51
|
Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 2014; 337:193-206. [PMID: 24702846 DOI: 10.1016/j.crvi.2013.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022]
Abstract
Mitochondrial disorders cannot be ignored anymore in most medical disciplines; indeed their minimum estimated prevalence is superior to 1 in 5000 births. Despite the progress made in the last 25 years on the identification of gene mutations causing mitochondrial pathologies, only slow progress was made towards their effective treatments. Ocular involvement is a frequent feature in mitochondrial diseases and corresponds to severe and irreversible visual handicap due to retinal neuron loss and optic atrophy. Interestingly, three clinical trials for Leber Congenital Amaurosis due to RPE65 mutations are ongoing since 2007. Overall, the feasibility and safety of ocular Adeno-Associated Virus delivery in adult and younger patients and consistent visual function improvements have been demonstrated. The success of gene-replacement therapy for RPE65 opens the way for the development of similar approaches for a broad range of eye disorders, including those with mitochondrial etiology such as Leber Hereditary Optic Neuropathy (LHON).
Collapse
|
52
|
Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 2013; 5:a021220. [PMID: 24186072 PMCID: PMC3809581 DOI: 10.1101/cshperspect.a021220] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unorthodox genetics of the mtDNA is providing new perspectives on the etiology of the common "complex" diseases. The maternally inherited mtDNA codes for essential energy genes, is present in thousands of copies per cell, and has a very high mutation rate. New mtDNA mutations arise among thousands of other mtDNAs. The mechanisms by which these "heteroplasmic" mtDNA mutations come to predominate in the female germline and somatic tissues is poorly understood, but essential for understanding the clinical variability of a range of diseases. Maternal inheritance and heteroplasmy also pose major challengers for the diagnosis and prevention of mtDNA disease.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
53
|
Weng SW, Kuo HM, Chuang JH, Lin TK, Huang HL, Lin HY, Liou CW, Wang PW. Study of insulin resistance in cybrid cells harboring diabetes-susceptible and diabetes-protective mitochondrial haplogroups. Mitochondrion 2013; 13:888-97. [PMID: 23948373 DOI: 10.1016/j.mito.2013.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/23/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
AIM This study aims to elucidate the independent role of mitochondria in the pathogenesis of insulin resistance (IR). METHODS Cybrids derived from 143B osteosarcoma cell line and harboring the same nuclear DNA but different mitochondrial haplogroups were studied. Cybrid B4 (the major diabetes-susceptible haplogroup in Chinese population), cybrid D4 (the major diabetes-resistant haplogroup in Chinese population) and cybrid N9 (the diabetes-resistant haplogroup in Japanese population) were cultured in a medium containing 25 mM glucose and stimulated with 0 μM, 0.1 μM, and 1.0 μM insulin. We compared the insulin activation of PI3K-Akt (glucose uptake) and ERK-MAPK (pro-inflammation) signaling pathways, intracellular and mitochondrial oxidative stress (DCF and MitoSOX Red), and their responses to the antioxidant N-acetylcysteine (NAC). RESULTS Upon insulin treatment, the translocation of cytoplasmic GLUT1/GLUT4 to the cell membrane in cybrid D4 and N9 cells increased significantly, whereas the changes in B4 cells were not or less significant. On the contrary, the ratio of insulin-induced JNK and P38 to Akt phosphorylation was significantly greater in cybrid B4 cells than in cybrid D4 and N9 cells. The levels of DCF and MitoSOX Red, which are indicative of the oxidative stress, were significantly higher in the B4 cells in basal conditions and after insulin treatment. Following treatment with the antioxidant NAC, cybrid B4 cells showed significantly reduced insulin-induced phosphorylation of P38 and increased GLUT1/GLUT4 translocation to the cell membrane, suggesting that NAC may divert insulin signaling from pro-inflammation to glucose uptake. CONCLUSIONS Mitochondria play an independent role in the pathogenesis of IR, possibly through altered production of intracellular ROS.
Collapse
Affiliation(s)
- Shao-Wen Weng
- Department of Internal Medicine, Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Hagen CM, Aidt FH, Hedley PL, Jensen MK, Havndrup O, Kanters JK, Moolman-Smook JC, Larsen SO, Bundgaard H, Christiansen M. Mitochondrial haplogroups modify the risk of developing hypertrophic cardiomyopathy in a Danish population. PLoS One 2013; 8:e71904. [PMID: 23940792 PMCID: PMC3734310 DOI: 10.1371/journal.pone.0071904] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups and haplogroup clusters, is associated with functional differences in mitochondrial function and susceptibility to various diseases, including ischemic cardiomyopathy. We hypothesized that mtDNA haplogroups, in particular H, J and K, might modify disease susceptibility to HCM. Mitochondrial DNA, isolated from blood, was sequenced and haplogroups identified in 91 probands with HCM. The association with HCM was ascertained using two Danish control populations. Haplogroup H was more prevalent in HCM patients, 60% versus 46% (p = 0.006) and 41% (p = 0.003), in the two control populations. Haplogroup J was less prevalent, 3% vs. 12.4% (p = 0.017) and 9.1%, (p = 0.06). Likewise, the UK haplogroup cluster was less prevalent in HCM, 11% vs. 22.1% (p = 0.02) and 22.8% (p = 0.04). These results indicate that haplogroup H constitutes a susceptibility factor and that haplogroup J and haplogroup cluster UK are protective factors in the development of HCM. Thus, constitutive differences in mitochondrial function may influence the occurrence and clinical presentation of HCM. This could explain some of the phenotypic variability in HCM. The fact that haplogroup H and J are also modifying factors in ischemic cardiomyopathy suggests that mtDNA haplotypes may be of significance in determining whether a physiological hypertrophy develops into myopathy. mtDNA haplotypes may have the potential of becoming significant biomarkers in cardiomyopathy.
Collapse
Affiliation(s)
- Christian M. Hagen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik H. Aidt
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Paula L. Hedley
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Morten K. Jensen
- Department of Medicine B, Heart Center, Righospitalet, Copenhagen, Denmark
| | - Ole Havndrup
- Department of Cardiology, Roskilde Hospital, Roskilde, Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark
| | | | - Severin O. Larsen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Medicine B, Heart Center, Righospitalet, Copenhagen, Denmark
| | - Michael Christiansen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
55
|
Mitochondrial DNA haplogroup H as a risk factor for idiopathic dilated cardiomyopathy in Spanish population. Mitochondrion 2013; 13:263-8. [DOI: 10.1016/j.mito.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 11/20/2022]
|
56
|
Fernández-Caggiano M, Barallobre-Barreiro J, Rego-Pérez I, Crespo-Leiro MG, Paniagua MJ, Grillé Z, Blanco FJ, Doménech N. Mitochondrial haplogroups H and J: risk and protective factors for ischemic cardiomyopathy. PLoS One 2012; 7:e44128. [PMID: 22937160 PMCID: PMC3429437 DOI: 10.1371/journal.pone.0044128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/31/2012] [Indexed: 12/03/2022] Open
Abstract
Background Since mitochondria are the principal source of reactive oxygen species (ROS), these organelles may play an important role in ischemic cardiomyopathy (IC) development. The mitochondrial genome may influence this disease. The aim of the present study was to test the relationship between IC development and the impact of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) defining the mitochondrial haplogroups in a population study. Methodology and principal findings Ten major European haplogroups were identified by using the single base extension technique and by polymerase chain reaction-restriction fragment length polymorphism. Frequencies and Odds Ratios for the association between IC patients (n = 358) and healthy controls (n = 423) were calculated. No convincing associations between classical risk factors for ischemic cardiomyopathy development and haplogroups were found. However, compared to healthy controls, the prevalence of haplogroup H was significantly higher in IC patients (40.0% vs 50.0%, p-value = 0.039) while the frequency of haplogroup J was significantly lower (11.1% vs 5.6%, p-value = 0.048). The analysis of the SNPs characterizing the European mtDNA haplogroups showed that the m.7028C allele (40.0% vs 50.0%, p-value = 0.005) and m.14766C allele (43.0% vs 54.2%, p-value = 0.002) were overrepresented in IC patients, meanwhile the m.10398G allele (19.8% vs 13.1%, p-value = 0.015) and m.4216C allele (22.2% vs 16.5%, p-value = 0.044) were found as protective factors against IC. Conclusions and significance Our results showed that the haplogroups H and J were found as a risk and protective factors for ischemic cardiomyopathy development, respectively.
Collapse
Affiliation(s)
- Mariana Fernández-Caggiano
- Cardiac Biomarkers Group, Research Unit, INIBIC-Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Javier Barallobre-Barreiro
- Cardiac Biomarkers Group, Research Unit, INIBIC-Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Ignacio Rego-Pérez
- Genomic Lab, Rheumatology Division, INIBIC-Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - María G. Crespo-Leiro
- Advanced Heart Failure and Heart Transplant Unit, Cardiology Department, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- Spanish Cardiovascular Research Network (RECAVA), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jesus Paniagua
- Advanced Heart Failure and Heart Transplant Unit, Cardiology Department, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- Spanish Cardiovascular Research Network (RECAVA), Instituto de Salud Carlos III, Madrid, Spain
| | - Zulaika Grillé
- Advanced Heart Failure and Heart Transplant Unit, Cardiology Department, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- Spanish Cardiovascular Research Network (RECAVA), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J. Blanco
- Genomic Lab, Rheumatology Division, INIBIC-Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Nieves Doménech
- Cardiac Biomarkers Group, Research Unit, INIBIC-Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- * E-mail:
| |
Collapse
|
57
|
Cramer SC, Procaccio V. Correlation between genetic polymorphisms and stroke recovery: analysis of the GAIN Americas and GAIN International Studies. Eur J Neurol 2012; 19:718-24. [PMID: 22221491 DOI: 10.1111/j.1468-1331.2011.03615.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Recovery after stroke occurs on the basis of specific molecular events. Genetic polymorphisms associated with impaired neural repair or plasticity might reduce recovery from stroke and might also account for some of the intersubject variability in stroke recovery. This study hypothesized that the ApoE ε4 polymorphism and the val(66) met polymorphism for brain-derived neurotrophic factor (BDNF) are each associated with poorer outcome after stroke. Associations with mitochondrial genotype were also explored. METHODS Genotypes were determined in 255 stroke patients who also received behavioral evaluations in the Glycine Antagonist In Neuroprotection (GAIN) clinical trials. The primary outcome measure was recovery during the first month post-stroke, as this is the time when neural repair is at a maximum and so when genetic influences might have their largest impact. Two secondary outcome measures at 3 months post-stroke were also examined. RESULTS Genotype groups were similar acutely post-stroke. Presence of the ApoE ε4 polymorphism was associated with significantly poorer recovery over the first month post-stroke (P = 0.023) and with a lower proportion of subjects with minimal or no disability (modified Rankin score 0-1, P = 0.01) at 3 months post-stroke. Indeed, those with this polymorphism were approximately half as likely to achieve minimal or no disability (18.2%) versus those with polymorphism absent (35.5%). Findings were confirmed in multivariate models. Results suggested possible effects from the val(66) met BDNF polymorphism and from the R0 mitochondrial DNA haplotype. CONCLUSIONS Genetic factors, particularly the ApoE ε4 polymorphism, might contribute to variability in outcomes after stroke.
Collapse
Affiliation(s)
- S C Cramer
- Department of Neurology and Anatomy, University of California, Irvine, CA, USA.
| | | | | | | |
Collapse
|
58
|
Li H, Liu D, Lu J, Bai Y. Physiology and pathophysiology of mitochondrial DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:39-51. [PMID: 22399417 DOI: 10.1007/978-94-007-2869-1_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are the only organelles in animal cells which possess their own genomes. Mitochondrial DNA (mtDNA) alterations have been associated with various human conditions. Yet, their role in pathogenesis remains largely unclear. This review focuses on several major features of mtDNA: (1) mtDNA haplogroup, (2) mtDNA common deletion, (3) mtDNA mutations in the control region or D-loop, (4) mtDNA copy number alterations, (5) mtDNA mutations in translational machinery, (6) mtDNA mutations in protein coding genes (7) mtDNA heteroplasmy. We will also discuss their implications in various human diseases.
Collapse
Affiliation(s)
- Hongzhi Li
- Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | |
Collapse
|
59
|
European Mitochondrial DNA Haplogroups and Metabolic Disorders in HIV/HCV-Coinfected Patients on Highly Active Antiretroviral Therapy. J Acquir Immune Defic Syndr 2011; 58:371-8. [DOI: 10.1097/qai.0b013e31822d2629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
60
|
Zhang AM, Jia X, Bi R, Salas A, Li S, Xiao X, Wang P, Guo X, Kong QP, Zhang Q, Yao YG. Mitochondrial DNA haplogroup background affects LHON, but not suspected LHON, in Chinese patients. PLoS One 2011; 6:e27750. [PMID: 22110754 PMCID: PMC3216987 DOI: 10.1371/journal.pone.0027750] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that mtDNA background could affect the clinical expression of Leber hereditary optic neuropathy (LHON). We analyzed the mitochondrial DNA (mtDNA) variation of 304 Chinese patients with m.11778G>A (sample #1) and of 843 suspected LHON patients who lack the three primary mutations (sample #2) to discern mtDNA haplogroup effect on disease onset. Haplogroup frequencies in the patient group was compared to frequencies in the general Han Chinese population (n = 1,689; sample #3). The overall matrilineal composition of the suspected LHON population resembles that of the general Han Chinese population, suggesting no association with mtDNA haplogroup. In contrast, analysis of these LHON patients confirms mtDNA haplogroup effect on LHON. Specifically, the LHON sample significantly differs from the general Han Chinese and suspected LHON populations by harboring an extremely lower frequency of haplogroup R9, in particular of its main sub-haplogroup F (#1 vs. #3, P-value = 1.46×10−17, OR = 0.051, 95% CI: 0.016–0.162; #1 vs. #2, P-value = 4.44×10−17, OR = 0.049, 95% CI: 0.015–0.154; in both cases, adjusted P-value <10−5) and higher frequencies of M7b (#1 vs. #3, adjusted P-value = 0.001 and #1 vs. #2, adjusted P-value = 0.004). Our result shows that mtDNA background affects LHON in Chinese patients with m.11778G>A but not suspected LHON. Haplogroup F has a protective effect against LHON, while M7b is a risk factor.
Collapse
Affiliation(s)
- A-Mei Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Antonio Salas
- Unidade de Xenética, Instituto de Medicina Legal and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- * E-mail: (QZ); (Y-GY)
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- * E-mail: (QZ); (Y-GY)
| |
Collapse
|
61
|
Abstract
Although stroke remains a leading cause of disability and mortality worldwide, recently there have been significant advances related to our understanding of the genetic basis of stroke. Ongoing research efforts put us on the cusp for major breakthroughs in the field. In this review, we present the substantial evidence for the contribution of genetic variation to the development of stroke, and the difficulties posed in the study of stroke given the numerous genetically driven risk factors and stroke subtypes. We emphasize recent findings implementing candidate gene and genome-wide association approaches. We then discuss how emerging knowledge is informing and reshaping our understanding of stroke biology and how, in the near term, genetics may be used clinically to identify individuals who are at risk of disease or who may derive benefit from specific treatment modalities. Lastly, we address ongoing and future approaches that will continue to improve our understanding of stroke genetics.
Collapse
|
62
|
|
63
|
Gallardo ME, García-Pavía P, Chamorro R, Vázquez ME, Gómez-Bueno M, Millán I, Almoguera B, Domingo V, Segovia J, Vilches C, Alonso-Pulpón L, Garesse R, Bornstein B. Mitochondrial haplogroups associated with end-stage heart failure and coronary allograft vasculopathy in heart transplant patients. Eur Heart J 2011; 33:346-53. [PMID: 21821846 DOI: 10.1093/eurheartj/ehr280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS Mitochondrial haplogroups are known to influence individual predisposition to a wide spectrum of metabolic and degenerative diseases, including ischaemic cardiovascular diseases. We have examined the influence of the mitochondrial DNA (mtDNA) background on the development of human end-stage heart failure (HF) in patients undergoing heart transplantation. The influence of mtDNA haplogroups on the incidence of transplant-related complications, mainly cardiac allograft vasculopathy (CAV), and on post-transplant survival was also studied. METHODS AND RESULTS The most common mitochondrial haplogroups in European populations were genotyped in 450 heart transplant recipients, 248 heart transplant donors, and 206 healthy controls. Mitochondrial haplogroups were determined by PCR amplification of short mtDNA fragments, followed by restriction fragment length polymorphism analysis. After adjustment for age and sex the frequency of haplogroup H was significantly higher in heart transplant recipients than in controls [OR: 1.86 (95% confidence intervals, CI: 1.27-2.74), P= 0.014], and in heart donors [OR: 1.47 (95% CI: 0.99-2.19), P= 0.032]. Likewise, haplogroup Uk was found significantly more frequently among CAV patients than in non-CAV heart allograft recipients [OR: 4.1 (95% CI: 1.51-11.42), P= 0.042]. Finally, heart donor haplogroups had no influence on the morbidity or mortality after heart transplantation. CONCLUSIONS Mitochondrial haplogroups behave like risk factors for the progress to end-stage HF in a Spanish cardiac transplant population. Mitochondrial DNA variants may have some influence on the appearance of cardiac transplant complications.
Collapse
Affiliation(s)
- M Esther Gallardo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Clinicians who treat patients with stroke need to be aware of several single-gene disorders that have ischemic stroke as a major feature, including sickle cell disease, Fabry disease, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and retinal vasculopathy with cerebral leukodystrophy. The reported genome-wide association studies of ischemic stroke and several related phenotypes (for example, ischemic white matter disease) have shown that no single common genetic variant imparts major risk. Larger studies with samples numbering in the thousands are ongoing to identify common variants with smaller effects on risk. Pharmacogenomic studies have uncovered genetic determinants of response to warfarin, statins and clopidogrel. Despite increasing knowledge of stroke genetics, incorporating this new knowledge into clinical practice remains a challenge. The goals of this article are to review common single-gene disorders relevant to ischemic stroke, summarize the status of candidate gene and genome-wide studies aimed at discovering genetic stroke risk factors, and to briefly discuss pharmacogenomics related to stroke treatment.
Collapse
Affiliation(s)
- James F Meschia
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
65
|
Rost NS. Just in Time: An Update on Continuum Neurogenetics. Continuum (Minneap Minn) 2011; 17:239-48. [DOI: 10.1212/01.con.0000396959.52198.1b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
66
|
|
67
|
Anderson CD, Biffi A, Rahman R, Ross OA, Jagiella JM, Kissela B, Cole JW, Cortellini L, Rost NS, Cheng YC, Greenberg SM, de Bakker PIW, Brown RD, Brott TG, Mitchell BD, Broderick JP, Worrall BB, Furie KL, Kittner SJ, Woo D, Slowik A, Meschia JF, Saxena R, Rosand J. Common mitochondrial sequence variants in ischemic stroke. Ann Neurol 2010; 69:471-80. [PMID: 20839239 DOI: 10.1002/ana.22108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/18/2010] [Accepted: 05/28/2010] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Rare mitochondrial mutations cause neurologic disease, including ischemic stroke and MRI white matter changes. We investigated whether common mitochondrial genetic variants influence risk of sporadic ischemic stroke and, in patients with stroke, the volume of white matter hyperintensity (WMHV). METHODS In this multicenter, mitochondrial genome-wide association study (GWAS), 2284 ischemic stroke cases and 1728 controls from the International Stroke Genetics Consortium were genotyped for 64 mitochondrial single nucleotide polymorphisms (SNPs). Imputation resulted in 144 SNPs, which were tested in each cohort and in meta-analysis for ischemic stroke association. A genetic score of all mitochondrial variants was also tested in association with ischemic stroke. RESULTS No individual SNP reached adjusted significance in meta-analysis. A genetic score comprised of the summation of contributions from individual variants across the mitochondrial genome showed association with ischemic stroke in meta-analysis (odds ratio [OR] = 1.13, p < 0.0001) with minimal heterogeneity (I(2) = 0.00). This ischemic stroke score was robust to permutation, and was also associated with WMHV in 792 nested case individuals with ischemic stroke (p = 0.037). INTERPRETATION In this mitochondrial GWAS of ischemic stroke, a genetic score comprised of the sum of all common variants in the mitochondrial genome showed association with ischemic stroke. In an independent analysis of a related trait, this same score correlated with WMHV in stroke cases. Despite this aggregate association, no individual variant reached significance. Substantially larger studies will be required to identify precise sequence variants influencing cerebrovascular disease.
Collapse
|
68
|
Santoro A, Balbi V, Balducci E, Pirazzini C, Rosini F, Tavano F, Achilli A, Siviero P, Minicuci N, Bellavista E, Mishto M, Salvioli S, Marchegiani F, Cardelli M, Olivieri F, Nacmias B, Chiamenti AM, Benussi L, Ghidoni R, Rose G, Gabelli C, Binetti G, Sorbi S, Crepaldi G, Passarino G, Torroni A, Franceschi C. Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer's disease. PLoS One 2010; 5:e12037. [PMID: 20700462 PMCID: PMC2917370 DOI: 10.1371/journal.pone.0012037] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/26/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD.
Collapse
Affiliation(s)
- Aurelia Santoro
- Department of Experimental Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
|
70
|
|
71
|
Hem E. Mitokondrier påvirker risiko for apopleksi. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2010. [DOI: 10.4045/tidsskr.10.0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|