51
|
Cai H, Wang J, Du Z, Zhao Z, Gu Y, Guo Z, Huang Y, Tang C, Chen G, Fang Y. Construction of novel ternary MoSe2/ZnO/p-BN photocatalyst for efficient ofloxacin degradation under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
52
|
Cheng M, Zhao C, Wu Z, Liu L, Wang H. Degradation of Dye Wastewater by a Novel mBT-MPR Visible Light Photocatalytic System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:571. [PMID: 36612895 PMCID: PMC9819761 DOI: 10.3390/ijerph20010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The high efficiency and low consumption green wastewater treatment technology has important practical significance for the recycling of printing and dyeing wastewater. The efficiency of visible light catalytic degradation of organics is greatly affected by the performance of the catalyst and the photo reactor. Therefore, Bi2WO6/TiO2/Fe3O4 (mBT) visible light photocatalyst was accurately prepared by the ammonia iron double drop method. In order to improve the photodegradation efficiency, a tubular magnetic field-controlled photocatalytic reactor (MPR) was developed. The novel mBT-MPR visible light photocatalytic system was proposed to treat RhB simulated wastewater. The experimental results showed that when the dosage of mBT catalyst was 1 g/L and visible light was irradiated for 60 min, the average removal rate of rhodamine B (RhB) with initial an concentration of 10 mg/L in the simulated wastewater for four times was 91.7%. The mBT-MPR visible light photocatalysis system is a green and efficient treatment technology for organic pollutants in water with simple operation, low energy consumption, and no need for catalyst separation.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Chunxia Zhao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Zefeng Wu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Ling Liu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiong’an New Area, College of Life Science, Hebei University, Baoding 071002, China
| |
Collapse
|
53
|
Advances in Bi 2WO 6-Based Photocatalysts for Degradation of Organic Pollutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248698. [PMID: 36557830 PMCID: PMC9785842 DOI: 10.3390/molecules27248698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
With the rapid development of modern industries, water pollution has become an urgent problem that endangers the health of human and wild animals. The photocatalysis technique is considered an environmentally friendly strategy for removing organic pollutants in wastewater. As an important member of Bi-series semiconductors, Bi2WO6 is widely used for fabricating high-performance photocatalysts. In this review, the recent advances of Bi2WO6-based photocatalysts are summarized. First, the controllable synthesis, surface modification and heteroatom doping of Bi2WO6 are introduced. In the respect of Bi2WO6-based composites, existing Bi2WO6-containing binary composites are classified into six types, including Bi2WO6/carbon or MOF composite, Bi2WO6/g-C3N4 composite, Bi2WO6/metal oxides composite, Bi2WO6/metal sulfides composite, Bi2WO6/Bi-series composite, and Bi2WO6/metal tungstates composite. Bi2WO6-based ternary composites are classified into four types, including Bi2WO6/g-C3N4/X, Bi2WO6/carbon/X, Bi2WO6/Au or Ag-based materials/X, and Bi2WO6/Bi-series semiconductors/X. The design, microstructure, and photocatalytic performance of Bi2WO6-based binary and ternary composites are highlighted. Finally, aimed at the existing problems in Bi2WO6-based photocatalysts, some solutions and promising research trends are proposed that would provide theoretical and practical guidelines for developing high-performance Bi2WO6-based photocatalysts.
Collapse
|
54
|
Yin X, Sun X, Li D, Xie W, Mao Y, Liu Z, Liu Z. 2D/2D Phosphorus-Doped g-C 3N 4/Bi 2WO 6 Direct Z-Scheme Heterojunction Photocatalytic System for Tetracycline Hydrochloride (TC-HCl) Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214935. [PMID: 36429655 PMCID: PMC9691143 DOI: 10.3390/ijerph192214935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
Bi2WO6-based heterojunction photocatalyst for antibiotic degradation has been a research hotspot, but its photocatalytic performance needs to be further improved. Therefore, 2D/2D P-doped g-C3N4/Bi2WO6 direct Z-scheme heterojunction photocatalysts with different composition ratios were prepared through three strategies of phosphorus (P) element doping, morphology regulation, and heterojunction, and the efficiency of its degradation of tetracycline hydrochloride (TC-HCl) under visible light was studied. Their structural, optical, and electronic properties were evaluated, and their photocatalytic efficiency for TC-HCl degradation was explored with a detailed assessment of the active species, degradation pathways, and effects of humic acid, different anions and cations, and water sources. The 30% P-doped g-C3N4/Bi2WO6 had the best photocatalytic performance for TC-HCl degradation. Its photocatalytic rate was 4.5-, 2.2-, and 1.9-times greater than that of g-C3N4, P-doped g-C3N4, and Bi2WO6, respectively. The improved photocatalytic efficiency was attributed to the synergistic effect of P doping and 2D/2D direct Z-scheme heterojunction construction. The stability and reusability of the 30% P-doped C3N4/Bi2WO6 were confirmed by cyclic degradation experiments. Radical scavenging experiments and electron spin resonance spectroscopy showed that the main active species were •O2- and h+. This work provides a new strategy for the preparation of direct Z-scheme heterojunction catalysts with high catalytic performance.
Collapse
Affiliation(s)
- Xudong Yin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yufeng Mao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhisen Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
55
|
Fabrication of 2D/1D Bi2WO6/C3N5 heterojunctions for efficient antibiotics removal. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
56
|
Fei Y, Han N, Zhang M, Yang F, Yu X, Shi L, Khataee A, Zhang W, Tao D, Jiang M. Facile preparation of visible light-sensitive layered g-C 3N 4 for photocatalytic removal of organic pollutants. CHEMOSPHERE 2022; 307:135718. [PMID: 35842043 DOI: 10.1016/j.chemosphere.2022.135718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The graphite-phase carbon nitride (g-C3N4) photocatalytic materials were prepared by one-step calcination method to degrade methylene blue (MB) and potassium butyl xanthate (PBX) under visible light irradiation. The prepared g-C3N4 photocatalytic materials were investigated in detail by various characterizations, and the experiments showed that the graphitic phase carbon nitride photocatalytic materials were successfully prepared by the one-step calcination method. The material possesses excellent optical properties and strong visible light absorption, thus achieving photocatalytic degradation of MB and PBX. The catalyst dosage, pH, the initial concentration of pollutants have important effects on photocatalytic activity of MB and PBX. The photocatalytic degradation efficiency was 98.99% for MB and 96.83% for PBX under the optimal conditions (catalyst dosage, initial pollutant concentration and pH value were 500 mg L-1, 20 mg L-1 and 7, respevtively). The photocatalytic mechanisms on MB and PBX were elucidated. ·OH was the key specie for MB, while ·O2- was the key specie for PBX. This study advances the development of photocatalytic technology for mineral wastewater.
Collapse
Affiliation(s)
- Yawen Fei
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
| | - Minghui Zhang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Feixue Yang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Xiaobing Yu
- Shandong Jinfu Mining Co. Ltd., Zibo, 255000, PR China
| | - Lilong Shi
- Shandong Yanggu Huatai Chemical Co. Ltd., Liaocheng, 252300, PR China
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation.
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Dongping Tao
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Man Jiang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China; State Key Laboratory of Mineral Processing, Beijing, 100160, PR China.
| |
Collapse
|
57
|
A compact Z-scheme heterojunction of BiOCl/Bi2WO6 for efficiently photocatalytic degradation of gaseous toluene. J Colloid Interface Sci 2022; 631:44-54. [DOI: 10.1016/j.jcis.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
|
58
|
Wu Y, Zhao X, Tian J, Liu S, Liu W, Wang T. Heterogeneous catalytic system of photocatalytic persulfate activation by novel Bi2WO6 coupled magnetic biochar for degradation of ciprofloxacin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
59
|
Wang T, Xu L, Wu Z, Li Y, Yin Z, Han J, Yang Z, Qiu J, Song Z. Self-doping induced oxygen vacancies and lattice strains for synergetic enhanced upconversion luminescence of Er 3+ ions in 2D BiOCl nanosheets. NANOSCALE 2022; 14:12909-12917. [PMID: 36043419 DOI: 10.1039/d2nr02624d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare earth (RE) ions combined with two-dimensional (2D) semiconductors can exhibit unexpected optical properties. However, fluorescence quenching has always been inevitable due to defects associated with the synthesis and doping of 2D materials. In this work, we reported an efficient upconversion (UC) enhancement of Er3+ doped BiOCl nanosheets, utilizing a defect engineering strategy conversely rather than eliminating defects. Experiments and theoretical calculations provide evidence that oxygen vacancies (OVs) and lattice strain are simultaneously formed in the BiOCl:Er3+ nanosheets through self-doping of Cl- ions. Under 980 nm excitation, samples doped with 300 mol% Cl- ions exhibit the best luminescent emission, and the green and red UC emissions are enhanced 3.5 and 15 times, respectively. We showed that the OVs in the 2D semiconductor can act as energy bridges to transfer charges to the Er3+ energy level, enriching the electron population at the excited levels; while, the lattice strain enhances the energy transfer and charge accumulation, which synergistically enhance the UC luminescence. This research provides a new insight into the development of defect engineering for UC PL in 2D nanomaterials.
Collapse
Affiliation(s)
- Tianhui Wang
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Liang Xu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Zhijie Wu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Yongjin Li
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Zhaoyi Yin
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Jin Han
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Zhengwen Yang
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Jianbei Qiu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Zhiguo Song
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|
60
|
Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field. Catalysts 2022. [DOI: 10.3390/catal12090987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Revealing the charge transfer path is very important for studying the photocatalytic mechanism and improving photocatalytic performance. In this work, the charge transfer path turned by the piezoelectricity in Ag-BaTiO3 nanofibers is discussed through degrading methyl orange. The piezo-photocatalytic degradation rate of Ag-BaTiO3 is much higher than the photocatalysis of Ag-BaTiO3 and piezo-photocatalysis of BaTiO3, implying the coupling effect between Ag nanoparticle-induced localized surface plasmon resonance (LSPR), photoexcited electron-hole pairs, and deformation-induced piezoelectric field. With the distribution density of Ag nanoparticles doubling, the LSPR field increases by one order of magnitude. Combined with charge separation driven by the piezoelectric field, more electrons in BaTiO3 nanofibers are excited by plasmon-induced resonance energy transfer to improve the photocatalytic property.
Collapse
|
61
|
Li H, Zhang X, Zhang Y, Jia L, Zhang Y, Huang H, Ou H, Zhang Y. Adsorbent-to-photocatalyst: Recycling heavy metal cadmium by natural clay mineral for visible-light-driven photocatalytic antibacterial. J Colloid Interface Sci 2022; 629:1055-1065. [DOI: 10.1016/j.jcis.2022.08.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
|
62
|
Bahadur A, Iqbal S, Javed M, Hassan SS, Nadeem S, Akbar A, Alzhrani RM, Al-Anazy MM, Elkaeed EB, Awwad NS, Ibrahium HA, Mohyuddin A. Construction of a binary S-scheme S-g-C 3N 4/Co-ZF heterojunction with enhanced spatial charge separation for sunlight-driven photocatalytic performance. RSC Adv 2022; 12:23263-23273. [PMID: 36090406 PMCID: PMC9380560 DOI: 10.1039/d1ra08525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
A step-scheme (S-scheme) photocatalyst made of sulfurized graphitic carbon nitride/cobalt doped zinc ferrite (S-g-C3N4/Co-ZF) was constructed using a hydrothermal process because the building of S-scheme systems might increase the lifespan of highly reactive charge carriers. Utilizing cutting-edge methods, the hybrid photocatalyst was evaluated by employing TEM, XPS, XRD, BET, FTIR, transient photo-response, UV-vis, EIS and ESR signals. In order to create a variety of binary nanocomposites (NCs), nanoparticles (NPs) of 6% cobalt doped zinc ferrite (Co-ZF) were mixed with S-g-C3N4 at various concentrations, ranging from 10 to 80 wt%. For photocatalytic dye removal, a particular binary NC constructed between S-g-C3N4 and Co-ZF produces a huge amount of catalytic active sites. The findings showed that loading of S-g-C3N4 on 6% Co-ZF NPs serves as a good heterointerface for e-/h+ separation and transportation through the S-scheme S-g-C3N4/Co-ZF heterojunction. By boosting the hybrid system's BET surface area for the photocatalytic process, the addition of 6% Co-ZF improves the system's ability to absorb more sunlight and boosts its photocatalytic activity. The highest photo-removal effectiveness (98%), which is around 2.45 times higher than that of its competitors, was achieved by the hybrid photocatalyst system with an ideal loading of 48% Co-ZF. Furthermore, the trapping studies showed that the primary species involved in the MB aqueous photo-degradation were ˙OH- and h+.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University Wenzhou China
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology Lahore Pakistan
| | - Syeda Saba Hassan
- Department of Chemistry, School of Science, University of Management and Technology Lahore Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology Lahore Pakistan
| | - Ali Akbar
- Department of Physics, University of Agriculture Faisalabad (UAF) Faisalabad Punjab 38000 Pakistan
| | - Rami M Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University Riyadh 13713 Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority P.O. Box 530 El Maadi Egypt
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology Lahore Pakistan
| |
Collapse
|
63
|
Vinoth S, Ong WJ, Pandikumar A. Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
64
|
Zhu X, Qin F, Zhang X, Zhong Y, Wang J, Jiao Y, Luo Y, Feng W. Synthesis of Tin-Doped Three-Dimensional Flower-like Bismuth Tungstate with Enhanced Photocatalytic Activity. Int J Mol Sci 2022; 23:ijms23158422. [PMID: 35955557 PMCID: PMC9369453 DOI: 10.3390/ijms23158422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Photocatalytic degradation of harmful organic matter is a feasible and environmentally friendly method. Bi2WO6 has become a hotspot of photocatalysts because of its unique layered structure and visible light response. In the present study, Sn doping was adopted to modified Bi2WO6 by hydrothermal method. The Sn-doped Bi2WO6 photocatalysts were characterized by XRD, SEM, TEM, BET, XPS, PL, and DRS, respectively. The results show that Sn-doped Bi2WO6 shows three-dimensional (3D) flower-like morphology, which is composed of two-dimensional (2D) nanosheets. Sn4+ ions enter into the Bi2WO6 lattice, producing a degree of Bi2WO6 lattice distortion, which is in favor of reducing the recombination of photogenerated electrons and holes. Moreover, the specific surface area of Bi2WO6 is significantly increased after doping, which is beneficial to providing more active sites. The photocatalytic results show that 2%Sn-Bi2WO6 exhibits the highest photocatalytic activity. After 60 min of irradiation, the photocatalytic degradation degree of methylene blue (MB) increases from 80.6% for pure Bi2WO6 to 92.0% for 2%Sn-Bi2WO6. The first-order reaction rate constant of 2%Sn-Bi2WO6 is 0.030 min−1, which is 1.7 times than that of pure Bi2WO6.
Collapse
Affiliation(s)
- Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (X.Z.); (Y.Z.); (J.W.)
| | - Fengqiu Qin
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (X.Z.); (Y.Z.); (J.W.)
| | - Xiuping Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (X.Z.); (Y.Z.); (J.W.)
| | - Yuanyuan Zhong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (X.Z.); (Y.Z.); (J.W.)
| | - Juan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (X.Z.); (Y.Z.); (J.W.)
| | - Yu Jiao
- School of Science, Xichang University, Xichang 615013, China
- Correspondence: (Y.J.); (W.F.)
| | - Yuhao Luo
- College of Materials and Chemistry & Chemiacl Engineering, Chengdu University of Technology, Chengdu 610051, China;
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (X.Z.); (Y.Z.); (J.W.)
- Correspondence: (Y.J.); (W.F.)
| |
Collapse
|
65
|
Gao X, Song M, Sun D, Guan R, Zhai H, Zhao Z, Zhang Q, Li X. A Facile In Situ Hydrothermal Etching Method to CaTiO3/TiO2 Heterostructure for Efficient Photocatalytic N2 Reduction. Catal Letters 2022. [DOI: 10.1007/s10562-021-03813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
66
|
Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64105-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
67
|
Chawla H, Garg S, Rohilla J, Szamosvölgyi Á, Efremova A, Szenti I, Ingole PP, Sápi A, Kónya Z, Chandra A. Visible LED-light driven photocatalytic degradation of organochlorine pesticides (2,4-D & 2,4-DP) by Curcuma longa mediated bismuth vanadate. JOURNAL OF CLEANER PRODUCTION 2022. [DOI: 10.1016/j.jclepro.2022.132923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
68
|
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63976-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
69
|
Lotfi S, Ouardi ME, Ahsaine HA, Assani A. Recent progress on the synthesis, morphology and photocatalytic dye degradation of BiVO 4 photocatalysts: A review. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2057044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Safia Lotfi
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mohamed El Ouardi
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Hassan Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Abderrazzak Assani
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| |
Collapse
|
70
|
Synthesis and Characterization of Bi2WxMo1−xO6 Solid Solutions and Their Application in Photocatalytic Desulfurization under Visible Light. Processes (Basel) 2022. [DOI: 10.3390/pr10040789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photocatalytic oxidative desulfurization has attracted much attention in recent years due to the continuous tightening of the sulfur content requirements in motor fuels and the disadvantages of the industrial hydrodesulfurization process. This work is devoted to the investigation of the photocatalytic activity of Bi2WxMo1−xO6 solid solutions (x = 1, 0.75, 0.5, 0.25, 0) in the oxidative desulfurization of hydrocarbons under visible light irradiation using hydrogen peroxide as an oxidant. The synthesized photocatalysts were characterized in detail using XRD, SEM, EDS, low-temperature nitrogen adsorption–desorption, and DRS. It was shown that the use of solid solutions Bi2WxMo1−xO6 with x = 0.5–0.75 leads to the complete oxidation of organosulfur compounds to CO2 and H2O within 120 min. The high photocatalytic activity of solid solutions (x = 0.5–0.75) is attributed to their ability to absorb more visible light, the presence of the corner-shared [Mo/WO6] octahedral layers, which may promote the generation and separation of photogenerated charges, and the hierarchical 3D flower-like structure. The reaction mechanism of the desulfurization was also analyzed in this work.
Collapse
|
71
|
Huang J, Chen J, Liu W, Zhang J, Chen J, Li Y. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Humayun M, Wang C, Luo W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. SMALL METHODS 2022; 6:e2101395. [PMID: 35174987 DOI: 10.1002/smtd.202101395] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is an advanced technique that transforms solar energy into sustainable fuels and oxidizes pollutants via the aid of semiconductor photocatalysts. The main scientific and technological challenges for effective photocatalysis are the stability, robustness, and efficiency of semiconductor photocatalysts. For practical applications, researchers are trying to develop highly efficient and stable photocatalysts. Since the literature is highly scattered, it is urgent to write a critical review that summarizes the state-of-the-art progress in the design of a variety of semiconductor composite photocatalysts for energy and environmental applications. Herein, a comprehensive review is presented that summarizes an overview, history, mechanism, advantages, and challenges of semiconductor photocatalysis. Further, the recent advancements in the design of heterostructure photocatalysts including alloy quantum dots based composites, carbon based composites including carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and graphene, covalent-organic frameworks based composites, metal based composites including metal carbides, metal halide perovskites, metal nitrides, metal oxides, metal phosphides, and metal sulfides, metal-organic frameworks based composites, plasmonic materials based composites and single atom based composites for CO2 conversion, H2 evolution, and pollutants oxidation are discussed elaborately. Finally, perspectives for further improvement in the design of composite materials for efficient photocatalysis are provided.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
73
|
Wu G, Liu Q, Wang J, Zhang Y, Yu C, Bian H, Hegazy M, Han J, Xing W. Facile fabrication of Bi2WO6/biochar composites with enhanced charge carrier separation for photodecomposition of dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Phuruangrat A, Buapoon S, Bunluesak T, Suebsom P, Thongtem S, Thongtem T. Facile synthesis of Pd-doped Bi 2WO 6 nanoplates used for enhanced visible-light-driven photocatalysis. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anukorn Phuruangrat
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Saowaluk Buapoon
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Thanaporn Bunluesak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Piyada Suebsom
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Somchai Thongtem
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Titipun Thongtem
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
75
|
Chen L, Zhang X, Chen A, Yao S, Hu X, Zhou Z. Targeted design of advanced electrocatalysts by machine learning. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63852-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
76
|
S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64106-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
77
|
Hou T, Chen H, Li Y, Wang H, Yu F, Li C, Lin H, Li S, Wang L. Unique Cd 0.5Zn 0.5S/WO 3-x direct Z-scheme heterojunction with S, O vacancies and twinning superlattices for efficient photocatalytic water-splitting. Dalton Trans 2021; 51:1150-1162. [PMID: 34939639 DOI: 10.1039/d1dt03561d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic water-splitting employing the Z-scheme semiconductor systems mimicking natural photosynthesis is regarded as a promising way to achieve efficient soalr-to-H2 conversion. Nevertheless, it still remains a big challenge to design high-performance direct Z-scheme photocatalysts without the use of noble metals as electron mediators. Herein, a unique Cd0.5Zn0.5S/WO3-x direct Z-scheme heterojunction was constructed for the first time, which consisted of smaller O-vacancy-decorated WO3-x nanocrystals anchoring on Cd0.5Zn0.5S nanocrystals with S vacancies and zinc blende/wurtzite (ZB/WZ) twinning superlattices. Under visible-light (λ > 420 nm) irradiation, the Cd0.5Zn0.5S/WO3-x composites exhibited an outstanding H2 evolution reaction (HER) activity of 20.50 mmol h-1 g-1 (corresponding to the apparent quantum efficiency of 18.0% at 420 nm), which is much superior to that of WO3-x, Cd0.5Zn0.5S, and Cd0.5Zn0.5S loaded with Pt. Interestingly, the introduced O and S vacancies contributed to improving the HER activity of Cd0.5Zn0.5S/WO3-x significantly. Moreover, the cycling and long-term HER measurements confirmed the robust photocatalytic stability of Cd0.5Zn0.5S/WO3-x for H2 production. The excellent light harvesting and efficient spatial charge separation induced by the ZB/WZ twinning homojunctions and defect-promoted direct Z-scheme charge-transfer pathway are responsible for the exceptional HER capability. Our study could enlighten the rational engineering and optimization of semiconductor nanostructures for energy and environmental applications.
Collapse
Affiliation(s)
- Teng Hou
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Hanchu Chen
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. .,Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanyan Li
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Hui Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. .,Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fengli Yu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Caixia Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haifeng Lin
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shaoxiang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. .,Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
78
|
Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2116-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
79
|
Zhang Y, Zhang Y, Zhang H, Bai L, Hao L, Ma T, Huang H. Defect engineering in metal sulfides for energy conversion and storage. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214147] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
80
|
Liu J, Wang B, Huang J, Yang R, Wang R, Song Y, Wang C, Hua Y, Xu H, Li H. Fe atom clusters embedded N-doped graphene decorated with ultrathin mesoporous carbon nitride nanosheets for high efficient photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
81
|
Qi S, Liu X, Zhang R, Zhang Y, Xu H. Preparation and photocatalytic properties of g-C3N4/BiOCl heterojunction. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
82
|
Zhao P, Jin B, Yan J, Peng R. Fabrication of recyclable reduced graphene oxide/graphitic carbon nitride quantum dot aerogel hybrids with enhanced photocatalytic activity. RSC Adv 2021; 11:35147-35155. [PMID: 35493167 PMCID: PMC9043259 DOI: 10.1039/d1ra06347b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
Recyclable photocatalysts that can efficiently respond to visible light must be developed for practical application. Herein, three-dimensional (3D) reduced graphene oxide (rGO)/graphitic carbon nitride quantum dot (CNQD) aerogel hybrids for harvesting visible light were synthesized via a hydrothermal method. The graphitic CNQDs were not only decorated on but also integrated onto the surface of rGO. The CNQDs produced photogenerated charge under visible light. 3D rGO could serve as an acceptor of the photogenerated electrons and stereoscopically facilitated the charge transfer through aerogel networks owing to its high conductivity. The ciprofloxacin removal ratio of the aerogel hybrids was about 6.1 times higher than that of bulk g-C3N4. Recyclable photocatalysts that can efficiently respond to visible light must be developed for practical application.![]()
Collapse
Affiliation(s)
- Ping Zhao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Jing Yan
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| |
Collapse
|
83
|
One-step synthesis of porous BiOCl microflowers with oxygen vacancies for photoreduction of CO2 under visible light irradiation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
84
|
Longchin P, Sakulsermsuk S, Wetchakun K, Kidkhunthod P, Wetchakun N. Roles of Mo dopant in Bi 2WO 6 for enhancing photocatalytic activities. Dalton Trans 2021; 50:12619-12629. [PMID: 34545872 DOI: 10.1039/d1dt01626a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the investigation of the roles of molybdenum (Mo) dopant with a concentration of 0.0625% to 1.0% Mo into bismuth tungstate (Bi2WO6) by a one-step hydrothermal method for the enhancement of photocatalytic activities. The obtained materials and doping effects were characterized by the morphology, crystal structure, chemical states, and optical properties. By combining XRD, XANES, and EXAFS studies, the distortion of the local structure with substitutional doping was revealed as doping with Mo ions was located at the lattice sites of the tungsten ions. Photocatalytic reactions of Mo-doped Bi2WO6 were studied by the degradation of methyl orange dye under visible light irradiation. The results show that the optimal concentration of Mo dopant is 0.25%, with the highest photocatalytic activity up to ∼2-fold compared to the bare Bi2WO6. From our investigation, we propose that the impurity level is located below the conduction band edge of Bi2WO6 after doping with Mo6+ ions. This impurity level acts as an electron trapping site to prevent the transition of excited electrons from the conduction band to the valence band. By trapping experiments, the superoxide anion radicals (O2˙-) as the main active species to enhance photocatalytic efficiency was established.
Collapse
Affiliation(s)
- Pimchanok Longchin
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. .,PhD Degree Program in Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Sumet Sakulsermsuk
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. .,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.,Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khatcharin Wetchakun
- Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand.
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand.
| | - Natda Wetchakun
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. .,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.,Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
85
|
Liu H, Mei H, Li S, Pan L, Jin Z, Zhu G, Cheng L, Zhang L. Rational design of n-Bi 12TiO 20@p-BiOI core-shell heterojunction for boosting photocatalytic NO removal. J Colloid Interface Sci 2021; 607:242-252. [PMID: 34500423 DOI: 10.1016/j.jcis.2021.08.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023]
Abstract
Bismuth titanate (Bi12TiO20) with unique sillenite structure has been shown to be an excellent photocatalyst for environmental remediation. However, the narrow light-responsive range and rapid recombination of photoinduced electrons-holes limit the photocatalytic performance of Bi12TiO20. To overcome the limitations, a practical and feasibleway is to fabricate heterojunctions by combining Bi12TiO20 with suitable photocatalysts. Here, using a facile chemical precipitation method, a novel and hierarchical core-shell structure of n-Bi12TiO20@p-BiOI (BTO@BiOI) heterojunction was rationally designed and synthesized by loading BiOI nanosheets on BTO nanofibers. The constructed BTO@BiOI composites exhibited significant charge transfer ability due to the synergistic effects of the built-in electric field between BTO and BiOI as well as close interfacial contacts. In addition, the narrow bandgapcharacteristics of the BiOI led to wide light absorption ranges. Therefore, the BTO@BiOI heterojunction exhibited an improved photocatalytic performance under visible light irradiation. The NO removal efficiency of optimal BTO@BiOI was 45.7%, which was significantly higher compared tothat of pure BTO (3.6%) or BiOI (23.1%). Moreover, the cycling experiment revealed that BTO@BiOI composite has a good stability and reusability. The possible mechanism of photocatalytic NO oxidation over BTO@BiOI was investigated in detail.
Collapse
Affiliation(s)
- Hongxia Liu
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Hui Mei
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| | - Shiping Li
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
| | - Longkai Pan
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Zhipeng Jin
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Gangqiang Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi' an, 710062, PR China.
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Litong Zhang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| |
Collapse
|