51
|
He G, Li Y, Chen X, Chen J, Zhang W. Prediction of treatment outcomes for multidrug-resistant tuberculosis by whole-genome sequencing. Int J Infect Dis 2020; 96:68-72. [PMID: 32339719 DOI: 10.1016/j.ijid.2020.04.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS) has been proposed to be a powerful tool to predict drug resistance for antitubercular drugs. However, the feasibility of WGS in predicting final treatment outcomes for multidrug-resistant tuberculosis (MDR-TB) patients remains unclear PATIENTS AND METHODS: In this prospective observational study conducted from January 2014 to September 2016, MDR-TB patients were enrolled consecutively. Genotypic drug sensitivity testing was performed via WGS using culture isolates. Patients were followed for two years to determine the treatment outcomes. Multivariate analysis was used to identify the association between information provided by WGS and the final treatment outcomes RESULTS: A total of 123 patients with MDR-TB were included in this study. The overall favorable treatment outcome rate was 60.2%. Multivariate analysis showed that independent risk factors associated with unfavorable treatment outcome including high-level moxifloxacin phenotypic resistance (OR, 4.362; 95%CI, 1.364-13.950; p=0.013), cycloserine phenotypic resistance (OR, 7.457; 95%CI, 1.644-33.819; p=0.009), mutations causing high-level fluoroquinolones resistance (OR, 3.947; 95%CI, 1.195-13.034; p=0.024), and ethA mutation (OR, 3.817; 95% CI, 1.154-12.823; p=0.028). WGS costs for each patient are ¥450 ($63), and the average turnaround time was one week CONCLUSIONS: In summary, WGS showed promising feasibility in predicting treatment outcomes for MDR-TB patients within a clinically relevant time frame.
Collapse
Affiliation(s)
- Guiqing He
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yang Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinchang Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
52
|
Dorman SE, Nahid P, Kurbatova EV, Goldberg SV, Bozeman L, Burman WJ, Chang KC, Chen M, Cotton M, Dooley KE, Engle M, Feng PJ, Fletcher CV, Ha P, Heilig CM, Johnson JL, Lessem E, Metchock B, Miro JM, Nhung NV, Pettit AC, Phillips PPJ, Podany AT, Purfield AE, Robergeau K, Samaneka W, Scott NA, Sizemore E, Vernon A, Weiner M, Swindells S, Chaisson RE. High-dose rifapentine with or without moxifloxacin for shortening treatment of pulmonary tuberculosis: Study protocol for TBTC study 31/ACTG A5349 phase 3 clinical trial. Contemp Clin Trials 2020; 90:105938. [PMID: 31981713 PMCID: PMC7307310 DOI: 10.1016/j.cct.2020.105938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Phase 2 clinical trials of tuberculosis treatment have shown that once-daily regimens in which rifampin is replaced by high dose rifapentine have potent antimicrobial activity that may be sufficient to shorten overall treatment duration. Herein we describe the design of an ongoing phase 3 clinical trial testing the hypothesis that once-daily regimens containing high dose rifapentine in combination with other anti-tuberculosis drugs administered for four months can achieve cure rates not worse than the conventional six-month treatment regimen. METHODS/DESIGN S31/A5349 is a multicenter randomized controlled phase 3 non-inferiority trial that compares two four-month regimens with the standard six-month regimen for treating drug-susceptible pulmonary tuberculosis in HIV-negative and HIV-positive patients. Both of the four-month regimens contain high-dose rifapentine instead of rifampin, with ethambutol replaced by moxifloxacin in one regimen. All drugs are administered seven days per week, and under direct observation at least five days per week. The primary outcome is tuberculosis disease-free survival at twelve months after study treatment assignment. A total of 2500 participants will be randomized; this gives 90% power to show non-inferiority with a 6.6% margin of non-inferiority. DISCUSSION This phase 3 trial formally tests the hypothesis that augmentation of rifamycin exposures can shorten tuberculosis treatment to four months. Trial design and standardized implementation optimize the likelihood of obtaining valid results. Results of this trial may have important implications for clinical management of tuberculosis at both individual and programmatic levels. TRIAL REGISTRATION NCT02410772. Registered 8 April 2015,https://www.clinicaltrials.gov/ct2/show/NCT02410772?term=02410772&rank=1.
Collapse
Affiliation(s)
- Susan E Dorman
- Medical University of South Carolina, Charleston, SC, USA.
| | - Payam Nahid
- University of California, San Francisco, California, USA
| | | | | | - Lorna Bozeman
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Kwok-Chiu Chang
- Tuberculosis and Chest Service, Department of Health, Hong Kong
| | - Michael Chen
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark Cotton
- Stellenbosch University, Cape Town, South Africa
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa Engle
- Audie L. Murphy Veterans Affairs Medical Center / University of Texas Health Science Center, San Antonio, TX, USA
| | - Pei-Jean Feng
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Phan Ha
- Vietnam National TB Program (NTP)/UCSF Research Collaboration, Hanoi, Viet Nam
| | | | - John L Johnson
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda
| | | | | | - Jose M Miro
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Nguyen Viet Nhung
- Vietnam National TB Program (NTP)/UCSF Research Collaboration, Hanoi, Viet Nam
| | - April C Pettit
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Diseases, Nashville, TN, USA
| | | | | | - Anne E Purfield
- US Centers for Disease Control and Prevention, Atlanta, GA, USA; U.S. Public Health Service Commissioned Corps, Rockville, MD, USA
| | | | | | - Nigel A Scott
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Erin Sizemore
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrew Vernon
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marc Weiner
- Audie L. Murphy Veterans Affairs Medical Center / University of Texas Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
53
|
Xia H, van den Hof S, Cobelens F, Zhou Y, Zhao B, Wang S, Zhao Y. Value of pyrazinamide for composition of new treatment regimens for multidrug-resistant Mycobacterium tuberculosis in China. BMC Infect Dis 2020; 20:19. [PMID: 31910878 PMCID: PMC6947908 DOI: 10.1186/s12879-020-4758-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
Background Pyrazinamide still may be a useful drug for treatment of rifampin-resistant (RR-TB) or multidrug-resistant tuberculosis (MDR-TB) in China while awaiting scale up of new drugs and regimens including bedaquiline and linezolid. The level of pyrazinamide resistance among MDR-TB patients in China is not well established. Therefore, we assessed pyrazinamide resistance in a representative sample and explored determinants and patterns of pncA mutations. Methods MDR-TB isolates from the 2007 national drug resistance survey of China were sub-cultured and examined for pyrazinamide susceptibility by BACTEC MGIT 960 method. pncA mutations were identified by sequencing. Characteristics associated with pyrazinamide resistance were analyzed using univariable and multivariable log-binominal regression. Results Of 401 MDR-TB isolates, 324 were successfully sub-cultured and underwent drug susceptibility testing. Pyrazinamide resistance was prevalent in 40.7% of samples, similarly among new and previously treated MDR-TB patients. Pyrazinamide resistance in MDR-TB patients was associated with lower age (adjusted OR 0.54; 95% CI, 0.34–0.87 for those aged ≧60 years compared to < 40 years). Pyrazinamide resistance was not associated with gender, residential area, previous treatment history and Beijing genotype. Of 132 patients with pyrazinamide resistant MDR-TB, 97 (73.5%) had a mutation in the pncA gene; with 61 different point mutations causing amino acid change, and 11 frameshifts in the pncA gene. The mutations were scattered throughout the whole pncA gene and no hot spot region was identified. Conclusions Pyrazinamide resistance among MDR-TB patients in China is common, although less so in elderly patients. Therefore, pyrazinamide should only be used for treatment of RR/MDR-TB in China if susceptibility is confirmed. Molecular testing for detection of pyrazinamide resistance only based on pncA mutations has certain value for the rapid detection of pyrazinamide resistance in MDR-TB strains but other gene mutations conferring to pyrazinamide resistance still need to be explored to increase its predictive ability .
Collapse
Affiliation(s)
- Hui Xia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Susan van den Hof
- KNCV Tuberculosis Foundation, The Hague, The Netherlands.,National Institute of Public Health and the Environment, Centre for Infectious Disease Epidemiology and Surveillance, Bilthoven, The Netherlands
| | - Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
54
|
Prevalence and genetic profiles of isoniazid resistance in tuberculosis patients: A multicountry analysis of cross-sectional data. PLoS Med 2020; 17:e1003008. [PMID: 31961877 PMCID: PMC6974034 DOI: 10.1371/journal.pmed.1003008] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The surveillance of drug resistance among tuberculosis (TB) patients is central to combatting the global TB epidemic and preventing the spread of antimicrobial resistance. Isoniazid and rifampicin are two of the most powerful first-line anti-TB medicines, and resistance to either of them increases the risk of treatment failure, relapse, or acquisition of resistance to other drugs. The global prevalence of rifampicin resistance is well documented, occurring in 3.4% (95% CI 2.5%-4.4%) of new TB patients and 18% (95% CI 7.6%-31%) of previously treated TB patients in 2018, whereas the prevalence of isoniazid resistance at global and regional levels is less understood. In 2018, the World Health Organization (WHO) recommended a modified 6-month treatment regimen for people with isoniazid-resistant, rifampicin-susceptible TB (Hr-TB), which includes rifampicin, pyrazinamide, ethambutol, and levofloxacin. We estimated the global prevalence of Hr-TB among TB patients and investigated associated phenotypic and genotypic drug resistance patterns. METHODS AND FINDINGS Aggregated drug resistance data reported to WHO from either routine continuous surveillance or nationally representative periodic surveys of TB patients for the period 2003-2017 were reviewed. Isoniazid data were available from 156 countries or territories for 211,753 patients. Among these, the global prevalence of Hr-TB was 7.4% (95% CI 6.5%-8.4%) among new TB patients and 11.4% (95% CI 9.4%-13.4%) among previously treated TB patients. Additional data on pyrazinamide and levofloxacin resistance were available from 6 countries (Azerbaijan, Bangladesh, Belarus, Pakistan, the Philippines, and South Africa). There were no cases of resistance to both pyrazinamide and levofloxacin among Hr-TB patients, except for the Philippines (1.8%, 95% CI 0.2-6.4) and Belarus (5.3%, 95% CI 0.1-26.0). Sequencing data for all genomic regions involved in isoniazid resistance were available for 4,563 patients. Among the 1,174 isolates that were resistant by either phenotypic testing or sequencing, 78.6% (95% CI 76.1%-80.9%) had resistance-conferring mutations in the katG gene and 14.6% (95% CI 12.7%-16.8%) in both katG and the inhA promoter region. For 6.8% (95% CI 5.4%-8.4%) of patients, mutations occurred in the inhA promoter alone, for whom an increased dose of isoniazid may be considered. The main limitations of this study are that most analyses were performed at the national rather than individual patient level and that the quality of laboratory testing may vary between countries. CONCLUSIONS In this study, the prevalence of Hr-TB among TB patients was higher than the prevalence of rifampicin resistance globally. Many patients with Hr-TB would be missed by current diagnostic algorithms driven by rifampicin testing, highlighting the need for new rapid molecular technologies to ensure access to appropriate treatment and care. The low prevalence of resistance to pyrazinamide and fluoroquinolones among patients with Hr-TB provides further justification for the recommended modified treatment regimen.
Collapse
|
55
|
Abstract
Giorgia Sulis and Madhukar Pai discuss the global distribution, and approaches to diagnosis and treatment, of isoniazid-resistant tuberculosis.
Collapse
Affiliation(s)
- Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Madhukar Pai
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Manipal McGill Program for Infectious Diseases, Manipal Centre for Infectious Diseases, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
56
|
Millard JD, Mackay EA, Bonnett LJ, Davies GR. The impact of inclusion, dose and duration of pyrazinamide (PZA) on efficacy and safety outcomes in tuberculosis: systematic review and meta-analysis protocol. Syst Rev 2019; 8:329. [PMID: 31847921 PMCID: PMC6915872 DOI: 10.1186/s13643-019-1231-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyrazinamide (PZA) is a key component of current and future regimens for tuberculosis (TB). Inclusion of PZA at higher doses and for longer durations may improve efficacy outcomes but must be balanced against the potential for worse safety outcomes. METHODS We will search for randomised and quasi-randomised clinical trials in adult participants with and without the inclusion of PZA in TB treatment regimens in the Cochrane infectious diseases group's trials register, Cochrane central register of controlled trials (CENTRAL), MEDLINE, EMBASE, LILACS, the metaRegister of Controlled Trials (mRCT) and the World Health Organization (WHO) international clinical trials registry platform. One author will screen abstracts and remove ineligible studies (10% of which will be double-screened by a second author). Two authors will review full texts for inclusion. Safety and efficacy data will be extracted to pre-piloted forms by one author (10% of which will be double-extracted by a second author). The Cochrane risk of bias tool will be used to assess study quality. The study has three objectives: the association of (1) inclusion, (2) dose and (3) duration of PZA with efficacy and safety outcomes. Risk ratios as relative measures of effect for direct comparisons within trials (all objectives) and proportions as absolute measures of effect for indirect comparisons across trials (for objectives 2 and 3) will be calculated. If there is insufficient data for direct comparisons within trials for objective 1, indirect comparisons between trials will be performed. Measures of effect will be pooled, with corresponding 95% confidence intervals and p values. Meta-analysis will be performed using the generalised inverse variance method for fixed effects models (FEM) or the DerSimonian-Laird method for random effects models (REM). For indirect comparisons, meta-regression for absolute measures against dose and duration data will be performed. Heterogeneity will be quantified through the I2-statistic for direct comparisons and the τ2 statistic for indirect comparisons using meta-regression. DISCUSSION The current use of PZA for TB is based on over 60 years of clinical trial data, but this has never been synthesised to guide rationale use in future regimens and clinical trials. Systematic review registration: International Prospective Register of Systematic Reviews (PROSPERO) CRD42019138735.
Collapse
Affiliation(s)
- James D. Millard
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Block E Royal Infirmary Complex, 70 Pembroke Place, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Africa Health Research Institute, Durban, South Africa
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Elizabeth A. Mackay
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Laura J. Bonnett
- School of Medicine, University of Liverpool, Liverpool, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Geraint R. Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- School of Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
57
|
Dara M, Ehsani S, Mozalevskis A, Vovc E, Simões D, Avellon Calvo A, Casabona I Barbarà J, Chokoshvili O, Felker I, Hoffner S, Kalmambetova G, Noroc E, Shubladze N, Skrahina A, Tahirli R, Tsertsvadze T, Drobniewski F. Tuberculosis, HIV, and viral hepatitis diagnostics in eastern Europe and central Asia: high time for integrated and people-centred services. THE LANCET. INFECTIOUS DISEASES 2019; 20:e47-e53. [PMID: 31740252 DOI: 10.1016/s1473-3099(19)30524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Globally, high rates (and in the WHO European region an increasing prevalence) of co-infection with tuberculosis and HIV and HIV and hepatitis C virus exist. In eastern European and central Asian countries, the tuberculosis, HIV, and viral hepatitis programmes, including diagnostic services, are separate vertical structures. In this Personal View, we consider underlying reasons for the poor integration for these diseases, particularly in the WHO European region, and how to address this with an initial focus on diagnostic services. In part, this low integration has reflected different diagnostic development histories, global funding sources, and sample types used for diagnosis (eg, typically sputum for tuberculosis and blood for HIV and hepatitis C). Cooperation between services improved as patients with tuberculosis needed routine testing for HIV and vice versa, but financial, infection control, and logistical barriers remain. Multidisease diagnostic platforms exist, but to be used optimally, appropriate staff training and sensible understanding of different laboratory and infection control risks needs rapid implementation. Technically these ideas are all feasible. Poor coordination between these vertical systems remains unhelpful. There is a need to increase political and operational integration of diagnostic and treatment services and bring them closer to patients.
Collapse
Affiliation(s)
- Masoud Dara
- Communicable Diseases Department, Division of Health Emergencies and Communicable Diseases, Regional Office for Europe, World Health Organization, Copenhagen, Denmark.
| | - Soudeh Ehsani
- Joint Tuberculosis, HIV and Viral Hepatitis Programme, Regional Office for Europe, World Health Organization, Copenhagen, Denmark
| | - Antons Mozalevskis
- Joint Tuberculosis, HIV and Viral Hepatitis Programme, Regional Office for Europe, World Health Organization, Copenhagen, Denmark
| | - Elena Vovc
- Joint Tuberculosis, HIV and Viral Hepatitis Programme, Regional Office for Europe, World Health Organization, Copenhagen, Denmark
| | - Daniel Simões
- EPI Unit, Institute of Public Health, University of Porto, Porto, Portugal
| | - Ana Avellon Calvo
- Hepatitis Unit, National Center of Microbiology, Carlos III Institute of Health, Majadahonda, Madrid, Spain
| | - Jordi Casabona I Barbarà
- Center for Epidemiological Studies on STI and AIDS in Catalonia and Research Network on Biomedical Research, Epidemiology and Public Health, Catalan Agency of Public Health, Badalona, Spain
| | - Otar Chokoshvili
- Infectious diseases and Clinical Immunology Research Center, Tbilisi, Georgia
| | - Irina Felker
- Scientific department, Novosibirsk Tuberculosis Research Institute, Novosibirsk, Russia
| | - Sven Hoffner
- Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | | | - Ecatarina Noroc
- National AIDS Programme, Dermatology and Communicable Diseases Hospital, Chisinau, Moldova
| | - Natalia Shubladze
- National Reference Laboratory, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Alena Skrahina
- Clinical department, Republican Scientific and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Rasim Tahirli
- Laboratory for Medical Service, Specialized Treatment Institution, Main Medical Department, Ministry of Justice, Baku, Azerbaijan
| | - Tengiz Tsertsvadze
- Infectious Diseases and Clinical Immunology Research Center, Tbilisi State University, Tbilisi, Georgia
| | - Francis Drobniewski
- Global Health and Tuberculosis, Imperial College London, London, UK; WHO European Laboratory Initiative on Tuberculosis, HIV and Viral hepatitis, WHO Regional Office of Europe, Copenhagen, Denmark
| |
Collapse
|
58
|
Manina G, Griego A, Singh LK, McKinney JD, Dhar N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J 2019; 38:e101876. [PMID: 31583725 PMCID: PMC6856624 DOI: 10.15252/embj.2019101876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
Clonal microbial populations are inherently heterogeneous, and this diversification is often considered as an adaptation strategy. In clinical infections, phenotypic diversity is found to be associated with drug tolerance, which in turn could evolve into genetic resistance. Mycobacterium tuberculosis, which ranks among the top ten causes of mortality with high incidence of drug-resistant infections, exhibits considerable phenotypic diversity. In this study, we quantitatively analyze the cellular dynamics of DNA damage responses in mycobacteria using microfluidics and live-cell fluorescence imaging. We show that individual cells growing under optimal conditions experience sporadic DNA-damaging events manifested by RecA expression pulses. Single-cell responses to these events occur as transient pulses of fluorescence expression, which are dependent on the gene-network structure but are triggered by extrinsic signals. We demonstrate that preexisting subpopulations, with discrete levels of DNA damage response, are associated with differential susceptibility to fluoroquinolones. Our findings reveal that the extent of DNA integrity prior to drug exposure impacts the drug activity against mycobacteria, with conceivable therapeutic implications.
Collapse
Affiliation(s)
- Giulia Manina
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Anna Griego
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Lalit Kumar Singh
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
| | - John D McKinney
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Neeraj Dhar
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
59
|
Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, Cattamanchi A, Cegielski JP, Chen L, Daley CL, Dalton TL, Duarte R, Fregonese F, Horsburgh CR, Ahmad Khan F, Kheir F, Lan Z, Lardizabal A, Lauzardo M, Mangan JM, Marks SM, McKenna L, Menzies D, Mitnick CD, Nilsen DM, Parvez F, Peloquin CA, Raftery A, Schaaf HS, Shah NS, Starke JR, Wilson JW, Wortham JM, Chorba T, Seaworth B. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200:e93-e142. [PMID: 31729908 PMCID: PMC6857485 DOI: 10.1164/rccm.201909-1874st] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Collapse
|
60
|
Cao Z, Lan Y, Chen L, Xiang M, Peng Z, Zhang J, Zhang H. Resistance To First-Line Antituberculosis Drugs And Prevalence Of pncA Mutations In Clinical Isolates Of Mycobacterium tuberculosis From Zunyi, Guizhou Province Of China. Infect Drug Resist 2019; 12:3093-3102. [PMID: 31686870 PMCID: PMC6777635 DOI: 10.2147/idr.s222943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022] Open
Abstract
Background China is one of the high-burden countries for multidrug-resistant tuberculosis (MDR-TB), and pyrazinamide is one of the anti-TB drugs used for the shorter MDR-TB treatment regimen. The aim of this study was to determine the correlation between pncA gene mutations and resistance to four first-line anti-TB drugs as well as treatment history in clinical isolates of Mycobacterium tuberculosis. Patients and methods M. tuberculosis clinical isolates were collected from 318 in-patients with smear-positive TB between October 2008 and September 2016 at a major hospital in Zunyi, Guizhou Province of China, and used for drug susceptibility testing against four first-line anti-TB drugs. Genomic DNA extracted from clinical isolates was used for PCR amplification and DNA sequencing of the pncA gene. Results Among 318 clinical isolates, 129 (40.6%), 170 (53.5%), 66 (20.8%) and 109 (34.3%) were resistant to rifampicin, isoniazid, ethambutol and streptomycin respectively. In addition, 124 clinical isolates were MDR-TB and 71.8% of them were previously treated cases. Sequencing results showed that 46.8% of MDR-TB and 2.2% of drug susceptible isolates harbored a pncA mutation, and 52 types of pncA mutations were detected from 64 isolates. The prevalence of pncA mutations in isolates resistant to first-line anti-TB drugs and previously treated TB cases was significantly higher than that in drug-susceptible isolates and new cases of TB. Conclusion High prevalence of pncA mutations in clinical isolates of M. tuberculosis from Zunyi, Guizhou Province of China, is correlated with resistance to four first-line anti-TB drugs, MDR-TB and previously treated TB cases.
Collapse
Affiliation(s)
- Zhimin Cao
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Yuanbo Lan
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Ling Chen
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Min Xiang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Zhiyuan Peng
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Jianyong Zhang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Hong Zhang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China.,Department of R & D, Z-BioMed, Inc, Rockville, MD, 20855, USA
| |
Collapse
|
61
|
Kendall EA, Malhotra S, Cook-Scalise S, Denkinger CM, Dowdy DW. Estimating the impact of a novel drug regimen for treatment of tuberculosis: a modeling analysis of projected patient outcomes and epidemiological considerations. BMC Infect Dis 2019; 19:794. [PMID: 31500572 PMCID: PMC6734288 DOI: 10.1186/s12879-019-4429-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regimens that could treat both rifampin-resistant (RR) and rifampin-susceptible tuberculosis (TB) while shortening the treatment duration have reached late-stage clinical trials. Decisions about whether and how to implement such regimens will require an understanding of their likely clinical impact and how this impact depends on local epidemiology and implementation strategy. METHODS A Markov state-transition model of 100,000 representative South African adults with TB was used to simulate implementation of the regimen BPaMZ (bedaquiline, pretomanid, moxifloxacin, and pyrazinamide), either for RR-TB only or universally for all patients. Patient outcomes, including cure rates, time with active TB, and time on treatment, were compared to outcomes under current care. Sensitivity analyses varied the drug-resistance epidemiology, rifampin susceptibility testing practices, and regimen efficacy. RESULTS Using BPaMZ exclusively for RR-TB increased the proportion of all RR-TB that was cured by initial treatment from 60 ± 1% to 67 ± 1%. Expanding use of BPaMZ to all patients increased cure of RR-TB to 89 ± 1% and cure of all TB from 87.3 ± 0.1% to 89.5 ± 0.1%, while shortening treatment by 1.9 months/person. In sensitivity analyses, reducing the coverage of rifampin susceptibility testing resulted in lower projected proportions of patients cured under all regimen scenarios (current care, RR-only BPaMZ, and universal BPaMZ), compared to the proportions projected using South Africa's high coverage; however, this reduced coverage resulted in greater expected incremental benefits of universal BPaMZ implementation, both when compared to RR-only BPaMZ implementation and when compared to to current care under the same low rifampin susceptibility testing coverage. In settings with higher RR-TB prevalence, the benefits of BPaMZ were magnified both for RR-specific and universal BPaMZ implementation. CONCLUSIONS Novel regimens such as BPaMZ could improve RR-TB outcomes and shorten treatment for all patients, particularly with universal use. Decision-makers weighing early options for implementing such regimens at scale will want to consider the expected impact on patient outcomes and on the burden of treatment in their local context.
Collapse
Affiliation(s)
- Emily A Kendall
- Division of Infectious Diseases and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, CRB2 Room 106, 1550 Orleans St, Baltimore, MD, 21287, USA.
| | - Shelly Malhotra
- Global Alliance for TB Drug Development, New York, NY, USA
- International AIDS Vaccine Initiative, New York, NY, USA
| | | | - Claudia M Denkinger
- Division of Tropical Medicine, Center of Infectious Disease, Heidelberg University, Heidelberg, Germany
- Tuberculosis Programme, FIND, Geneva, Switzerland
| | - David W Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
62
|
Rigouts L, Miotto P, Schats M, Lempens P, Cabibbe AM, Galbiati S, Lampasona V, de Rijk P, Cirillo DM, de Jong BC. Fluoroquinolone heteroresistance in Mycobacterium tuberculosis: detection by genotypic and phenotypic assays in experimentally mixed populations. Sci Rep 2019; 9:11760. [PMID: 31409849 PMCID: PMC6692311 DOI: 10.1038/s41598-019-48289-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Heteroresistance - the simultaneous presence of drug-susceptible and -resistant organisms - is common in Mycobacterium tuberculosis. In this study, we aimed to determine the limit of detection (LOD) of genotypic assays to detect gatifloxacin-resistant mutants in experimentally mixed populations. A fluoroquinolone-susceptible M. tuberculosis mother strain (S) and its in vitro selected resistant daughter strain harbouring the D94G mutation in gyrA (R) were mixed at different ratio’s. Minimum inhibitory concentrations (MICs) against gatifloxacin were determined, while PCR-based techniques included: line probe assays (Genotype MTBDRsl and GenoScholar-FQ + KM TB II), Sanger sequencing and targeted deep sequencing. Droplet digital PCR was used as molecular reference method. A breakpoint concentration of 0.25 mg/L allows the phenotypic detection of ≥1% resistant bacilli, whereas at 0.5 mg/L ≥ 5% resistant bacilli are detected. Line probe assays detected ≥5% mutants. Sanger sequencing required the presence of around 15% mutant bacilli to be detected as (hetero) resistant, while targeted deep sequencing detected ≤1% mutants. Deep sequencing and phenotypic testing are the most sensitive methods for detection of fluoroquinolone-resistant minority populations, followed by line probe assays (provided that the mutation is confirmed by a mutation band), while Sanger sequencing proved to be the least sensitive method.
Collapse
Affiliation(s)
- L Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - P Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Schats
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - P Lempens
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - A M Cabibbe
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Galbiati
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V Lampasona
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P de Rijk
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - B C de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
63
|
Dowdy DW, Theron G, Tornheim JA, Warren R, Kendall EA. Of Testing and Treatment: Implications of Implementing New Regimens for Multidrug-Resistant Tuberculosis. Clin Infect Dis 2019; 65:1206-1211. [PMID: 29554229 DOI: 10.1093/cid/cix486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/23/2017] [Indexed: 01/02/2023] Open
Abstract
A novel, shorter-course regimen for treating multidrug-resistant (MDR) tuberculosis was recently recommended by the World Health Organization. However, the most appropriate use of drug susceptibility testing (DST) to support this regimen is less clear. Implementing countries must therefore often choose between using a standardized regimen despite high levels of underlying drug resistance or require more stringent DST prior to treatment initiation. The former carries a high likelihood of exposing patients to de facto monotherapy with a critical drug class (fluoroquinolones), whereas the latter could exclude large groups of patients from their most effective treatment option. We discuss the implications of this dilemma and argue for an approach that will integrate DST into the delivery of any novel antimicrobial regimen, without excessively stringent requirements. Such guidance could make the novel MDR tuberculosis regimen available to most patients while reducing the risk of generating additional drug resistance.
Collapse
Affiliation(s)
- David W Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Grant Theron
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; and
| | - Jeffrey A Tornheim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robin Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; and
| | - Emily A Kendall
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
64
|
Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol 2019; 17:533-545. [DOI: 10.1038/s41579-019-0214-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
65
|
Pontali E, Raviglione MC, Migliori GB. Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives. Eur Respir Rev 2019; 28:28/152/190035. [PMID: 31142549 DOI: 10.1183/16000617.0035-2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/28/2019] [Indexed: 11/05/2022] Open
Abstract
Over the past few decades, treatment of multidrug-resistant (MDR)/extensively drug-resistant (XDR) tuberculosis (TB) has been challenging because of its prolonged duration (up to 20-24 months), toxicity, costs and sub-optimal outcomes.After over 40 years of neglect, two new drugs (bedaquiline and delamanid) have been made available to manage difficult-to-treat MDR-/XDR-TB cases. World Health Organization (WHO) guidelines published in March 2019 endorsed the possibility of treating MDR-TB patients with a full oral regimen, following previous guidelines published in 2016 which launched a shorter regimen lasting 9-10 months.The objectives of this article are to review the main achievements in MDR-TB treatment through the description of the existing WHO strategies, to discuss the main ongoing trials and to shed light on potential future scenarios and revised definitions necessary to manage drug-resistant TB.
Collapse
Affiliation(s)
| | | | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | | |
Collapse
|
66
|
Jajou R, van der Laan T, de Zwaan R, Kamst M, Mulder A, de Neeling A, Anthony R, van Soolingen D. WGS more accurately predicts susceptibility of Mycobacterium tuberculosis to first-line drugs than phenotypic testing. J Antimicrob Chemother 2019; 74:2605-2616. [DOI: 10.1093/jac/dkz215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Drug-susceptibility testing (DST) of Mycobacterium tuberculosis complex (MTBC) isolates by the Mycobacteria Growth Indicator Tube (MGIT) approach is the most widely applied reference standard. However, the use of WGS is increasing in many developed countries to detect resistance and predict susceptibility. We investigated the reliability of WGS in predicting drug susceptibility, and analysed the discrepancies between WGS and MGIT against the first-line drugs rifampicin, isoniazid, ethambutol and pyrazinamide.
Methods
DST by MGIT and WGS was performed on MTBC isolates received in 2016/2017. Nine genes and/or their promotor regions were investigated for resistance-associated mutations: rpoB, katG, fabG1, ahpC, inhA, embA, embB, pncA and rpsA. Isolates that were discrepant in their MGIT/WGS results and a control group with concordant results were retested in the MGIT, at the critical concentration and a lower concentration, and incubated for up to 45 days after the control tube became positive in the MGIT.
Results
In total, 1136 isolates were included, of which 1121 were routine MTBC isolates from the Netherlands. The negative predictive value of WGS was ≥99.3% for all four first-line antibiotics. The majority of discrepancies for isoniazid and ethambutol were explained by growth at the lower concentrations, and for rifampicin by prolonged incubation in the MGIT, both indicating low-level resistance.
Conclusions
Applying WGS in a country like the Netherlands, with a low TB incidence and low prevalence of resistance, can reduce the need for phenotypic DST for ∼90% of isolates and accurately detect mutations associated with low-level resistance, often missed in conventional DST.
Collapse
Affiliation(s)
- Rana Jajou
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tridia van der Laan
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rina de Zwaan
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Miranda Kamst
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arnout Mulder
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Albert de Neeling
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Richard Anthony
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dick van Soolingen
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
67
|
Kendall EA, Sahu S, Pai M, Fox GJ, Varaine F, Cox H, Cegielski JP, Mabote L, Vassall A, Dowdy DW. What will it take to eliminate drug-resistant tuberculosis? Int J Tuberc Lung Dis 2019; 23:535-546. [PMID: 31097060 PMCID: PMC6600801 DOI: 10.5588/ijtld.18.0217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) is challenging to diagnose, treat, and prevent, but this situation is slowly changing. If the world is to drastically reduce the incidence of DR-TB, we must stop creating new DR-TB as an essential first step. The DR-TB epidemic that is ongoing should also be directly addressed. First-line drug resistance must be rapidly detected using universal molecular testing for resistance to at least rifampin and, preferably, other key drugs at initial TB diagnosis. DR-TB treatment outcomes must also improve dramatically. Effective use of currently available, new, and repurposed drugs, combined with patient-centered treatment that aids adherence and reduces catastrophic costs, are essential. Innovations within sight, such as short, highly effective, broadly indicated regimens, paired with point-of-care drug susceptibility testing, could accelerate progress in treatment outcomes. Preventing or containing resistance to second-line and novel drugs is also critical and will require high-quality systems for diagnosis, regimen selection, and treatment monitoring. Finally, earlier detection and/or prevention of DR-TB is necessary, with particular attention to airborne infection control, case finding, and preventive therapy for contacts of patients with DR-TB. Implementing these strategies can overcome the barrier that DR-TB represents for global TB elimination efforts, and could ultimately make global elimination of DR-TB (fewer than one annual case per million population worldwide) attainable. There is a strong cost-effectiveness case to support pursuing DR-TB elimination; however, achieving this goal will require substantial global investment plus political and societal commitment at national and local levels.
Collapse
Affiliation(s)
- E A Kendall
- Johns Hopkins University, Baltimore, Maryland, USA
| | - S Sahu
- Stop TB Partnership, Geneva, Switzerland
| | - M Pai
- McGill International TB Center, McGill University, Montreal, Quebec, Canada
| | - G J Fox
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - F Varaine
- Médecins Sans Frontières, Paris, France
| | - H Cox
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; **Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - L Mabote
- AIDS and Rights Alliance for Southern Africa, Cape Town, South Africa
| | - A Vassall
- London School of Hygiene & Tropical Medicine, London, UK
| | - D W Dowdy
- Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
68
|
Kim H, Mok JH, Kang B, Lee T, Lee HK, Jang HJ, Cho YJ, Jeon D. Trend of multidrug and fluoroquinolone resistance in Mycobacterium tuberculosis isolates from 2010 to 2014 in Korea: a multicenter study. Korean J Intern Med 2019; 34:344-352. [PMID: 30045614 PMCID: PMC6406095 DOI: 10.3904/kjim.2018.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS This study was conducted to evaluate the recent prevalence and trend of anti-tuberculosis (TB) drug resistance with a focus on multidrug-resistance (MDR) and fluoroquinolone resistance in South Korea. METHODS We retrospectively reviewed the drug susceptibility testing results of culture-confirmed Mycobacterium tuberculosis isolates collected from 2010 to 2014 at seven tertiary hospitals in South Korea. RESULTS A total of 5,599 cases were included: 4,927 (88.0%) were new cases and 672 (12.0%) were previously treated cases. The MDR rate has significantly decreased from 6.0% in 2010 to 3.0% in 2014 among new cases, and from 28.6% in 2010 to 18.4% in 2014 among previously treated cases (p < 0.001 and p = 0.027, respectively). The resistance rate to any f luoroquinolone was 0.8% (43/5,221) in non-MDR-TB patients, as compared to 26.2% (99/378) in MDR-TB patients (p < 0.001). There was no significant change in the trend of fluoroquinolone resistance among both nonMDR-TB and MDR-TB patients. Among the 43 non-MDR-TB patients with fluoroquinolone resistance, 38 (88.4%) had fluoroquinolone mono-resistant isolates. CONCLUSION The prevalence of MDR-TB has significantly decreased from 2010 to 2014. The prevalence of fluoroquinolone resistance among non-MDR-TB patients was low, but the existence of fluoroquinolone mono-resistant TB may be a warning on the widespread use of fluoroquinolone in the community.
Collapse
Affiliation(s)
- Hyeonseok Kim
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jeong Ha Mok
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Bohyoung Kang
- Department of Internal Medicine, Dong-A University Hospital, Busan, Korea
| | - Taehoon Lee
- Department of Internal Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Hyun-Kyung Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Korea
| | - Hang Jea Jang
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yu Ji Cho
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Doosoo Jeon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Correspondence to Doosoo Jeon, M.D. Department of Internal Medicine, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan 50612, Korea Tel: +82-55-360-1414 Fax: +82-55-360-1759 E-mail:
| |
Collapse
|
69
|
Iwamoto T, Murase Y, Yoshida S, Aono A, Kuroda M, Sekizuka T, Yamashita A, Kato K, Takii T, Arikawa K, Kato S, Mitarai S. Overcoming the pitfalls of automatic interpretation of whole genome sequencing data by online tools for the prediction of pyrazinamide resistance in Mycobacterium tuberculosis. PLoS One 2019; 14:e0212798. [PMID: 30817803 PMCID: PMC6394917 DOI: 10.1371/journal.pone.0212798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/09/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Automated online software tools that analyse whole genome sequencing (WGS) data without the need for bioinformatics expertise can motivate the implementation of WGS-based molecular drug susceptibility testing (DST) in routine diagnostic settings for tuberculosis (TB). Pyrazinamide (PZA) is a key drug for current and future TB treatment regimens; however, it was reported that predictive power for PZA resistance by the available tools is low. Therefore, this low predictive power may make users hesitant to use the tools. This study aimed to elucidate why and to uncover the real performance of the tools when taking into account their variation calling lists (manual inspection), not just their automated reporting system (default setting) that was evaluated by previous studies. METHODS WGS data from 191 datasets comprising 108 PZA-resistant and 83 susceptible strains were used to evaluate the potential performance of the available online tools (TB Profiler, TGS-TB, PhyResSE, and CASTB) for predicting phenotypic PZA resistance. RESULTS When taking into consideration the variation calling lists, 73 variants in total (47 non-synonymous mutations and 26 indels) in pncA were detected by TGS-TB and PhyResSE, covering all mutations for the 108 PZA-resistant strains. The 73 variants were confirmed by Sanger sequencing. TB Profiler also detected all but three complete loss, two large deletion at the 3'-end, and one relatively large insertion of pncA. On the other hand, many of the 73 variants were lacking in the automated reporting systems except by TGS-TB; of these variants, CASTB detected only 20. By applying the 'non-wild type sequence' approach for predicting PZA resistance, accuracy of the results significantly improved compared with that of the automated results obtained by each tool. CONCLUSION Users can obtain more accurate predictions for PZA resistance than previously reported by manually checking the results and applying the 'non-wild type sequence' approach.
Collapse
Affiliation(s)
- Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
- * E-mail: (TI); (SM)
| | - Yoshiro Murase
- Bacteriology Division, Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Akio Aono
- Bacteriology Division, Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kengo Kato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takemasa Takii
- Molecular Epidemiology Division, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Seiya Kato
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Satoshi Mitarai
- Bacteriology Division, Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
- Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, Nagasaki, Japan
- * E-mail: (TI); (SM)
| |
Collapse
|
70
|
Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance. Antimicrob Agents Chemother 2019; 63:AAC.02141-18. [PMID: 30642938 DOI: 10.1128/aac.02141-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/31/2018] [Indexed: 11/20/2022] Open
Abstract
Six in vitro clofazimine-resistant spontaneous mutants obtained from a wild-type or pyrazinamide-resistant ATCC reference strain were selected to evaluate bedaquiline cross-resistance. The reverse was conducted for bedaquiline mutants. All clofazimine mutants harboring an rv0678 mutation displayed phenotypic cross-resistance. We observed the same for rv0678 bedaquiline mutants; however, atpE bedaquiline mutants showed no phenotypic cross-resistance. This confirms that upfront clofazimine usage may impact subsequent bedaquiline use due to a shared efflux resistance pathway.
Collapse
|
71
|
'Those who cannot remember the past are condemned to repeat it': Drug-susceptibility testing for bedaquiline and delamanid. Int J Infect Dis 2019; 80S:S32-S35. [PMID: 30818049 DOI: 10.1016/j.ijid.2019.02.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/22/2022] Open
Abstract
Despite being fundamental to all treatment decisions, the breakpoints that define susceptibility and resistance to conventional anti-tuberculosis (TB) drugs were traditionally defined based on expert opinion as opposed to modern microbiological principles. As a result, the breakpoints for several key drugs (i.e. amikacin, levofloxacin, and moxifloxacin) were too high, resulting in the systematic misclassification of a proportion of resistant strains as susceptible. Moreover, a recent systematic review of clinical outcome data prompted the World Health Organization (WHO) to make significant changes to its treatment guidelines. For example, capreomycin and kanamycin are no longer recommended for TB treatment because their use correlates with worse clinical outcomes. This history notwithstanding, robust breakpoints still do not exist for bedaquiline and delamanid six years after their approval. This was compounded by the fact that access to both agents for drug-susceptibility testing had initially been restricted. It is incumbent upon the European Medicines Agency, the United States Food and Drug Administration, and WHO to ensure that drug developers generate the necessary data to set breakpoints as a prerequisite for the approval of new agents.
Collapse
|
72
|
Juma SP, Maro A, Pholwat S, Mpagama SG, Gratz J, Liyoyo A, Houpt ER, Kibiki GS, Mmbaga BT, Heysell SK. Underestimated pyrazinamide resistance may compromise outcomes of pyrazinamide containing regimens for treatment of drug susceptible and multi-drug-resistant tuberculosis in Tanzania. BMC Infect Dis 2019; 19:129. [PMID: 30732572 PMCID: PMC6367741 DOI: 10.1186/s12879-019-3757-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the leading cause of death from an infectious disease and the roll-out of rapid molecular diagnostics for rifampin resistance has resulted in a steady rise in the number of patients with multidrug-resistant (MDR)-TB referred for treatment. Pyrazinamide is used in susceptible TB treatment for 6 months when used in combination with rifampin, isoniazid and ethambutol and is an important companion drug in novel MDR-TB trials. This study was undertaken to determine the prevalence of pyrazinamide resistance by either phenotypic or pncA testing among patients admitted to a referral hospital in Tanzania for drug-susceptible and MDR-TB treatment. METHODS Surveillance sputa were sent among subjects beginning TB therapy at the national MDR-TB referral hospital during a 6 month period in 2013-2014. Mycobacterial cultures of pretreatment sputa were performed at the Kilimanjaro Clinical Research Institute (KCRI) in the BACTEC mycobacterial growth indicator tubes (MGIT) 960 system. Speciation of M. tuberculosis complex was confirmed by MTBc assay. Isolates were sub-cultured on to Lowenstein-Jensen (LJ) slants. Phenotypic resistance to pyrazinamide was performed in the MGIT system while a real-time PCR with High Resolution Melt (HRM) technique was used to determine mutation in the pncA gene from the same pure subculture. Sputa were then collected monthly to determine the time to culture negativity. Final treatment outcome was determined. RESULTS Ninety-one M. tuberculosis isolates from individual patients were available for analysis of which 30 (32.9%) had MDR-TB, the mean (±SD) age was 33 ± 10 years, and the majority 23 (76.7%) were males. Of the 30 MDR-TB patients, 15(50%) had isolates with pyrazinamide resistance by conventional MGIT testing. This proportion expectedly exceeded the number with pyrazinamide resistance in the 61 patients without MDR-TB, 13 (21.3%) (p = 0.008). Six (20%) of MDR-TB patients had a poor outcome including treatment failure. Among patients with treatment failure, 5 (83%) had pyrazinamide resistance compared to only 10 (41.6%) with treatment success (p = 0.08). Two patients died, and both had isolates with pyrazinamide resistance. No other pretreatment characteristic was associated with treatment outcome. CONCLUSION Pyrazinamide susceptibility appears to be important in clinical outcomes for MDR-TB patients, and susceptibility testing appears to be a critical adjunct to TB care. The high proportion of PZA resistance in non-MDR TB cases calls for further local investigation.
Collapse
Affiliation(s)
- Saumu Pazia Juma
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Athanasia Maro
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Suporn Pholwat
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | - Stellah G. Mpagama
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kibong’oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
| | - Jean Gratz
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | - Alphonse Liyoyo
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | | | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Scott K. Heysell
- Kibong’oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
73
|
A Diagnostic Algorithm To Investigate Pyrazinamide and Ethambutol Resistance in Rifampin-Resistant Mycobacterium tuberculosis Isolates in a Low-Incidence Setting. Antimicrob Agents Chemother 2019; 63:AAC.01798-18. [PMID: 30455227 PMCID: PMC6355586 DOI: 10.1128/aac.01798-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022] Open
Abstract
Phenotypic drug susceptibility testing (DST) for the two first-line tuberculosis drugs ethambutol and pyrazinamide is known to yield unreliable and inaccurate results. In this prospective study, we propose a diagnostic algorithm combining phenotypic DST with Sanger sequencing to inform clinical decision-making for drug-resistant Mycobacterium tuberculosis complex isolates. Sequencing results were validated using whole-genome sequencing (WGS) of the isolates. Resistance-conferring mutations obtained by pncA sequencing correlated well with phenotypic DST results for pyrazinamide. Phenotypic resistance to ethambutol was only partly explained by mutations in the embB 306 codon. Additional resistance-conferring mutations were found in the embB gene at codons 354, 406, and 497. In several isolates that tested ethambutol susceptibility by phenotypic DST, well-known resistance-conferring embB mutations were determined. Thus, targeted Sanger sequencing beyond the embB 306 codon or WGS together with phenotypic DST should be employed to ensure reliable ethambutol drug susceptibility testing, as a basis for the rational design of multidrug-resistant tuberculosis regimens with or without ethambutol.
Collapse
|
74
|
Sarin R, Singla N, Vohra V, Singla R, Puri M, Munjal S, Khalid U, Myneedu V, Kumar Verma A, Mathuria K. Initial experience of bedaquiline implementation under the National TB Programme at NITRD, Delhi, India. ACTA ACUST UNITED AC 2019; 66:209-213. [DOI: 10.1016/j.ijtb.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
75
|
Havlicek J, Dachsel B, Slickers P, Andres S, Beckert P, Feuerriegel S, Niemann S, Merker M, Labugger I. Rapid microarray-based assay for detection of pyrazinamide resistant Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 2018; 94:147-154. [PMID: 30733004 PMCID: PMC6531379 DOI: 10.1016/j.diagmicrobio.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
Abstract
Pyrazinamide (PZA) is a key antibiotic for the treatment of drug susceptible tuberculosis. PZA-resistance is mainly mediated by mutations in the pncA gene; however the current gold standard is a phenotypic drug susceptibility test requiring a well-adjusted pH-value for reliable results. Our melting curve assay detects a non-wild type genotype in selected pncA regions in at least 3750 gene copies/mL within 2.5 hours. The prototype assay was further evaluated by analyzing 271 Mycobacterium tuberculosis complex isolates from Swaziland originating from a previously published drug resistance survey and including 118 isolates with pncA mutations. Sensitivity was 83% (95% CI 75-89%) and specificity was 100% (95% CI 98-100%). Under consideration of further improvements with regard to the target range our melting curve assay has the potential as a rapid rule-in test for PZA susceptibility (wild type pncA), however false resistant results (mutant pncA, but PZA susceptible) cannot be ruled out completely.
Collapse
Affiliation(s)
| | | | | | - Sönke Andres
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Patrick Beckert
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-, Borstel, -Riems, Germany
| | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-, Borstel, -Riems, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-, Borstel, -Riems, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-, Borstel, -Riems, Germany.
| | | |
Collapse
|
76
|
Wu X, Lu W, Shao Y, Song H, Li G, Li Y, Zhu L, Chen C. pncA gene mutations in reporting pyrazinamide resistance among the MDR-TB suspects. INFECTION GENETICS AND EVOLUTION 2018; 72:147-150. [PMID: 30447296 DOI: 10.1016/j.meegid.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
Mutations in pncA gene contributing to PZA resistance was not clearly elucidated in China. To reveal the correlated mutations of pncA gene on pyrazinamide (PZA) resistance. 148 Mycobacterium tuberculosis clinical isolates were included from multi-drug resistant tuberculosis suspects. The MGIT 960 test and microscopic observation drug susceptibility (MODS) assay were adopted for PZA phenotype drug susceptibility test. 120 isolates with consistent MGIT 960 and MODS results were selected for pncA gene sequencing. 68 samples (56.7%) were resistant to PZA while leaving 52 PZA susceptible samples. Out of the 68 PZA resistant isolates, 49 (72.1%) harbored mutations of pncA, and 4 (7.7%) of the 52 PZA susceptible samples harbored mutations of pncA as well. Compared to the phenotype drug resistant pattern of PZA, the mutations of pncA gene reached a sensitivity of 0.72 to report PZA resistance and a specificity of 0.92 to predict PZA susceptibility. Those mutations, Gln10Pro, Asp12Ala, Tyr41Stop, Gly97Asp, Val128Gly and FSC131(ins) exceeding 5% of the total PZA resistant isolates of each, might be helpful but not adequate in PZA molecular susceptibility test design and development.
Collapse
Affiliation(s)
- Xiaoyuan Wu
- Central Laboratory, Nanjing Chest Hospital, Medicine School of Southeast University, Nanjing, Jiangsu, China
| | - Wei Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Yan Shao
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Honghuan Song
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Guoli Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Yan Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Cheng Chen
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China.
| |
Collapse
|
77
|
A simplified pyrazinamidase test for pyrazinamide drug susceptibility in Mycobacterium tuberculosis. J Microbiol Methods 2018; 154:52-54. [PMID: 30316980 DOI: 10.1016/j.mimet.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022]
Abstract
We modified Wayne's pyrazinamidase test against Mycobacterium tuberculosis to indirectly measure pyrazinamidase activity via pyrazinoic acid in liquid medium. The modified pyrazinamidase test was easy to perform and its results were in complete agreement with those of the conventional Wayne's method, highlighting its potential application in phenotypic pyrazinamide susceptibility testing.
Collapse
|
78
|
Miotto P, Zhang Y, Cirillo DM, Yam WC. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 2018; 23:1098-1113. [PMID: 30189463 DOI: 10.1111/resp.13393] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is the deadliest infectious disease and the associated global threat has worsened with the emergence of drug resistance, in particular multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Although the World Health Organization (WHO) End-TB Strategy advocates for universal access to antimicrobial susceptibility testing, this is not widely available and/or it is still underused. The majority of drug resistance in clinical MTB strains is attributed to chromosomal mutations. Resistance-related mutations could also exert certain fitness cost to the drug-resistant MTB strains and growth fitness could be restored by the presence of compensatory mutations. Understanding these underlying mechanisms could provide an important insight into TB pathogenesis and predict the future trend of MDR-TB global pandemic. This review covers the mechanisms of resistance in MTB and provides a comprehensive overview of current phenotypic and molecular approaches for drug susceptibility testing, with particular attention to the methods endorsed and recommended by the WHO.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Wing Cheong Yam
- Department of Microbiology, Queen Mary Hospital Compound, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
79
|
Scutigliani EM, Scholl ER, Grootemaat AE, Khanal S, Kochan JA, Krawczyk PM, Reits EA, Garzan A, Ngo HX, Green KD, Garneau-Tsodikova S, Ruijter JM, van Veen HA, van der Wel NN. Interfering With DNA Decondensation as a Strategy Against Mycobacteria. Front Microbiol 2018; 9:2034. [PMID: 30233521 PMCID: PMC6135046 DOI: 10.3389/fmicb.2018.02034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized that blocking the recovery from the condensed state could weaken the bacteria. We showed that after inducing DNA condensation, and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis did not replicate and its survival was significantly reduced. Our work demonstrates that agents that block recovery from the condensed state of the nucleoid can be exploited as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and drugs interfering with recovery from DNA condensation constitutes a novel approach for treatment of tuberculosis and related bacterial infections.
Collapse
Affiliation(s)
- Enzo M Scutigliani
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Edwin R Scholl
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Sadhana Khanal
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Jakub A Kochan
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Eric A Reits
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Huy X Ngo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | | | - Jan M Ruijter
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Henk A van Veen
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
80
|
Ismail N, Omar SV, Ismail NA, Peters RPH. In vitro approaches for generation of Mycobacterium tuberculosis mutants resistant to bedaquiline, clofazimine or linezolid and identification of associated genetic variants. J Microbiol Methods 2018; 153:1-9. [PMID: 30165087 DOI: 10.1016/j.mimet.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022]
Abstract
Bedaquiline, clofazimine and linezolid are pertinent drugs for drug-resistant tuberculosis. Drug-resistant mutants provide insight into important resistance acquisition mechanisms. Methods for in vitro Mycobacterium tuberculosis mutant generation are poorly described. Induction (serial passaging) and spontaneous (adapted Luria-Delbrück assay) approaches using M. tuberculosis ATCC reference strains (one fully-susceptible, four unique mono-resistant) were performed. Mutant MIC values were confirmed (MGIT960) and resultant RAVs compared between approaches and to a catalog of previously published RAVs. Mutant MIC values showed a 3-4-fold (induced) and a 1-4-fold (spontaneous) increase compared to baseline. The pyrazinamide-resistant strain had higher baseline MIC values and acquired resistance (≥4-fold) in fewer passages than other strains (induction approach) for bedaquiline. Previously described and novel RAVs in atpE (8 vs. 1) and rv0678 (4 vs. 12) genes were identified in bedaquiline- and clofazimine-resistant mutants. No rv1979c and rv2535c RAVs were identified. Previously described RAVs were identified in rplC and rrl genes for linezolid-resistant mutants. Both approaches successfully led to in vitro mutants with novel RAVs being described in atpE and rv0678 genes. It was observed that pre-existing resistance may influence mutant phenotypic and genotypic characteristics and warrants further attention.
Collapse
Affiliation(s)
- N Ismail
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, 0002 Prinshof, Gauteng, South Africa
| | - S V Omar
- Centre for Tuberculosis, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, Gauteng, South Africa
| | - N A Ismail
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, 0002 Prinshof, Gauteng, South Africa; Centre for Tuberculosis, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, Gauteng, South Africa
| | - R P H Peters
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, 0002 Prinshof, Gauteng, South Africa; Department of Medical Microbiology, Maastricht University Medical Centre, School CAPHRI, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
81
|
Yates TA, Nunn AJ. Efficacy and safety of regimens for drug-resistant tuberculosis. THE LANCET. INFECTIOUS DISEASES 2018; 16:1218-1219. [PMID: 27788973 DOI: 10.1016/s1473-3099(16)30390-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Tom A Yates
- Institute for Global Health, University College London, London WC1N 1EH, UK.
| | - Andrew J Nunn
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, London, UK
| |
Collapse
|
82
|
Whole-Genome Sequencing To Guide the Selection of Treatment for Drug-Resistant Tuberculosis. Antimicrob Agents Chemother 2018; 62:62/8/e00574-18. [PMID: 30054376 DOI: 10.1128/aac.00574-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
83
|
Zignol M, Floyd K. Resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones - Authors' reply. THE LANCET. INFECTIOUS DISEASES 2018; 17:25. [PMID: 27998569 DOI: 10.1016/s1473-3099(16)30538-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Matteo Zignol
- Global Tuberculosis Programme, WHO, Geneva, Switzerland.
| | | |
Collapse
|
84
|
Validation of the FluoroType MTBDR Assay for Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis Complex Isolates. J Clin Microbiol 2018; 56:JCM.00072-18. [PMID: 29593055 PMCID: PMC5971528 DOI: 10.1128/jcm.00072-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
For Mycobacterium tuberculosis complex (MTBC), the rapid and accurate diagnosis of drug resistance is crucial to ensure early initiation of appropriate therapy. Recently, a new molecular diagnostic test, the FluoroType MTBDR, aimed at detecting rifampin and isoniazid resistance has become available. This study aimed to evaluate the FluoroType MTBDR in comparison to phenotypic drug susceptibility testing (DST) using M. tuberculosis complex isolates. MTBC isolates underwent phenotypic DST and were tested using the FluoroType MTBDR and Genotype MTBDRplus. Sanger sequencing of the key regions of rpoB, katG, inhA, and aphC was performed for isolates with discordant phenotypic and molecular results. Furthermore, isolates with specific wild-type bands missing in the Genotype MTBDRplus, indicating the presence of a mutation, were investigated by Sanger sequencing. Specificity and sensitivity, defined as the proportions of isolates correctly determined as susceptible and resistant by the FluoroType MTBDR compared to phenotypic DST, were calculated. A total of 180 culture isolates were included; phenotypic DST showed 85 isolates susceptible to isoniazid and rifampin, 7 with isoniazid monoresistance, 7 with rifampin monoresistance, and 81 with multidrug resistance. The specificity of the FluoroType MTBDR was 100% (95% confidence interval [CI], 96.0 to 100%) for both rifampin and isoniazid. The sensitivity was 91.7% (95% CI, 83.6 to 96.6%) for isoniazid and 98.9% (95% CI, 93.8 to 100.0%) for rifampin. The FluoroType MTBDR has a high sensitivity and specificity for the detection of rifampin and isoniazid resistance when using culture isolates.
Collapse
|
85
|
Wang T, Dong F, Li QJ, Yin QQ, Song WQ, Mokrousov I, Jiao WW, Shen AD. Clinical and Drug Resistance Characteristics of New Pediatric Tuberculosis Cases in Northern China. Microb Drug Resist 2018; 24:1397-1403. [PMID: 29742052 DOI: 10.1089/mdr.2017.0382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM The aim of this study was to evaluate the clinical features and characteristics of drug resistance in newly diagnosed pediatric tuberculosis (TB) patients in northern China. METHODS Mycobacterium tuberculosis isolates were collected from September 2010 to October 2016 at the Beijing Children's Hospital. Patients were divided into two groups (resistant to at least one drug and pan-susceptible) according to drug susceptibility testing (DST) results. RESULTS A total of 132 new cases, mainly from northern China (87.9%), were included in the study. The median age was 1.9 years (1 month-15 years). Resistance to at least one drug was detected in Mycobacterium tuberculosis isolates from 33 (25%) cases. Eight cases of multidrug-resistant TB (MDR-TB) (6.1%) were detected. The two groups did not differ in clinical presentations (disease site, fever >2 weeks, and cough >2 weeks) or in chest imaging (lesion location, lymphadenitis [mediastinal], and pleural effusion). CONCLUSIONS The rate of Mycobacterium tuberculosis drug resistance in new pediatric TB cases was as high as in the new adult patients surveyed in the national drug resistance survey conducted in 2007. No significant difference was observed in clinical features between patients infected with drug-resistant and drug-susceptible strains. Routine DST is important for prescribing effective antituberculosis treatment regimens.
Collapse
Affiliation(s)
- Ting Wang
- 1 Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , National Center for Children's Health, Beijing, China
| | - Fang Dong
- 1 Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , National Center for Children's Health, Beijing, China
| | - Qin-Jing Li
- 1 Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , National Center for Children's Health, Beijing, China
| | - Qing-Qin Yin
- 1 Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , National Center for Children's Health, Beijing, China
| | - Wen-Qi Song
- 1 Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , National Center for Children's Health, Beijing, China
| | - Igor Mokrousov
- 2 Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute , St. Petersburg, Russia
| | - Wei-Wei Jiao
- 1 Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , National Center for Children's Health, Beijing, China
| | - A-Dong Shen
- 1 Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , National Center for Children's Health, Beijing, China
| |
Collapse
|
86
|
Feng J, Yee R, Zhang S, Tian L, Shi W, Zhang WH, Zhang Y. A Rapid Growth-Independent Antibiotic Resistance Detection Test by SYBR Green/Propidium Iodide Viability Assay. Front Med (Lausanne) 2018; 5:127. [PMID: 29774213 PMCID: PMC5943513 DOI: 10.3389/fmed.2018.00127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
Antibiotic-resistant bacteria have caused huge concerns and demand innovative approaches for their prompt detection. Current antimicrobial susceptibility tests (AST) rely on the growth of the organisms which takes 1–2 days for fast-growing organisms and several weeks for slow growing organisms. Here, we show for the first time the utility of the SYBR Green I/propidium iodide (PI) viability assay for rapidly identifying antibiotic resistance in less than 30 min for major, antibiotic-resistant, fast-growing bacteria, such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii for bactericidal and bacteriostatic agents and in 16 h for extremely rapid detection of drug resistance for isoniazid and pyrazinamide in slow-growing Mycobacterium tuberculosis. The SYBR Green I/PI assay generated rapid and robust results in concordance with traditional AST methods. This novel growth-independent methodology changes the concept of the current growth-based AST and may revolutionize current drug susceptibility testing for all cells of prokaryotic and eukaryotic origin and, subject to further clinical validation, may play a major role in saving lives and improving patient outcomes.
Collapse
Affiliation(s)
- Jie Feng
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Lili Tian
- Beijing Research Institute for Tuberculosis Control, Beijing, China
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Wen-Hong Zhang
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
87
|
Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 2018; 73:1138-1151. [PMID: 29360989 PMCID: PMC5909630 DOI: 10.1093/jac/dkx506] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Drug-resistant TB (DR-TB) remains a significant challenge in TB treatment and control programmes worldwide. Advances in sequencing technology have significantly increased our understanding of the mechanisms of resistance to anti-TB drugs. This review provides an update on advances in our understanding of drug resistance mechanisms to new, existing drugs and repurposed agents. Recent advances in WGS technology hold promise as a tool for rapid diagnosis and clinical management of TB. Although the standard approach to WGS of Mycobacterium tuberculosis is slow due to the requirement for organism culture, recent attempts to sequence directly from clinical specimens have improved the potential to diagnose and detect resistance within days. The introduction of new databases may be helpful, such as the Relational Sequencing TB Data Platform, which contains a collection of whole-genome sequences highlighting key drug resistance mutations and clinical outcomes. Taken together, these advances will help devise better molecular diagnostics for more effective DR-TB management enabling personalized treatment, and will facilitate the development of new drugs aimed at improving outcomes of patients with this disease.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Santhuri Rambaran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
88
|
Khan MT, Malik SI, Ali S, Sheed Khan A, Nadeem T, Zeb MT, Masood N, Afzal MT. Prevalence of Pyrazinamide Resistance in Khyber Pakhtunkhwa, Pakistan. Microb Drug Resist 2018; 24:1417-1421. [PMID: 29584579 DOI: 10.1089/mdr.2017.0234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Pyrazinamide (PZA) is an important component of first-line tuberculosis (TB) treatment because of its distinctive capability to kill subpopulations of persister Mycobacterium tuberculosis (MTB). The significance of PZA can be understood by its inclusion in the most recent World Health Organization-recommended multidrug-resistant (MDR) TB regimen. Very little information is available about the prevalence of PZA-resistant TB from geographically distinct regions of high burden countries, including Khyber Pakhtunkhwa (KPK), Pakistan, because drug susceptibility testing (DST) of PZA is not regularly performed due to the complexity. In this study, we aimed to find the prevalence of PZA resistance in geographically distinct, Pashtun-dominant KPK Province of Pakistan and its correlation with other first- and second-line drug resistance. MATERIALS AND METHODS In this study, DST of PZA was performed through an automated BACTEC MGIT 960 system (BD Diagnostic Systems). The resistant samples were further subjected to DST of isoniazid (INH), rifampicin (RIF), ethambutol (EMB), streptomycin (SM), moxicillin (MOX), amikacin (AMK), ofloxacin (OFX), kanamycin (KM), and capreomycin (CAP). RESULTS Out of 1,075 MTB-positive isolates, 83 (7.7%) were found to be resistant to PZA. Among the PZA-resistant isolates, 76 (90-91.6%) and 67 (80-80.7%) were found to be resistant to INH and RIF, respectively, whereas 63 (76%) were resistant to both first-line drugs, INH and RIF (MDR-TB). The resistance level of EMB, OFX, and SM was also significantly high in PZA resistance, 35 (42%), 40 (48%), and 41 (49-50%) respectively. CONCLUSION PZA resistance is significantly associated with other first- and second-line drug resistance. A significant number of PZA-resistant isolates are MDR cases. Therefore, DST of PZA should regularly be performed along with other drugs for better management of treatment of MDR and extensively drug resistant (XDR), to avoid side effects in patients.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- 1 Department of Bioinformatics and Biosciences, Capital University of Science and Technology , Islamabad, Pakistan
| | - Shaukat Iqbal Malik
- 1 Department of Bioinformatics and Biosciences, Capital University of Science and Technology , Islamabad, Pakistan
| | - Sajid Ali
- 2 Provincial Tuberculosis Reference Lab, Hayatabad Medical Complex , Peshawar, Pakistan
| | - Anwar Sheed Khan
- 2 Provincial Tuberculosis Reference Lab, Hayatabad Medical Complex , Peshawar, Pakistan
| | - Tariq Nadeem
- 3 Center of Excellence in Molecular Biology Department, University of the Punjab , Lahore, Pakistan
| | - Muhammad Tariq Zeb
- 4 Veterinary Research Institute Department , Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Nayyer Masood
- 5 Department of Computer Science, Capital University of Science and Technology , Islamabad, Pakistan
| | - Muhammad Tanvir Afzal
- 5 Department of Computer Science, Capital University of Science and Technology , Islamabad, Pakistan
| |
Collapse
|
89
|
Lim DR, Dean AS, Taguinod-Santiago MR, Borbe-Reyes A, Cabibbe AM, Zignol M, Basilio RP, Garfin AMC, Ama MCG. Low prevalence of fluoroquinolone resistance among patients with tuberculosis in the Philippines: results of a national survey. Eur Respir J 2018; 51:13993003.02571-2017. [PMID: 29496754 DOI: 10.1183/13993003.02571-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/06/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Dodge R Lim
- National Tuberculosis Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa City, Philippines .,RITM TB Study Group, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | - Anna S Dean
- World Health Organization, Geneva, Switzerland
| | | | - Angeli Borbe-Reyes
- National Tuberculosis Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | | | | | - Ramon P Basilio
- National Tuberculosis Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa City, Philippines.,RITM TB Study Group, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | | | - Maria Cecilia G Ama
- National Tuberculosis Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa City, Philippines.,RITM TB Study Group, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| |
Collapse
|
90
|
Zignol M, Cabibbe AM, Dean AS, Glaziou P, Alikhanova N, Ama C, Andres S, Barbova A, Borbe-Reyes A, Chin DP, Cirillo DM, Colvin C, Dadu A, Dreyer A, Driesen M, Gilpin C, Hasan R, Hasan Z, Hoffner S, Hussain A, Ismail N, Kamal SMM, Khanzada FM, Kimerling M, Kohl TA, Mansjö M, Miotto P, Mukadi YD, Mvusi L, Niemann S, Omar SV, Rigouts L, Schito M, Sela I, Seyfaddinova M, Skenders G, Skrahina A, Tahseen S, Wells WA, Zhurilo A, Weyer K, Floyd K, Raviglione MC. Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: a multi-country population-based surveillance study. THE LANCET. INFECTIOUS DISEASES 2018; 18:675-683. [PMID: 29574065 PMCID: PMC5968368 DOI: 10.1016/s1473-3099(18)30073-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/02/2022]
Abstract
Background In many countries, regular monitoring of the emergence of resistance to anti-tuberculosis drugs is hampered by the limitations of phenotypic testing for drug susceptibility. We therefore evaluated the use of genetic sequencing for surveillance of drug resistance in tuberculosis. Methods Population-level surveys were done in hospitals and clinics in seven countries (Azerbaijan, Bangladesh, Belarus, Pakistan, Philippines, South Africa, and Ukraine) to evaluate the use of genetic sequencing to estimate the resistance of Mycobacterium tuberculosis isolates to rifampicin, isoniazid, ofloxacin, moxifloxacin, pyrazinamide, kanamycin, amikacin, and capreomycin. For each drug, we assessed the accuracy of genetic sequencing by a comparison of the adjusted prevalence of resistance, measured by genetic sequencing, with the true prevalence of resistance, determined by phenotypic testing. Findings Isolates were taken from 7094 patients with tuberculosis who were enrolled in the study between November, 2009, and May, 2014. In all tuberculosis cases, the overall pooled sensitivity values for predicting resistance by genetic sequencing were 91% (95% CI 87–94) for rpoB (rifampicin resistance), 86% (74–93) for katG, inhA, and fabG promoter combined (isoniazid resistance), 54% (39–68) for pncA (pyrazinamide resistance), 85% (77–91) for gyrA and gyrB combined (ofloxacin resistance), and 88% (81–92) for gyrA and gyrB combined (moxifloxacin resistance). For nearly all drugs and in most settings, there was a large overlap in the estimated prevalence of drug resistance by genetic sequencing and the estimated prevalence by phenotypic testing. Interpretation Genetic sequencing can be a valuable tool for surveillance of drug resistance, providing new opportunities to monitor drug resistance in tuberculosis in resource-poor countries. Before its widespread adoption for surveillance purposes, there is a need to standardise DNA extraction methods, recording and reporting nomenclature, and data interpretation. Funding Bill & Melinda Gates Foundation, United States Agency for International Development, Global Alliance for Tuberculosis Drug Development.
Collapse
Affiliation(s)
- Matteo Zignol
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland.
| | - Andrea Maurizio Cabibbe
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland; San Raffaele Scientific Institute, Milan, Italy
| | - Anna S Dean
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Philippe Glaziou
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Natavan Alikhanova
- Scientific Research Institute of Lung Diseases, Ministry of Health, Baku, Azerbaijan
| | - Cecilia Ama
- National Tuberculosis Reference Laboratory, Manila, Philippines
| | - Sönke Andres
- National Reference Laboratory for Mycobacteria, Borstel Research Centre, Borstel, Germany
| | - Anna Barbova
- Central Reference Laboratory on Tuberculosis Microbiological Diagnostics, Ministry of Health, Kiev, Ukraine
| | | | | | | | - Charlotte Colvin
- Bureau for Global Health, US Agency for International Development, Washington, DC, USA
| | - Andrei Dadu
- Regional Office for Europe, World Health Organization, Copenhagen, Denmark
| | - Andries Dreyer
- National Institute for Communicable Diseases, Sandringham, South Africa
| | - Michèle Driesen
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christopher Gilpin
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sven Hoffner
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Alamdar Hussain
- National Reference Laboratory, National Tuberculosis Control Programme, Islamabad, Pakistan
| | - Nazir Ismail
- National Institute for Communicable Diseases, Sandringham, South Africa; Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - S M Mostofa Kamal
- Department of Pathology and Microbiology, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh
| | - Faisal Masood Khanzada
- National Reference Laboratory, National Tuberculosis Control Programme, Islamabad, Pakistan
| | | | - Thomas Andreas Kohl
- Molecular and Experimental Mycobacteriology, Borstel Research Centre, Borstel, Germany
| | - Mikael Mansjö
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | | | - Ya Diul Mukadi
- Bureau for Global Health, US Agency for International Development, Washington, DC, USA
| | - Lindiwe Mvusi
- Tuberculosis Control and Management Unit, National Department of Health, Pretoria, South Africa
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Borstel Research Centre, Borstel, Germany
| | - Shaheed V Omar
- National Institute for Communicable Diseases, Sandringham, South Africa
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Ivita Sela
- Department of Mycobacteriology, Tuberculosis and Lung Disease Centre, Riga East University Hospital, Riga, Latvia
| | - Mehriban Seyfaddinova
- Scientific Research Institute of Lung Diseases, Ministry of Health, Baku, Azerbaijan
| | - Girts Skenders
- Department of Mycobacteriology, Tuberculosis and Lung Disease Centre, Riga East University Hospital, Riga, Latvia
| | - Alena Skrahina
- Republican Scientific and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Sabira Tahseen
- National Reference Laboratory, National Tuberculosis Control Programme, Islamabad, Pakistan
| | - William A Wells
- Bureau for Global Health, US Agency for International Development, Washington, DC, USA
| | - Alexander Zhurilo
- National Institute of Phthisiology And Pulmonology, National Academy of Medical Science of Ukraine, Kiev, Ukraine
| | - Karin Weyer
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Katherine Floyd
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Mario C Raviglione
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
91
|
Baddam R, Kumar N, Wieler LH, Lankapalli AK, Ahmed N, Peacock SJ, Semmler T. Analysis of mutations in pncA reveals non-overlapping patterns among various lineages of Mycobacterium tuberculosis. Sci Rep 2018; 8:4628. [PMID: 29545614 PMCID: PMC5854631 DOI: 10.1038/s41598-018-22883-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pyrazinamide (PZA) is an important first-line anti-tuberculosis drug, resistance to which occurs primarily due to mutations in pncA (Rv2043c) that encodes the pyrazinamidase enzyme responsible for conversion of pro-drug PZA into its active form. Previous studies have reported numerous resistance-conferring mutations distributed across the entire length of pncA without any hotspot regions. As different lineages of Mycobacterium tuberculosis display a strong geographic association, we sought to understand whether the genetic background influenced the distribution of mutations in pncA. We analyzed the whole genome sequence data of 1,480 clinical isolates representing four major M. tuberculosis lineages to identify the distribution of mutations in the complete operon (Rv2044c-pncA-Rv2042c) and its upstream promoter region. We observed a non-overlapping pattern of mutations among various lineages and identified a lineage 3-specific frame-shift deletion in gene Rv2044c upstream of pncA that disrupted the stop codon and led to its fusion with pncA. This resulted in the addition of a novel domain of unknown function (DUF2784) to the pyrazinamidase enzyme. The variant molecule was computationally modelled and physico-chemical parameters determined to ascertain stability. Although the functional impact of this mutation remains unknown, its lineage specific nature highlights the importance of genetic background and warrants further study.
Collapse
Affiliation(s)
- Ramani Baddam
- Robert Koch Institute, Berlin, 13353, Germany
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Narender Kumar
- Department of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | | | - Aditya Kumar Lankapalli
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, 500084, India
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, 500084, India
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Sharon J Peacock
- Department of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | | |
Collapse
|
92
|
Cox H, Hughes J, Black J, Nicol MP. Precision medicine for drug-resistant tuberculosis in high-burden countries: is individualised treatment desirable and feasible? THE LANCET. INFECTIOUS DISEASES 2018; 18:e282-e287. [PMID: 29548923 DOI: 10.1016/s1473-3099(18)30104-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 10/17/2022]
Abstract
Treatment for drug-resistant tuberculosis is largely delivered through standardised, empirical combination regimens in low-resource, high-burden settings. However, individualised treatment, guided by detailed drug susceptibility testing, probably results in improved individual outcomes and is the standard of care in well-resourced settings. Driven by the urgent need to scale up treatment provision, new tuberculosis drugs, incorporated into standardised regimens, are being tested. Although standardised regimens are expected to improve access to treatment in high-burden settings, they are also likely to contribute to the emergence of resistance, even with good clinical management. We argue that a balance is required between the need to improve treatment access and the imperative to minimise resistance amplification and provide the highest standard of care, through a precision medicine approach. In tuberculosis, as in other diseases, we should aim to reduce the entrenched inequalities that manifest as different standards of care in different settings.
Collapse
Affiliation(s)
- Helen Cox
- Division of Medical Microbiology and the Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Jennifer Hughes
- Médecins Sans Frontières Khayelitsha, Cape Town, South Africa
| | - John Black
- Infectious Diseases Clinical Unit, Livingstone Hospital, Port Elizabeth, South Africa
| | - Mark P Nicol
- Division of Medical Microbiology and the Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
93
|
Pyrazinamide Resistance among Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates in Myanmar. Antimicrob Agents Chemother 2018; 62:AAC.01984-17. [PMID: 29263056 DOI: 10.1128/aac.01984-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
94
|
Chiang CY, Trébucq A, Piubello A, Rieder HL, Van Deun A. Should gatifloxacin be included in the model list of essential medicines? Eur Respir J 2018; 51:51/2/1702329. [PMID: 29437946 DOI: 10.1183/13993003.02329-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Chen-Yuan Chiang
- International Union Against Tuberculosis and Lung Disease, Paris, France .,Division of Pulmonary Medicine, Dept of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Dept of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Arnaud Trébucq
- International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Alberto Piubello
- International Union Against Tuberculosis and Lung Disease, Paris, France.,Damien Foundation, Niamey, Niger
| | - Hans L Rieder
- Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland.,Tuberculosis Consultant Services, Kirchlindach, Switzerland
| | - Armand Van Deun
- International Union Against Tuberculosis and Lung Disease, Paris, France.,Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
95
|
Heyckendorf J, Andres S, Köser CU, Olaru ID, Schön T, Sturegård E, Beckert P, Schleusener V, Kohl TA, Hillemann D, Moradigaravand D, Parkhill J, Peacock SJ, Niemann S, Lange C, Merker M. What Is Resistance? Impact of Phenotypic versus Molecular Drug Resistance Testing on Therapy for Multi- and Extensively Drug-Resistant Tuberculosis. Antimicrob Agents Chemother 2018; 62:e01550-17. [PMID: 29133554 PMCID: PMC5786814 DOI: 10.1128/aac.01550-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022] Open
Abstract
Rapid and accurate drug susceptibility testing (DST) is essential for the treatment of multi- and extensively drug-resistant tuberculosis (M/XDR-TB). We compared the utility of genotypic DST assays with phenotypic DST (pDST) using Bactec 960 MGIT or Löwenstein-Jensen to construct M/XDR-TB treatment regimens for a cohort of 25 consecutive M/XDR-TB patients and 15 possible anti-TB drugs. Genotypic DST results from Cepheid GeneXpert MTB/RIF (Xpert) and line probe assays (LPAs; Hain GenoType MTBDRplus 2.0 and MTBDRsl 2.0) and whole-genome sequencing (WGS) were translated into individual algorithm-derived treatment regimens for each patient. We further analyzed if discrepancies between the various methods were due to flaws in the genotypic or phenotypic test using MIC results. Compared with pDST, the average agreement in the number of drugs prescribed in genotypic regimens ranged from just 49% (95% confidence interval [CI], 39 to 59%) for Xpert and 63% (95% CI, 56 to 70%) for LPAs to 93% (95% CI, 88 to 98%) for WGS. Only the WGS regimens did not contain any drugs to which pDST showed resistance. Importantly, MIC testing revealed that pDST likely underestimated the true rate of resistance for key drugs (rifampin, levofloxacin, moxifloxacin, and kanamycin) because critical concentrations (CCs) were too high. WGS can be used to rule in resistance even in M/XDR strains with complex resistance patterns, but pDST for some drugs is still needed to confirm susceptibility and construct the final regimens. Some CCs for pDST need to be reexamined to avoid systematic false-susceptible results in low-level resistant isolates.
Collapse
Affiliation(s)
- Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Sönke Andres
- Division of Mycobacteriology (National Tuberculosis Reference Laboratory), Research Center Borstel, Borstel, Germany
| | - Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ioana D Olaru
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Thomas Schön
- Department of Infectious Diseases and Clinical Microbiology, Kalmar County Hospital, Kalmar, Sweden
- Department of Clinical and Experimental Medicine, Division of Medical Microbiology, Linköping University, Linköping, Sweden
| | - Erik Sturegård
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Patrick Beckert
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Viola Schleusener
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Thomas A Kohl
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Doris Hillemann
- Division of Mycobacteriology (National Tuberculosis Reference Laboratory), Research Center Borstel, Borstel, Germany
| | | | | | - Sharon J Peacock
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Medicine, University of Namibia School of Medicine, Windhoek, Namibia
| | - Matthias Merker
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| |
Collapse
|
96
|
Efsen AMW, Schultze A, Miller RF, Panteleev A, Skrahin A, Podlekareva DN, Miro JM, Girardi E, Furrer H, Losso MH, Toibaro J, Caylà JA, Mocroft A, Lundgren JD, Post FA, Kirk O. Management of MDR-TB in HIV co-infected patients in Eastern Europe: Results from the TB:HIV study. J Infect 2018; 76:44-54. [PMID: 29061336 PMCID: PMC6293190 DOI: 10.1016/j.jinf.2017.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Mortality among HIV patients with tuberculosis (TB) remains high in Eastern Europe (EE), but details of TB and HIV management remain scarce. METHODS In this prospective study, we describe the TB treatment regimens of patients with multi-drug resistant (MDR) TB and use of antiretroviral therapy (ART). RESULTS A total of 105 HIV-positive patients had MDR-TB (including 33 with extensive drug resistance) and 130 pan-susceptible TB. Adequate initial TB treatment was provided for 8% of patients with MDR-TB compared with 80% of those with pan-susceptible TB. By twelve months, an estimated 57.3% (95%CI 41.5-74.1) of MDR-TB patients had started adequate treatment. While 67% received ART, HIV-RNA suppression was demonstrated in only 23%. CONCLUSIONS Our results show that internationally recommended MDR-TB treatment regimens were infrequently used and that ART use and viral suppression was well below the target of 90%, reflecting the challenging patient population and the environment in which health care is provided. Urgent improvement of management of patients with TB/HIV in EE, in particular for those with MDR-TB, is needed and includes widespread access to rapid TB diagnostics, better access to and use of second-line TB drugs, timely ART initiation with viral load monitoring, and integration of TB/HIV care.
Collapse
Affiliation(s)
- A M W Efsen
- CHIP, Department of Infectious Diseases, Finsencentret, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark.
| | - A Schultze
- Department of Infection and Population Health, University College London Medical School, Rowland Hill Street, London NW3 2PF, UK
| | - R F Miller
- Centre for Sexual Health and HIV Research, Mortimer Market Centre, University College London, London WC1E 6JB, UK
| | - A Panteleev
- Department of HIV/TB, TB hospital 2, Ushinskogo str 39/1 - 122, St. Petersburg 195267, Russia
| | - A Skrahin
- Clinical Department, Republican Research and Practical Centre for Pulmonology and TB, Minsk, Belarus
| | - D N Podlekareva
- CHIP, Department of Infectious Diseases, Finsencentret, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - J M Miro
- Infectious Diseases Service, Hospital Clinic - IDIBAPS, University of Barcelona, Villarroel, 170, Barcelona 08036, Spain
| | - E Girardi
- Department of Infectious Diseases INMI "L. Spallanzani", Ospedale L Spallanzani, Via Portuense, 292, Rome 00149, Italy
| | - H Furrer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern CH-3010, Switzerland
| | - M H Losso
- Department of immunocompromised, Hospital J.M. Ramos Mejia, Pabellón de Cliníca, 2do Piso, Buenos Aires CP 1221, Argentina
| | - J Toibaro
- Department of immunocompromised, Hospital J.M. Ramos Mejia, Pabellón de Cliníca, 2do Piso, Buenos Aires CP 1221, Argentina
| | - J A Caylà
- Agencia de Salud Pública de Barcelona, Barcelona, Spain; Programa Integrado de Investigación en Tuberculosis de SEPAR (PII-TB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - A Mocroft
- Department of Infection and Population Health, University College London Medical School, Rowland Hill Street, London NW3 2PF, UK
| | - J D Lundgren
- CHIP, Department of Infectious Diseases, Finsencentret, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - F A Post
- Department of Sexual Health, Caldecot Centre, King's College Hospital, Bessemer Road, London SE5 9RS, UK
| | - O Kirk
- CHIP, Department of Infectious Diseases, Finsencentret, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| |
Collapse
|
97
|
Tagliani E, Hassan MO, Waberi Y, De Filippo MR, Falzon D, Dean A, Zignol M, Supply P, Abdoulkader MA, Hassangue H, Cirillo DM. Culture and Next-generation sequencing-based drug susceptibility testing unveil high levels of drug-resistant-TB in Djibouti: results from the first national survey. Sci Rep 2017; 7:17672. [PMID: 29247181 PMCID: PMC5732159 DOI: 10.1038/s41598-017-17705-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023] Open
Abstract
Djibouti is a small country in the Horn of Africa with a high TB incidence (378/100,000 in 2015). Multidrug-resistant TB (MDR-TB) and resistance to second-line agents have been previously identified in the country but the extent of the problem has yet to be quantified. A national survey was conducted to estimate the proportion of MDR-TB among a representative sample of TB patients. Sputum was tested using XpertMTB/RIF and samples positive for MTB and resistant to rifampicin underwent first line phenotypic susceptibility testing. The TB supranational reference laboratory in Milan, Italy, undertook external quality assurance, genotypic testing based on whole genome and targeted-deep sequencing and phylogenetic studies. 301 new and 66 previously treated TB cases were enrolled. MDR-TB was detected in 34 patients: 4.7% of new and 31% of previously treated cases. Resistance to pyrazinamide, aminoglycosides and capreomycin was detected in 68%, 18% and 29% of MDR-TB strains respectively, while resistance to fluoroquinolones was not detected. Cluster analysis identified transmission of MDR-TB as a critical factor fostering drug resistance in the country. Levels of MDR-TB in Djibouti are among the highest on the African continent. High prevalence of resistance to pyrazinamide and second-line injectable agents have important implications for treatment regimens.
Collapse
Affiliation(s)
- Elisa Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | | | - Yacine Waberi
- National TB Reference Laboratory, Djibouti, Djibouti
| | - Maria Rosaria De Filippo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dennis Falzon
- World Health Organization/Global TB Programme, Geneva, Switzerland
| | - Anna Dean
- World Health Organization/Global TB Programme, Geneva, Switzerland
| | - Matteo Zignol
- World Health Organization/Global TB Programme, Geneva, Switzerland
| | | | | | - Hawa Hassangue
- Programme National de Lutte contre la Tuberculose, Djibouti, Djibouti
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
98
|
Lohrasbi V, Talebi M, Bialvaei AZ, Fattorini L, Drancourt M, Heidary M, Darban-Sarokhalil D. Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis (Edinb) 2017; 109:17-27. [PMID: 29559117 DOI: 10.1016/j.tube.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Despite the low expensive and effective four-drug treatment regimen (isoniazid, rifampicin, pyrazinamide and ethambutol) was introduced 40 years ago, TB continues to cause considerable morbidity and mortality worldwide. In 2015, the WHO estimated a total of 10.4 million new tuberculosis (TB) cases worldwide. Currently, the increased number of multidrug-resistant (MDR-TB), extensively-drug resistant (XDR-TB) and in some recent reports, totally drug-resistant TB (TDR-TB) cases raises concerns about this disease. MDR-TB and XDR-TB have lower cure rates and higher mortality levels due to treatment problems. Novel drugs and regimens for all forms of TB have emerged in recent years. Moreover, scientific interest has recently increased in the field of host-directed therapies (HDTs) in order to identify new treatments for MDR-TB. In this review, we offer an update on the discovery of new drugs for TB therapy with a glance at molecular mechanisms leading to drug resistance in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michel Drancourt
- Institut Hospital-Universitaire (IHU) Mediterranée Infection, AP-HM, Marseille, France; Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Mohsen Heidary
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
99
|
Lee JH, Han CD, Cho SN, Yang IH, Lee WS, Baek SH, Shin JW, Husein KEI, Park KK. How Long Does Antimycobacterial Antibiotic-loaded Bone Cement Have In Vitro Activity for Musculoskeletal Tuberculosis? Clin Orthop Relat Res 2017; 475:2795-2804. [PMID: 28795294 PMCID: PMC5638744 DOI: 10.1007/s11999-017-5470-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/02/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND Antibiotic-loaded bone cement is accepted as an effective treatment modality for musculoskeletal tuberculosis. However, comparative information regarding combinations and concentrations of second-line antimycobacterial drugs, such as streptomycin and amoxicillin and clavulanic acid, are lacking. QUESTIONS/PURPOSES (1) In antibiotic-loaded cement, is there effective elution of streptomycin and Augmentin® (amoxicillin and clavulanic acid) individually and in combination? (2) What is the antibacterial activity duration for streptomycin- and amoxicillin and clavulanic acid -loaded cement? METHODS Six different types of bone cement discs were created by mixing 40 g bone cement with 1 or 2 g streptomycin only, 0.6 g or 1.2 g Augmentin® (amoxicillin and clavulanic acid) only, and a combination of 1 g streptomycin plus 0.6 g amoxicillin and clavulanic acid and 2 g streptomycin plus 1.2 g amoxicillin and clavulanic acid. Five bone discs of each type were incubated in phosphate buffered saline for 30 days with renewal of the phosphate buffered saline every day. The quantity of streptomycin and/or amoxicillin and clavulanic acid in eluates were measured by a liquid chromatography-mass spectrometry system, and the antimycobacterial activity of eluates against Mycobacterium tuberculosis H37Rv, were calculated by comparing the minimal inhibitory concentration of each eluate with that of tested drugs using broth dilution assay on microplate. RESULTS Streptomycin was detected in eluates for 30 days (in 1 g and 2 g discs), whereas 1.2 g amoxicillin and clavulanate eluted until Day 7 and 0.6 g amoxicillin and clavulanate until Day 3. All eluates in streptomycin-containing discs (streptomycin only, and in combination with amoxicillin and clavulanic acid) had effective antimycobacterial activity for 30 days, while amoxicillin and clavulanate-only preparations were only active until Day 14. The antimycobacterial activity of eluates of 2 g streptomycin plus 1.2 g amoxicillin and clavulanate were higher than those of discs containing 1 g streptomycin plus 0.6 g amoxicillin and clavulanate until Day 3, without differences (Day 3, 1 g streptomycin plus 0.6 g amoxicillin and clavulanate: 17.5 ± 6.85 ug/mL; 2 g streptomycin plus 1.2 g amoxicillin and clavulanate: 32.5 ± 16.77 ug/mL; p = 0.109). After Day 7, however, values of the two combinations remained no different than that of Day 30 (Day 30, 1 g streptomycin plus 0.6 g amoxicillin and clavulanate: 0.88 ± 0.34 ug/mL; 2 g streptomycin plus 1.2 g amoxicillin and clavulanate: 0.59 ± 0.94 ug/mL; p = 0.107). CONCLUSIONS Streptomycin, in the form of antibiotic-loaded bone cement, had effective elution characteristics and antimycobacterial effects during a 30-day period, whereas amoxicillin and clavulanate only had effective elution and antimycobacterial characteristics during the early period of this study. The two drugs did not interfere with each other during the elution test. CLINICAL RELEVANCE This research revealed that combinations of streptomycin and amoxicillin and clavulanate mixed with bone cement are effective for 30 days. Further trials to determine various different combinations of drugs are necessary to improve the effectiveness of treatments for musculoskeletal tuberculosis.
Collapse
Affiliation(s)
- Jae Hoo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752 Korea
| | - Chang Dong Han
- Department of Orthopaedic Surgery, Seoul Bumin Hospital, Seoul, Korea
| | - Sang-Nae Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Ick Hwan Yang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752 Korea
| | - Woo Suk Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752 Korea
| | - Seung-Hun Baek
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Won Shin
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752 Korea
| | | | - Kwan Kyu Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752 Korea
| |
Collapse
|
100
|
Ngabonziza JCS, Diallo AB, Tagliani E, Diarra B, Kadanga AE, Togo ACG, Thiam A, de Rijk WB, Alagna R, Houeto S, Ba F, Dagnra AY, Ivan E, Affolabi D, Schwoebel V, Trebucq A, de Jong BC, Rigouts L, Daneau G. Half of rifampicin-resistant Mycobacterium tuberculosis complex isolated from tuberculosis patients in Sub-Saharan Africa have concomitant resistance to pyrazinamide. PLoS One 2017; 12:e0187211. [PMID: 29088294 PMCID: PMC5663438 DOI: 10.1371/journal.pone.0187211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
Background Besides inclusion in 1st line regimens against tuberculosis (TB), pyrazinamide (PZA) is used in 2nd line anti-TB regimens, including in the short regimen for multidrug-resistant TB (MDR-TB) patients. Guidelines and expert opinions are contradictory about inclusion of PZA in case of resistance. Moreover, drug susceptibility testing (DST) for PZA is not often applied in routine testing, and the prevalence of resistance is unknown in several regions, including in most African countries. Methods Six hundred and twenty-three culture isolates from rifampicin-resistant (RR) patients were collected in twelve Sub-Saharan African countries. Among those isolates, 71% were from patients included in the study on the Union short-course regimen for MDR-TB in Benin, Burkina Faso, Burundi, Cameroon, Central Africa Republic, the Democratic Republic of the Congo, Ivory Coast, Niger, and Rwanda PZA resistance, and the rest (29%) were consecutive isolates systematically stored from 2014–2015 in Mali, Rwanda, Senegal, and Togo. Besides national guidelines, the isolates were tested for PZA resistance through pncA gene sequencing. Results Over half of these RR-TB isolates (54%) showed a mutation in the pncA gene, with a significant heterogeneity between countries. Isolates with fluoroquinolone resistance (but not with injectable resistance or XDR) were more likely to have concurrent PZA resistance. The pattern of mutations in the pncA gene was quite diverse, although some isolates with an identical pattern of mutations in pncA and other drug-related genes were isolated from the same reference center, suggesting possible transmission of these strains. Conclusion Similar to findings in other regions, more than half of the patients having RR-TB in West and Central Africa present concomitant resistance to PZA. Further investigations are needed to understand the relation between resistance to PZA and resistance to fluoroquinolones, and whether continued use of PZA in the face of PZA resistance provides clinical benefit to the patients.
Collapse
Affiliation(s)
- Jean Claude Semuto Ngabonziza
- National Reference Laboratory Division, Biomedical Services Department, Rwanda Biomedical Centre, Kigali, Rwanda
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | - Awa Ba Diallo
- Mycobacteriology Unit, Bacteriology- Virology Laboratory, CHNU Aristide le Dantec, Dakar, Senegal
| | - Elisa Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bassirou Diarra
- SEREFO/UCRC Program, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | | | - Aliou Thiam
- Mycobacteriology Unit, Bacteriology- Virology Laboratory, CHNU Aristide le Dantec, Dakar, Senegal
| | - Willem Bram de Rijk
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Riccardo Alagna
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine Houeto
- Laboratoire de Référence des Mycobactéries, Cotonou, Benin
| | - Fatoumata Ba
- Laboratoire de Reference des Mycobactéries, Dakar, Senegal
| | | | - Emil Ivan
- National Reference Laboratory Division, Biomedical Services Department, Rwanda Biomedical Centre, Kigali, Rwanda
| | | | - Valérie Schwoebel
- International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Arnaud Trebucq
- International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Bouke Catherine de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Géraldine Daneau
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Biomedical section, Haute Ecole Francisco Ferrer, Brussels, Belgium
| | | |
Collapse
|