Biology, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675
| | - Hakmook Kang
- Departments of Biostatistics, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675
| | - Violeta Sánchez
- Departments of Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232-2675
| | - Mary E Loveless
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675
| | - Thomas E Yankeelov
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Cancer Biology, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Physics, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Biomedical Engineering, Vanderbilt University, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2675; Departments of Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232-2675.
| |
Collapse
|
76
|
Multiparametric monitoring of early response to antiangiogenic therapy: a sequential perfusion CT and PET/CT study in a rabbit VX2 tumor model. ScientificWorldJournal 2014; 2014:701954. [PMID: 25383376 PMCID: PMC4213998 DOI: 10.1155/2014/701954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To perform dual analysis of tumor perfusion and glucose metabolism using perfusion CT and FDG-PET/CT for the purpose of monitoring the early response to bevacizumab therapy in rabbit VX2 tumor models and to assess added value of FDG-PET to perfusion CT. METHODS Twenty-four VX2 carcinoma tumors implanted in bilateral back muscles of 12 rabbits were evaluated. Serial concurrent perfusion CT and FDG-PET/CT were performed before and 3, 7, and 14 days after bevacizumab therapy (treatment group) or saline infusion (control group). Perfusion CT was analyzed to calculate blood flow (BF), blood volume (BV), and permeability surface area product (PS); FDG-PET was analyzed to calculate SUVmax, SUVmean, total lesion glycolysis (TLG), entropy, and homogeneity. The flow-metabolic ratio (FMR) was also calculated and immunohistochemical analysis of microvessel density (MVD) was performed. RESULTS On day 14, BF and BV in the treatment group were significantly lower than in the control group. There were no significant differences in all FDG-PET-derived parameters between both groups. In the treatment group, FMR prominently decreased after therapy and was positively correlated with MVD. CONCLUSIONS In VX2 tumors, FMR could provide further insight into the early antiangiogenic effect reflecting a mismatch in intratumor blood flow and metabolism.
Collapse
|
77
|
Lecouvet FE, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM. Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer 2014; 50:2519-31. [PMID: 25139492 DOI: 10.1016/j.ejca.2014.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 12/31/2022]
Abstract
Assessment of the response to treatment of metastases is crucial in daily oncological practice and clinical trials. For soft tissue metastases, this is done using computed tomography (CT), Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET) using validated response evaluation criteria. Bone metastases, which frequently represent the only site of metastases, are an exception in response assessment systems, because of the nature of the fixed bony defects, their complexity, which ranges from sclerotic to osteolytic and because of the lack of sensitivity, specificity and spatial resolution of the previously available bone imaging methods, mainly bone scintigraphy. Techniques such as MRI and PET are able to detect the early infiltration of the bone marrow by cancer, and to quantify this infiltration using morphologic images, quantitative parameters and functional approaches. This paper highlights the most recent developments of MRI and PET, showing how they enable early detection of bone lesions and monitoring of their response. It reviews current knowledge, puts the different techniques into perspective, in terms of indications, strengths, weaknesses and complementarity, and finally proposes recommendations for the choice of the most adequate imaging technique.
Collapse
Affiliation(s)
- F E Lecouvet
- MRI Unit, Dept of Radiology, Centre du Cancer and Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium.
| | - J N Talbot
- Dept of Nuclear Medicine, Hôpital Tenon, AP-HP & Université Pierre et Marie Curie, Paris, France
| | - C Messiou
- Dept of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | - P Bourguet
- Dept of Nuclear Medicine, Cancer Center Eugène Marquis and University of Rennes 1, Rennes, France
| | - Y Liu
- EORTC, TR, Radiotherapy and Imaging Department, EORTC Headquarters, Brussels, Belgium
| | - N M de Souza
- Dept of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom; MRI Unit, Institute of Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| |
Collapse
|
78
|
Boppart SA, Richards-Kortum R. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Sci Transl Med 2014; 6:253rv2. [PMID: 25210062 PMCID: PMC4370289 DOI: 10.1126/scitranslmed.3009725] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world.
Collapse
Affiliation(s)
- Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Rebecca Richards-Kortum
- Department of Bioengineering, Rice University, Houston, TX 77030, USA. Department of Electrical and Computer Engineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
79
|
Abstract
Liver-directed intra-arterial therapies are palliative treatment options for patients with unresectable liver cancer; their use has also resulted in patients being downstaged leading to curative resection and transplantation. These intra-arterial therapies include transarterial embolization, conventional transarterial chemoembolization (TACE), drug-eluting bead TACE and radioembolization. Assessment of imaging response following these liver-directed intra-arterial therapies is challenging but pivotal for patient management. Size measurements based on computed tomography or magnetic resonance imaging (MRI) have been traditionally used to assess tumor response to therapy. However, these anatomic changes lag behind functional changes and may require months to occur. Further, these intra-arterial therapies cause acute tumor necrosis, which may result in a paradoxical increase in tumor size on early follow-up imaging despite complete cell death or necrosis. This concept is unique comparing to changes seen following systemic chemotherapy. The recent development of functional imaging techniques including diffusion-weighted MRI (DW MRI) and positron emission tomography (PET) allow for early assessment of treatment response and even prediction of overall tumor response to intra-arterial therapies. Although the results of DW MRI and PET studies are promising, the impact of these imaging modalities to assess treatment response has been limited without standardized protocols. The aim of this review article is to delineate the best practice for assessing tumor response in patients with primary or secondary hepatic malignancies undergoing intra-arterial therapies.
Collapse
|
80
|
Yang RM, Zou Y, Huang DP, Lai SS, Xu XD, Wei XH, Chang HZ, Huang TK, Wang L, Tang WJ, Jiang XQ. In vivo assessment of the vascular disrupting effect of M410 by DCE-MRI biomarker in a rabbit model of liver tumor. Oncol Rep 2014; 32:709-15. [PMID: 24898785 DOI: 10.3892/or.2014.3230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to prospectively monitor the vascular disrupting effect of M410 by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rabbits with VX2 liver tumors. Twenty-eight rabbits bearing VX2 tumors in the left lobe of the liver were established and randomly divided into treatment and control groups, intravenously injected with 25 mg/kg M410 or sterile saline, respectively. Conventional and DCE-MRI data were acquired on a 3.0-T MR unit at pretreatment, 4 h, 1, 4, 7 and 14 days post-treatment. Histopathological examinations [hematoxylin and eosin (H&E) and CD34 immunohistochemisty staining] were performed at each time point. The dynamic changes in tumor volume, kinetic DCE-MRI parameter [volume transfer constant (Ktrans)] and histological data were evaluated. Tumors grew slower in the M410 group 4-14 days following treatment, compared with rapidly growing tumors in the control group (P<0.05). At 4 h, 1 and 4 days, Ktrans significantly decreased in the M410 group compared with that in the control group (P<0.05). However, Ktrans values were similar in the two groups for the other time points studied. The changes in DCE-MRI parameters were consistent with the results obtained from H&E and CD34 staining of the tumor tissues. DCE-MRI parameter Ktrans may be used as a non-invasive imaging biomarker to monitor the dynamic histological changes in tumors following treatment with the vascular targeting agent M410.
Collapse
Affiliation(s)
- Rui-Meng Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, P.R. China
| | - Yong Zou
- Guangzhou Institute of Chemistry, Chinese Academy of Science, Guangzhou 510650, P.R. China
| | - Dan-Ping Huang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, P.R. China
| | - Sheng-Sheng Lai
- Department of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou 510520, P.R. China
| | - Xiang-Dong Xu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, P.R. China
| | - Xin-Hua Wei
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, P.R. China
| | - Han-Zheng Chang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, P.R. China
| | - Tong-Kun Huang
- Guangzhou Institute of Chemistry, Chinese Academy of Science, Guangzhou 510650, P.R. China
| | - Li Wang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, P.R. China
| | - Wen-Jie Tang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, P.R. China
| | - Xin-Qing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, P.R. China
| |
Collapse
|
81
|
Enantiopure bifunctional chelators for copper radiopharmaceuticals – Does chirality matter in radiotracer design? Eur J Med Chem 2014; 80:308-15. [DOI: 10.1016/j.ejmech.2014.04.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/10/2023]
|
82
|
Singh AN, McGuire MJ, Li S, Hao G, Kumar A, Sun X, Brown KC. Dimerization of a phage-display selected peptide for imaging of αvβ6- integrin: two approaches to the multivalent effect. Theranostics 2014; 4:745-60. [PMID: 24883124 PMCID: PMC4038756 DOI: 10.7150/thno.7811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/10/2013] [Indexed: 12/28/2022] Open
Abstract
The integrin αvβ6 is an emerging biomarker for non-small cell lung cancer (NSCLC). An αvβ6-binding peptide was previously selected from a phage-displayed peptide library. Here, we utilize a multivalent design to develop a peptidic probe for positron emission tomography (PET) imaging of αvβ6+ NSCLC tumors. Multimeric presentation of this peptide, RGDLATLRQL, on a bifunctional copper chelator was achieved using two approaches: dimerization of the peptide followed by conjugation to the chelator (H2-D10) and direct presentation of two copies of the peptide on the chelator scaffold (H2-(M10)2). Binding affinities of the divalent peptide conjugates are four-fold higher than their monovalent counterpart (H2-M10), suggestive of multivalent binding. PET imaging using the bivalent 64Cu-labeled conjugates showed rapid and persistent accumulation in αvβ6+ tumors. By contrast, no significant accumulation was observed in αvβ6- tumors. Irrespective of the dimerization approach, all divalent probes showed three-fold higher tumor uptake than the monovalent probe, indicating the role of valency in signal enhancement. However, the divalent probes have elevated uptake in non-target organs, especially the kidneys. To abrogate nonspecific uptake, the peptide's N-terminus was acetylated. The resultant bivalent probe, 64Cu- AcD10, showed drastic decrease of kidney accumulation while maintaining tumor uptake. In conclusion, we developed an αvβ6-integrin specific probe with optimized biodistribution for noninvasive PET imaging of NSCLC. Further, we have demonstrated that use of multivalent scaffolds is a plausible method to improve library selected peptides, which would be suboptimal or useless otherwise, for imaging probe development.
Collapse
|
83
|
Heo SH, Kim JW, Shin SS, Jeong YY, Kang HK. Multimodal imaging evaluation in staging of rectal cancer. World J Gastroenterol 2014; 20:4244-4255. [PMID: 24764662 PMCID: PMC3989960 DOI: 10.3748/wjg.v20.i15.4244] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Rectal cancer is a common cancer and a major cause of mortality in Western countries. Accurate staging is essential for determining the optimal treatment strategies and planning appropriate surgical procedures to control rectal cancer. Endorectal ultrasonography (EUS) is suitable for assessing the extent of tumor invasion, particularly in early-stage or superficial rectal cancer cases. In advanced cases with distant metastases, computed tomography (CT) is the primary approach used to evaluate the disease. Magnetic resonance imaging (MRI) is often used to assess preoperative staging and the circumferential resection margin involvement, which assists in evaluating a patient’s risk of recurrence and their optimal therapeutic strategy. Positron emission tomography (PET)-CT may be useful in detecting occult synchronous tumors or metastases at the time of initial presentation. Restaging after neoadjuvant chemoradiotherapy (CRT) remains a challenge with all modalities because it is difficult to reliably differentiate between the tumor mass and other radiation-induced changes in the images. EUS does not appear to have a useful role in post-therapeutic response assessments. Although CT is most commonly used to evaluate treatment responses, its utility for identifying and following-up metastatic lesions is limited. Preoperative high-resolution MRI in combination with diffusion-weighted imaging, and/or PET-CT could provide valuable prognostic information for rectal cancer patients with locally advanced disease receiving preoperative CRT. Based on these results, we conclude that a combination of multimodal imaging methods should be used to precisely assess the restaging of rectal cancer following CRT.
Collapse
|
84
|
Midtreatment evaluation of lymphoma response to chemotherapy by volume perfusion computed tomography. J Comput Assist Tomogr 2014; 38:123-30. [PMID: 24378894 DOI: 10.1097/rct.0b013e3182a90ee7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to search for chemotherapy-induced perfusion changes of diffuse large B-cell lymphoma, follicular lymphoma, and Hodgkin lymphoma at midtreatment versus baseline volume perfusion computed tomography (VPCT). METHODS Forty-five consecutive patients with untreated diffuse large B-cell lymphoma, follicular lymphoma, and Hodgkin lymphoma received VPCT examinations of the tumor bulk at baseline and during chemotherapy (midtreatment). Blood flow (BF), blood volume (BV), and transit constant (K-trans) were determined. Treatment response was categorized according to the Cheson criteria into complete or partial remission and stable or relapsed/progressive disease. RESULTS Midtreatment follow-up showed a reduction in BF, BV, and K-trans in all lymphoma subtypes compared with baseline. The reduction in BV was less pronounced in larger tumors. Notably, BF, BV, and K-trans decreased in the responders (complete remission/partial remission) when compared with the nonresponders (stable or relapsed/progressive disease). Less than 10% reduction in BF was shown to be the best VPCT criterion for the identification of nonresponse. CONCLUSIONS Chemotherapy-induced perfusion changes in responders are recognizable at midtreatment VPCT.
Collapse
|
85
|
Abstract
Objective There are no long-term medical treatments for uterine fibroids, and non-invasive biomarkers are needed to evaluate novel therapeutic interventions. The aim of this study was to determine whether serial dynamic contrast-enhanced MRI (DCE-MRI) and magnetization transfer MRI (MT-MRI) are able to detect changes that accompany volume reduction in patients administered GnRH analogue drugs, a treatment which is known to reduce fibroid volume and perfusion. Our secondary aim was to determine whether rapid suppression of ovarian activity by combining GnRH agonist and antagonist therapies results in faster volume reduction. Methods Forty women were assessed for eligibility at gynaecology clinics in the region, of whom thirty premenopausal women scheduled for hysterectomy due to symptomatic fibroids were randomized to three groups, receiving (1) GnRH agonist (Goserelin), (2) GnRH agonist+GnRH antagonist (Goserelin and Cetrorelix) or (3) no treatment. Patients were monitored by serial structural, DCE-MRI and MT-MRI, as well as by ultrasound and serum oestradiol concentration measurements from enrolment to hysterectomy (approximately 3 months). Results A volumetric treatment effect assessed by structural MRI occurred by day 14 of treatment (9% median reduction versus 9% increase in untreated women; P = 0.022) and persisted throughout. Reduced fibroid perfusion and permeability assessed by DCE-MRI occurred later and was demonstrable by 2–3 months (43% median reduction versus 20% increase respectively; P = 0.0093). There was no apparent treatment effect by MT-MRI. Effective suppression of oestradiol was associated with early volume reduction at days 14 (P = 0.041) and 28 (P = 0.0061). Conclusion DCE-MRI is sensitive to the vascular changes thought to accompany successful GnRH analogue treatment of uterine fibroids and should be considered for use in future mechanism/efficacy studies of proposed fibroid drug therapies. GnRH antagonist administration does not appear to accelerate volume reduction, though our data do support the role of oestradiol suppression in GnRH analogue treatment of fibroids. Trial Registration ClinicalTrials.gov NCT00746031
Collapse
|
86
|
Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol 2014; 7:153-66. [PMID: 24772219 DOI: 10.1593/tlo.13838] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
Pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) time-course data allows estimation of quantitative parameters such as K (trans) (rate constant for plasma/interstitium contrast agent transfer), v e (extravascular extracellular volume fraction), and v p (plasma volume fraction). A plethora of factors in DCE-MRI data acquisition and analysis can affect accuracy and precision of these parameters and, consequently, the utility of quantitative DCE-MRI for assessing therapy response. In this multicenter data analysis challenge, DCE-MRI data acquired at one center from 10 patients with breast cancer before and after the first cycle of neoadjuvant chemotherapy were shared and processed with 12 software tools based on the Tofts model (TM), extended TM, and Shutter-Speed model. Inputs of tumor region of interest definition, pre-contrast T1, and arterial input function were controlled to focus on the variations in parameter value and response prediction capability caused by differences in models and associated algorithms. Considerable parameter variations were observed with the within-subject coefficient of variation (wCV) values for K (trans) and v p being as high as 0.59 and 0.82, respectively. Parameter agreement improved when only algorithms based on the same model were compared, e.g., the K (trans) intraclass correlation coefficient increased to as high as 0.84. Agreement in parameter percentage change was much better than that in absolute parameter value, e.g., the pairwise concordance correlation coefficient improved from 0.047 (for K (trans)) to 0.92 (for K (trans) percentage change) in comparing two TM algorithms. Nearly all algorithms provided good to excellent (univariate logistic regression c-statistic value ranging from 0.8 to 1.0) early prediction of therapy response using the metrics of mean tumor K (trans) and k ep (=K (trans)/v e, intravasation rate constant) after the first therapy cycle and the corresponding percentage changes. The results suggest that the interalgorithm parameter variations are largely systematic, which are not likely to significantly affect the utility of DCE-MRI for assessment of therapy response.
Collapse
|
87
|
Anzidei M, Napoli A, Brachetti G, Del Monte M, De Olivera D, Andrani F, Palla C, Bertaccini L, Musio D, Tombolini V, Catalano C. Palliative treatment of bone metastases: analysis of biological effects of MR guided Focused Ultrasound (MRgFUS) versus External Beam Radiation Therapy (EBRT). A randomized comparative trial using Functional Diffusion Maps as molecular activity indicator. J Ther Ultrasound 2014. [PMCID: PMC4292024 DOI: 10.1186/2050-5736-2-s1-a17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
88
|
Bernardin L, O'Flynn EAM, Desouza NM. Functional imaging biomarkers for assessing response to treatment in liver and lung metastases. Cancer Imaging 2013; 13:482-94. [PMID: 24334562 PMCID: PMC3864224 DOI: 10.1102/1470-7330.2013.0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 01/15/2023] Open
Abstract
Management of patients with metastatic cancer and development of new treatments rely on imaging to provide non-invasive biomarkers of tumour response and progression. The widely used size-based criteria have increasingly become inadequate where early measures of response are required to avoid toxicity of ineffective treatments, as biological, physiologic, and molecular modifications in tumours occur before changes in gross tumour size. A multiparametric approach with the current range of imaging techniques allows functional aspects of tumours to be simultaneously interrogated. Appropriate use of these imaging techniques and their timing in relation to the treatment schedule, particularly in the context of clinical trials, is fundamental. There is a lack of consensus regarding which imaging parameters are most informative for a particular disease site and the best time to image so that, despite an increasing body of literature, open questions on these aspects remain. In addition, standardization of these new parameters is required. This review summarizes the published literature over the last decade on functional and molecular imaging techniques in assessing treatment response in liver and lung metastases.
Collapse
Affiliation(s)
- Livia Bernardin
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, UK
| | - Elizabeth A M O'Flynn
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, UK
| | - Nandita M Desouza
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, UK
| |
Collapse
|
89
|
Hemmer E, Venkatachalam N, Hyodo H, Hattori A, Ebina Y, Kishimoto H, Soga K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. NANOSCALE 2013; 5:11339-61. [PMID: 23938606 DOI: 10.1039/c3nr02286b] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln(3+)), nanoscopic host materials doped with Ln(3+), e.g. Y2O3:Er(3+),Yb(3+), are promising candidates for NIR-NIR bioimaging. Ln(3+)-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er(3+),Yb(3+), have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.
Collapse
Affiliation(s)
- Eva Hemmer
- Tokyo University of Science, Center for Technologies against Cancer (CTC), 2669 Yamazaki, 278-0022 Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
90
|
Whisenant JG, Peterson TE, Fluckiger JU, Tantawy MN, Ayers GD, Yankeelov TE. Reproducibility of static and dynamic (18)F-FDG, (18)F-FLT, and (18)F-FMISO MicroPET studies in a murine model of HER2+ breast cancer. Mol Imaging Biol 2013; 15:87-96. [PMID: 22644988 DOI: 10.1007/s11307-012-0564-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The objective of this study is to determine the reproducibility of static 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG), 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT), and [(18)F]-fluoromisonidazole ((18)F-FMISO) microPET measurements, as well as kinetic parameters returned from analyses of dynamic (18)F-FLT and (18)F-FMISO data. PROCEDURES HER2+ xenografts were established in nude mice. Dynamic data were acquired for 60 min, followed by a repeat injection and second scan 6 h later. Reproducibility was assessed for the percent-injected dose per gram (%ID/g) for each radiotracer, and with kinetic parameters (K (1) -k (4) , K ( i )) for (18)F-FLT and (18)F-FMISO. RESULTS The value needed to reflect a change in tumor physiology is given by the 95 % confidence interval (CI), which is ±14, ±5, and ±6 % for (18)F-FDG (n = 12), (18)F-FLT (n = 11), and (18)F-FMISO (n = 11) %ID/g, respectively. V ( d ) (=K (1) /k (2)), k (3), and K (FLT) are the most reproducible (18)F-FLT (n = 9) kinetic parameters, with 95 % CIs of ±18, ±10, and ±18 %, respectively. V ( d ) and K (FMISO) are the most reproducible (18)F-FMISO kinetic parameters (n = 7) with 95 % CIs of ±16 and ±14 %, respectively. CONCLUSIONS Percent-injected dose per gram measurements are reproducible and appropriate for detecting treatment-induced changes. Kinetic parameters have larger threshold values, but are potentially sufficiently reproducible to detect treatment response.
Collapse
Affiliation(s)
- Jennifer G Whisenant
- Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. South, MCN AA-1105, Nashville, TN 37232-2675, USA
| | | | | | | | | | | |
Collapse
|
91
|
Kido A, Fujimoto K, Okada T, Togashi K. Advanced MRI in malignant neoplasms of the uterus. J Magn Reson Imaging 2013; 37:249-64. [PMID: 23355429 DOI: 10.1002/jmri.23716] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 05/02/2012] [Indexed: 12/17/2022] Open
Abstract
Conventional magnetic resonance imaging (MRI) such as T1-weighted and T2-weighted images of the female pelvis provide morphological information with excellent tissue contrast, which reflects the pathology of malignant diseases of the uterus. Owing to the recent improvement in hardware and software, in combination with extensive research in imaging techniques, not only MRI at higher magnetic field was facilitated, but also insight into tumor pathophysiology was provided. These methods include diffusion-weighted imaging (DWI), dynamic contrast-enhanced MRI (DCE-MRI) with pharmacokinetic analysis, and MR spectroscopy (MRS). The application of these techniques is expanding from the brain to the body because information on the tissue microenvironment and cytoarchitecture is helpful for lesion characterization, evaluation of treatment response after chemotherapy or radiation, differentiating posttherapeutic changes from residual active tumor, and for detecting recurrent cancer. These techniques may provide clues to optimize the treatment of patients with malignant diseases of the uterus. In the first half of this article we provide an overview of the technical aspects of MRI of the female pelvis, especially focusing on the state-of-the-art techniques such as 3 T MRI, DCE-MRI, DWI, etc. For the latter half we review the clinical aspects of these newly developed techniques, focusing on how these techniques are applicable, what has been revealed with respect to clinical impact, and the remaining problems.
Collapse
Affiliation(s)
- Aki Kido
- Department of Diagnostic Radiology and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | |
Collapse
|
92
|
Heo SH, Shin SS, Kim JW, Lim HS, Jeong YY, Kang WD, Kim SM, Kang HK. Pre-treatment diffusion-weighted MR imaging for predicting tumor recurrence in uterine cervical cancer treated with concurrent chemoradiation: value of histogram analysis of apparent diffusion coefficients. Korean J Radiol 2013; 14:616-25. [PMID: 23901319 PMCID: PMC3725356 DOI: 10.3348/kjr.2013.14.4.616] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/24/2013] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To evaluate the value of apparent diffusion coefficient (ADC) histogram analysis for predicting tumor recurrence in patients with uterine cervical cancer treated with chemoradiation therapy (CRT). MATERIALS AND METHODS Our institutional review board approved this retrospective study and waived informed consent from each patient. Forty-two patients (mean age, 56 ± 14 years) with biopsy-proven uterine cervical squamous cell carcinoma who underwent both pre-treatment pelvic magnetic resonance imaging with a 3.0 T magnetic resonance scanner and concurrent CRT were included. All patients were followed-up for more than 6 months (mean, 36.4 ± 11.9 months; range 9.0-52.8 months) after completion of CRT. Baseline ADC parameters (mean ADC, 25th percentile, 50th percentile, and 75th percentile ADC values) of tumors were calculated and compared between the recurrence and no recurrence groups. RESULTS In the recurrence group, the mean ADC and 75th percentile ADC values of tumors were significantly higher than those of the no recurrence group (p = 0.043 and p = 0.008, respectively). In multivariate analysis, the 75th percentile ADC value of tumors was a significant predictor for tumor recurrence (p = 0.009; hazard ratio, 1.319). When the cut-off value of the 75th percentile ADC (0.936 × 10(-3) mm(2)/sec) was used, the overall recurrence free survival rate above the cut-off value was significantly lower than that below the cut-off value (51.9% vs. 91.7%, p = 0.003, log-rank test). CONCLUSION Pre-CRT ADC histogram analysis may serve as a biomarker for predicting tumor recurrence in patients with uterine cervical cancer treated with CRT.
Collapse
Affiliation(s)
- Suk Hee Heo
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun 519-763, Korea
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Shinagare AB, Jagannathan JP, Krajewski KM, Ramaiya NH. Liver Metastases in the Era of Molecular Targeted Therapy: New Faces of Treatment Response. AJR Am J Roentgenol 2013; 201:W15-W28. [DOI: 10.2214/ajr.12.9498] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Atul Bhanudas Shinagare
- Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Jyothi P. Jagannathan
- Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Katherine M. Krajewski
- Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Nikhil H. Ramaiya
- Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
94
|
Gawande RS, Gonzalez G, Messing S, Khurana A, Daldrup-Link HE. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol 2013; 43:836-45. [PMID: 23666206 DOI: 10.1007/s00247-013-2626-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/09/2012] [Accepted: 11/27/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Solid malignant tumors are more highly cellular than benign lesions and hence have a restricted diffusion of water molecules. OBJECTIVE To evaluate whether diffusion-weighted MR imaging (DWI) can differentiate between benign and malignant pediatric abdominal tumors. MATERIALS AND METHODS We retrospectively analyzed DWI scans of 68 consecutive children with 39 benign and 34 malignant abdominal masses. To calculate the apparent diffusion coefficient (ADC) maps and ADC values, we used 1.5-T sequences at TR/TE/b-value of 5,250-7,500/54-64/b = 0, 500 and 3-T sequences at 3,500-4,000/66-73/b = 0, 500, 800. ADC values were compared between benign and malignant and between data derived at 1.5 tesla (T) and at 3 tesla magnetic field strength, using the Mann-Whitney-Wilcoxon test, ANOVA and a receiver operating curve (ROC) analysis. RESULTS There was no significant difference in ADC values obtained at 1.5 T and 3 T (P = 0.962). Mean ADC values (× 10(-3) mm(2)/s) were 1.07 for solid malignant tumors, 1.6 for solid benign tumors, 2.9 for necrotic portions of malignant tumors and 3.1 for cystic benign lesions. The differences between malignant and benign solid tumors were statistically significant (P = 0.000025). ROC analysis revealed an optimal cut-off ADC value for differentiating malignant and benign solid tumors as 1.29 with excellent inter-observer reliability (alpha score 0.88). CONCLUSION DWI scans and ADC values can contribute to distinguishing between benign and malignant pediatric abdominal tumors.
Collapse
|
95
|
Sala E, Rockall AG, Freeman SJ, Mitchell DG, Reinhold C. The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology 2013; 266:717-40. [PMID: 23431227 DOI: 10.1148/radiol.12120315] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many treatment options are available to patients with endometrial, cervical, or ovarian cancer. Magnetic resonance (MR) imaging plays an important role in the patient journey from the initial evaluation of the extent of the disease to appropriate treatment selection and follow-up. The purpose of this review is to highlight the added role of MR imaging in the treatment stratification and overall care of patients with endometrial, cervical, or ovarian cancer. Several MR imaging techniques used in evaluation of patients with gynecologic malignancies are described, including both anatomic MR imaging sequences (T1- and T2-weighted sequences) and pulse sequences that characterize tissue on the basis of physiologic features (diffusion-weighted MR imaging), dynamic contrast agent-enhanced MR imaging, and MR spectroscopy. MR imaging findings corresponding to the 2009 revised International Federation of Gynecology and Obstetrics staging of gynecologic malignancies are also described in detail, highlighting possible pearls and pitfalls of staging. With the growing role of the radiologist as a core member of the multidisciplinary treatment planning team, it is crucial for imagers to recognize that MR imaging has become central in tailoring treatment options and therapy in patients with gynecologic malignancies.
Collapse
Affiliation(s)
- Evis Sala
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, England, UK.
| | | | | | | | | |
Collapse
|
96
|
Peungjesada S, Chuang HH, Prasad SR, Choi H, Loyer EM, Bronstein Y. Evaluation of cancer treatment in the abdomen: Trends and advances. World J Radiol 2013; 5:126-42. [PMID: 23671749 PMCID: PMC3650203 DOI: 10.4329/wjr.v5.i3.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 01/24/2013] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Response evaluation in Oncology has relied primarily on change in tumor size. Inconsistent results in the prediction of clinical outcome when size based criteria are used and the increasing role of targeted and loco-regional therapies have led to the development of new methods of response evaluation that are unrelated to change in tumor size. The goals of this review are to expose briefly the size based criteria and to present the non-size based approaches that are currently applicable in the clinical setting. Other paths that are still being explored are not discussed in details.
Collapse
|
97
|
Moroz J, Wong CL, Yung AC, Kozlowski P, Reinsberg SA. Rapid measurement of arterial input function in mouse tail from projection phases. Magn Reson Med 2013; 71:238-45. [DOI: 10.1002/mrm.24660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/04/2012] [Accepted: 01/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Jennifer Moroz
- Department of Physics and Astronomy; University of British Columbia; Vancouver Canada
| | - Clayton L. Wong
- Department of Physics; Simon Fraser University; Burnaby Canada
| | - Andrew C. Yung
- University of British Columbia MRI Research Centre; Vancouver Canada
| | - Piotr Kozlowski
- University of British Columbia MRI Research Centre; Vancouver Canada
| | - Stefan A. Reinsberg
- Department of Physics and Astronomy; University of British Columbia; Vancouver Canada
| |
Collapse
|
98
|
Hemmer E, Yamano T, Kishimoto H, Venkatachalam N, Hyodo H, Soga K. Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomater 2013; 9:4734-43. [PMID: 22963845 DOI: 10.1016/j.actbio.2012.08.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 07/16/2012] [Accepted: 08/20/2012] [Indexed: 01/21/2023]
Abstract
Bioimaging is an important diagnostic tool in the investigation and visualization of biological phenomena in cells and in medicine. In this context, up-converting Gd(2)O(3):Er(3+),Yb(3+) nanostructures (nanoparticles, nanorods) have been synthesized by precipitation methods and hydrothermal synthesis. Independent of size and morphology, Gd(2)O(3):Er(3+),Yb(3+) powders show up-conversion (550 nm, 670 nm) and near-infrared emission (1.5 μm) upon 980 nm excitation, which makes these structures interesting for application as biomarkers. With regard to their potential application in bioimaging, cytotoxicity is an important aspect and is strongly affected by the physico-chemical properties of the investigated nanostructures. Therefore, the cytotoxic effect of bare and poly(ethylene glycol)-b-poly(acrylic acid) block co-polymer-modified nanostructures on non-phagocytic and phagocytic cells (B-cell hybridoma cells and macrophages) was investigated. The observed cytotoxic behavior in the case of macrophages incubated with bare nanostructures was assigned to the poor chemical durability of gadolinium oxide, but could be overcome by surface modification.
Collapse
|
99
|
Pauwels EK, Coumou AW, Kostkiewicz M, Kairemo K. [¹⁸F]fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography imaging in oncology: initial staging and evaluation of cancer therapy. Med Princ Pract 2013; 22:427-37. [PMID: 23363934 PMCID: PMC5586772 DOI: 10.1159/000346303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/05/2012] [Indexed: 12/16/2022] Open
Abstract
Positron emission tomography (PET) with [¹⁸F]fluoro-2-deoxy-D-glucose (FDG) has proven to be a valuable diagnostic modality in various diseases. Its accuracy has been improved with the hybrid PET/computed tomography (CT) technique because of precise anatomic location of areas of abnormal FDG accumulation. This integrated PET/CT modality has been widely adopted, particularly in oncology. This paper reviews the role of FDG-PET/CT imaging in breast cancer, non-small-cell lung cancer, colorectal cancer, head and neck cancer as well as lymphoma on the basis of recent key articles. Special attention is paid to preoperative diagnostic workup, evaluation of treatment response and survival prognosis. Experience from specialized centers indicates that there is strong evidence for the clinical effectiveness of FDG-PET/CT in staging, restaging and the prediction of response to therapy in the above-mentioned malignancies. It is concluded that this imaging modality contributes considerably to improved patient management and paves the way to personalize cancer treatment in a cost-effective way.
Collapse
Affiliation(s)
- Ernest K.J. Pauwels
- University Medical School Pisa, Pisa, Italy
- Leiden University Medical Center, Leiden, Finland
- *Prof. emer. Ernest K.J. Pauwels, Via di San Gennaro 79B, IT-55010 Capannori (Italy), E-Mail
| | - Annette W. Coumou
- Amsterdam University Medical Center, Amsterdam, The Netherlands, Finland
| | | | - Kalevi Kairemo
- International Comprehensive Cancer Center Docrates, Helsinki, Finland
| |
Collapse
|
100
|
Predicting outcomes in radiation oncology--multifactorial decision support systems. Nat Rev Clin Oncol 2012; 10:27-40. [PMID: 23165123 DOI: 10.1038/nrclinonc.2012.196] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the emergence of individualized medicine and the increasing amount and complexity of available medical data, a growing need exists for the development of clinical decision-support systems based on prediction models of treatment outcome. In radiation oncology, these models combine both predictive and prognostic data factors from clinical, imaging, molecular and other sources to achieve the highest accuracy to predict tumour response and follow-up event rates. In this Review, we provide an overview of the factors that are correlated with outcome-including survival, recurrence patterns and toxicity-in radiation oncology and discuss the methodology behind the development of prediction models, which is a multistage process. Even after initial development and clinical introduction, a truly useful predictive model will be continuously re-evaluated on different patient datasets from different regions to ensure its population-specific strength. In the future, validated decision-support systems will be fully integrated in the clinic, with data and knowledge being shared in a standardized, instant and global manner.
Collapse
|