51
|
Lourenço-Tessutti IT, Souza Junior JDA, Martins-de-Sa D, Viana AAB, Carneiro RMDG, Togawa RC, de Almeida-Engler J, Batista JAN, Silva MCM, Fragoso RR, Grossi-de-Sa MF. Knock-down of heat-shock protein 90 and isocitrate lyase gene expression reduced root-knot nematode reproduction. PHYTOPATHOLOGY 2015; 105:628-37. [PMID: 26020830 DOI: 10.1094/phyto-09-14-0237-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Crop losses caused by nematode infections are estimated to be valued at USD 157 billion per year. Meloidogyne incognita, a root-knot nematode (RKN), is considered to be one of the most important plant pathogens due to its worldwide distribution and the austere damage it can cause to a large variety of agronomically important crops. RNA interference (RNAi), a gene silencing process, has proven to be a valuable biotechnology alternative method for RKN control. In this study, the RNAi approach was applied, using fragments of M. incognita genes that encode for two essential molecules, heat-shock protein 90 (HSP90) and isocitrate lyase (ICL). Plant-mediated RNAi of these genes led to a significant level of resistance against M. incognita in the transgenic Nicotiana tabacum plants. Bioassays of plants expressing HSP90 dsRNA demonstrated a delay in gall formation and up to 46% reduction in eggs compared with wild-type plants. A reduction in the level of HSP90 transcripts was observed in recovered eggs from plants expressing dsRNA, indicating that gene silencing persisted and was passed along to first progeny. The ICL knock-down had no clear effect on gall formation but resulted in up to 77% reduction in egg oviposition compared with wild-type plants. Our data suggest that both genes may be involved in RKN development and reproduction. Thus, in this paper, we describe essential candidate genes that could be applied to generate genetically modified crops, using the RNAi strategy to control RKN parasitism.
Collapse
Affiliation(s)
- Isabela Tristan Lourenço-Tessutti
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - José Dijair Antonino Souza Junior
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Diogo Martins-de-Sa
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Antônio Américo Barbosa Viana
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Regina Maria Dechechi Gomes Carneiro
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Roberto Coiti Togawa
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Janice de Almeida-Engler
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - João Aguiar Nogueira Batista
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Maria Cristina Mattar Silva
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Rodrigo Rocha Fragoso
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Maria Fatima Grossi-de-Sa
- First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo Horizonte, MG, Brazil; tenth author: Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil; and eleventh author: Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| |
Collapse
|
52
|
Dąbrowska-Bronk J, Czarny M, Wiśniewska A, Fudali S, Baranowski Ł, Sobczak M, Święcicka M, Matuszkiewicz M, Brzyżek G, Wroblewski T, Dobosz R, Bartoszewski G, Filipecki M. Suppression of NGB and NAB/ERabp1 in tomato modifies root responses to potato cyst nematode infestation. MOLECULAR PLANT PATHOLOGY 2015; 16:334-48. [PMID: 25131407 PMCID: PMC6638365 DOI: 10.1111/mpp.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant-parasitic nematodes cause significant damage to major crops throughout the world. The small number of genes conferring natural plant resistance and the limitations of chemical control require the development of new protective strategies. RNA interference or the inducible over-expression of nematicidal genes provides an environment-friendly approach to this problem. Candidate genes include NGB, which encodes a small GTP-binding protein, and NAB/ERabp1, which encodes an auxin-binding protein, which were identified as being up-regulated in tomato roots in a transcriptome screen of potato cyst nematode (Globodera rostochiensis) feeding sites. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization confirmed the localized up-regulation of these genes in syncytia and surrounding cells following nematode infection. Gene-silencing constructs were introduced into tomato, resulting in a 20%-98% decrease in transcription levels. Nematode infection tests conducted on transgenic plants showed 57%-82% reduction in the number of G. rostochiensis females in vitro and 30%-46% reduction in pot trials. Transmission electron microscopy revealed a deterioration of cytoplasm, and degraded mitochondria and plastids, in syncytia induced in plants with reduced NAB/ERabp1 expression. Cytoplasm in syncytia induced in plants with low NGB expression was strongly electron translucent and contained very few ribosomes; however, mitochondria and plastids remained intact. Functional impairments in syncytial cytoplasm of silenced plants may result from NGB's role in ribosome biogenesis; this was confirmed by localization of yellow fluorescent protein (YFP)-labelled NGB protein in nucleoli and co-repression of NGB in plants with reduced NAB/ERabp1 expression. These results demonstrate that NGB and NAB/ERabp1 play important roles in the development of nematode-induced syncytia.
Collapse
Affiliation(s)
- Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Tripathi L, Babirye A, Roderick H, Tripathi JN, Changa C, Urwin PE, Tushemereirwe WK, Coyne D, Atkinson HJ. Field resistance of transgenic plantain to nematodes has potential for future African food security. Sci Rep 2015; 5:8127. [PMID: 25634654 PMCID: PMC4311252 DOI: 10.1038/srep08127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/07/2015] [Indexed: 11/09/2022] Open
Abstract
Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopholus similis and Helicotylenchus multicinctus. The best peptide transgenic line showed improved agronomic performance relative to non-transgenic controls and provided about 99% nematode resistance at harvest of the mother crop. Its yield was about 186% in comparison with the nematode challenged control non-transgenic plants based on larger bunches and diminished plant toppling in storms, due to less root damage. This is strong evidence for utilizing this resistance to support the future food security of 70 million, mainly poor Africans that depend upon plantain as a staple food.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Annet Babirye
- International Institute of Tropical Agriculture, Kampala, Uganda
| | - Hugh Roderick
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | - Charles Changa
- National Agriculture Research Laboratories, Kampala, Uganda
| | - Peter E. Urwin
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | - Danny Coyne
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | | |
Collapse
|
54
|
Weiberg A, Bellinger M, Jin H. Conversations between kingdoms: small RNAs. Curr Opin Biotechnol 2015; 32:207-215. [PMID: 25622136 DOI: 10.1016/j.copbio.2014.12.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 12/30/2022]
Abstract
Humans, animals, and plants are constantly under attack from pathogens and pests, resulting in severe consequences on global human health and crop production. Small RNA (sRNA)-mediated RNA interference (RNAi) is a conserved regulatory mechanism that is involved in almost all eukaryotic cellular processes, including host immunity and pathogen virulence. Recent evidence supports the significant contribution of sRNAs and RNAi to the communication between hosts and some eukaryotic pathogens, pests, parasites, or symbiotic microorganisms. Mobile silencing signals—most likely sRNAs—are capable of translocating from the host to its interacting organism, and vice versa. In this review, we will provide an overview of sRNA communications between different kingdoms, with a primary focus on the advances in plant-pathogen interaction systems.
Collapse
Affiliation(s)
- Arne Weiberg
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Marschal Bellinger
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
55
|
Dutta TK, Banakar P, Rao U. The status of RNAi-based transgenic research in plant nematology. Front Microbiol 2015; 5:760. [PMID: 25628609 PMCID: PMC4290618 DOI: 10.3389/fmicb.2014.00760] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
With the understanding of nematode-plant interactions at the molecular level, new avenues for engineering resistance have opened up, with RNA interference being one of them. Induction of RNAi by delivering double-stranded RNA (dsRNA) has been very successful in the model non-parasitic nematode, Caenorhabditis elegans, while in plant nematodes, dsRNA delivery has been accomplished by soaking nematodes with dsRNA solution mixed with synthetic neurostimulants. The success of in vitro RNAi of target genes has inspired the use of in planta delivery of dsRNA to feeding nematodes. The most convincing success of host-delivered RNAi has been achieved against root-knot nematodes. Plant-mediated RNAi has been shown to lead to the specific down-regulation of target genes in invading nematodes, which had a profound effect on nematode development. RNAi-based transgenics are advantageous as they do not produce any functional foreign proteins and target organisms in a sequence-specific manner. Although the development of RNAi-based transgenics against plant nematodes is still in the preliminary stage, they offer novel management strategy for the future.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, Indian Agricultural Research InstituteNew Delhi, India
| | | | | |
Collapse
|
56
|
Barreto FS, Schoville SD, Burton RS. Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepodTigriopus californicus. Mol Ecol Resour 2014; 15:868-79. [DOI: 10.1111/1755-0998.12359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| | - Sean D. Schoville
- Department of Entomology; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| |
Collapse
|
57
|
Younis A, Siddique MI, Kim CK, Lim KB. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding. Int J Biol Sci 2014; 10:1150-8. [PMID: 25332689 PMCID: PMC4202031 DOI: 10.7150/ijbs.10452] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties.
Collapse
Affiliation(s)
- Adnan Younis
- 1. Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea
- 2. Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Irfan Siddique
- 3. Department of Plant Science, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Chang-Kil Kim
- 1. Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea
| | - Ki-Byung Lim
- 1. Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
58
|
Dinh PTY, Brown CR, Elling AA. RNA Interference of Effector Gene Mc16D10L Confers Resistance Against Meloidogyne chitwoodi in Arabidopsis and Potato. PHYTOPATHOLOGY 2014; 104:1098-106. [PMID: 24835223 DOI: 10.1094/phyto-03-14-0063-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Meloidogyne chitwoodi, a quarantine pathogen, is a significant problem in potato-producing areas worldwide. In spite of considerable genetic diversity in wild potato species, no commercial potato cultivars with resistance to M. chitwoodi are available. Nematode effector genes are essential for the molecular interactions between root-knot nematodes and their hosts. Stable transgenic lines of Arabidopsis and potato (Solanum tuberosum) with resistance against M. chitwoodi were developed. RNA interference (RNAi) construct pART27(16D10i-2) was introduced into Arabidopsis thaliana and potato to express double-stranded RNA complementary to the putative M. chitwoodi effector gene Mc16D10L. Plant-mediated RNAi led to a significant level of resistance against M. chitwoodi in Arabidopsis and potato. In transgenic Arabidopsis lines, the number of M. chitwoodi egg masses and eggs was reduced by up to 57 and 67% compared with empty vector controls, respectively. Similarly, in stable transgenic lines of potato, the number of M. chitwoodi egg masses and eggs was reduced by up to 71 and 63% compared with empty vector controls, respectively. The relative transcript level of Mc16D10L was reduced by up to 76% in M. chitwoodi eggs and infective second-stage juveniles that developed on transgenic pART27(16D10i-2) potato, suggesting that the RNAi effect is systemic and heritable in M. chitwoodi.
Collapse
|
59
|
Eves-van den Akker S, Lilley CJ, Jones JT, Urwin PE. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLoS Pathog 2014; 10:e1004391. [PMID: 25255291 PMCID: PMC4177990 DOI: 10.1371/journal.ppat.1004391] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism. Sedentary plant parasitic nematodes are pathogens that invade plant roots and establish a feeding site. The feeding site is a specialist structure used by the nematode to support its development within the plant. The nematode secretes a suite of proteins, termed ‘effector proteins’ that are responsible for initiating and maintaining the feeding site. The nematode must also evade recognition by the plant defence systems throughout its lifecycle that can last for many weeks. We describe a diverse and variable effector gene family (HYP), the products of which are secreted into the plant by the nematode and are required for successful infection. The variability and modular structure of this gene family can lead to the production of a large array of effector proteins. This diversity may allow the nematodes to combat any resistance mechanisms developed by the plant. Each nematode tested within a population is genetically unique in terms of these effector genes. We found huge variation in the number, size and type of HYP effectors at the level of the individual. This may explain some of the difficulties in breeding nematode resistant plants and has profound implications for those working with other plant pathogens.
Collapse
Affiliation(s)
- Sebastian Eves-van den Akker
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | | | - John T. Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
60
|
Koch A, Kogel KH. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:821-31. [PMID: 25040343 DOI: 10.1111/pbi.12226] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/06/2014] [Accepted: 05/27/2014] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) has emerged as a powerful genetic tool for scientific research over the past several years. It has been utilized not only in fundamental research for the assessment of gene function, but also in various fields of applied research, such as human and veterinary medicine and agriculture. In plants, RNAi strategies have the potential to allow manipulation of various aspects of food quality and nutritional content. In addition, the demonstration that agricultural pests, such as insects and nematodes, can be killed by exogenously supplied RNAi targeting their essential genes has raised the possibility that plant predation can be controlled by lethal RNAi signals generated in planta. Indeed, recent evidence argues that this strategy, called host-induced gene silencing (HIGS), is effective against sucking insects and nematodes; it also has been shown to compromise the growth and development of pathogenic fungi, as well as bacteria and viruses, on their plant hosts. Here, we review recent studies that reveal the enormous potential RNAi strategies hold not only for improving the nutritive value and safety of the food supply, but also for providing an environmentally friendly mechanism for plant protection.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| | | |
Collapse
|
61
|
Hoogstrate SW, Volkers RJ, Sterken MG, Kammenga JE, Snoek LB. Nematode endogenous small RNA pathways. WORM 2014; 3:e28234. [PMID: 25340013 PMCID: PMC4205135 DOI: 10.4161/worm.28234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 01/25/2023]
Abstract
The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs.
Collapse
Affiliation(s)
| | - Rita Jm Volkers
- Laboratory of Nematology; Wageningen University; Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology; Wageningen University; Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology; Wageningen University; Wageningen, The Netherlands
| | - L Basten Snoek
- Laboratory of Nematology; Wageningen University; Wageningen, The Netherlands
| |
Collapse
|
62
|
Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, Tsai IJ, Beasley H, Blok V, Cock PJA, den Akker SEV, Holroyd N, Hunt M, Mantelin S, Naghra H, Pain A, Palomares-Rius JE, Zarowiecki M, Berriman M, Jones JT, Urwin PE. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 2014; 15:R43. [PMID: 24580726 PMCID: PMC4054857 DOI: 10.1186/gb-2014-15-3-r43] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/03/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. RESULTS We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. CONCLUSIONS The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.
Collapse
Affiliation(s)
- James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Laura M Jones
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Japan
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Adam J Reid
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Thorpe
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Isheng J Tsai
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Helen Beasley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Vivian Blok
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter J A Cock
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Sebastian Eves-van den Akker
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Martin Hunt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Hardeep Naghra
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Present address: School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Arnab Pain
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Present address: Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan E Palomares-Rius
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Present address: Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n Apdo 4084, 14080 Córdoba, Spain
| | - Magdalena Zarowiecki
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - John T Jones
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
63
|
Dinh P, Dinh P, Zhang L, Dinh P, Zhang L, Brown C, Dinh P, Zhang L, Brown C, Elling A. Plant-mediated RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in diverse genetic backgrounds of potato and reduces pathogenicity of nematode offspring. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Meloidogyne chitwoodi is a major problem for potato production in the Pacific Northwest of the USA. In spite of long-term breeding efforts no commercial potato cultivars with resistance to M. chitwoodi exist to date. The resistance gene against M. chitwoodi has been introgressed from Solanum bulbocastanum into cultivated potato (S. tuberosum), but M. chitwoodi pathotypes are able to overcome this resistance. In this study, an RNA interference (RNAi) transgene targeting the M. chitwoodi effector gene Mc16D10L was introduced into potato cvs Russet Burbank and Désirée, and the advanced breeding line PA99N82-4, which carries the gene. Stable transgenic lines were generated for glasshouse infection assays. At 35 days after inoculation (DAI) with M. chitwoodi race 1 the number of egg masses (g root)−1 formed on RNAi lines of cvs Russet Burbank and Désirée was reduced significantly by up to 68% compared to empty vector control plants. At 55 DAI, the number of eggs was reduced significantly by up to 65%. In addition, RNAi of Mc16D10L significantly reduced the development of egg masses and eggs formed by the resistance-breaking M. chitwoodi pathotype Roza on PA99N82-4 by up to 47 and 44%, respectively. Importantly, the plant-mediated silencing effect of Mc16D10L was transmitted to M. chitwoodi offspring and significantly reduced pathogenicity in the absence of selection pressure on empty vector control plants. This finding suggests that the RNAi effect is stable and nematode infection decreases regardless of the genotype of the host once the RNAi process has been initiated in the nematode through a transgenic plant. In summary, plant-mediated down-regulation of effector gene Mc16D10L provides a promising new tool for molecular breeding against M. chitwoodi.
Collapse
Affiliation(s)
- Phuong T.Y. Dinh
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Phuong T.Y. Dinh
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Linhai Zhang
- Vegetable and Forage Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Prosser, WA 99350, USA
| | - Phuong T.Y. Dinh
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Linhai Zhang
- Vegetable and Forage Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Prosser, WA 99350, USA
| | - Charles R. Brown
- Vegetable and Forage Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Prosser, WA 99350, USA
| | - Phuong T.Y. Dinh
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Linhai Zhang
- Vegetable and Forage Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Prosser, WA 99350, USA
| | - Charles R. Brown
- Vegetable and Forage Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Prosser, WA 99350, USA
| | - Axel A. Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
64
|
|
65
|
Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci U S A 2013; 110:19324-9. [PMID: 24218613 DOI: 10.1073/pnas.1306373110] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Head blight, which is caused by mycotoxin-producing fungi of the genus Fusarium, is an economically important crop disease. We assessed the potential of host-induced gene silencing targeting the fungal cytochrome P450 lanosterol C-14α-demethylase (CYP51) genes, which are essential for ergosterol biosynthesis, to restrict fungal infection. In axenic cultures of Fusarium graminearum, in vitro feeding of CYP3RNA, a 791-nt double-stranded (ds)RNA complementary to CYP51A, CYP51B, and CYP51C, resulted in growth inhibition [half-maximum growth inhibition (IC50) = 1.2 nM] as well as altered fungal morphology, similar to that observed after treatment with the azole fungicide tebuconazole, for which the CYP51 enzyme is a target. Expression of the same dsRNA in Arabidopsis and barley rendered susceptible plants highly resistant to fungal infection. Microscopic analysis revealed that mycelium formation on CYP3RNA-expressing leaves was restricted to the inoculation sites, and that inoculated barley caryopses were virtually free of fungal hyphae. This inhibition of fungal growth correlated with in planta production of siRNAs corresponding to the targeted CYP51 sequences, as well as highly efficient silencing of the fungal CYP51 genes. The high efficiency of fungal inhibition suggests that host-induced gene-silencing targeting of the CYP51 genes is an alternative to chemical treatments for the control of devastating fungal diseases.
Collapse
|
66
|
Abstract
Root-knot nematodes (Meloidogyne spp.) represent one of the most polyphagous genera of plant-parasitic nematodes. To date, close to 100 valid species are recognized. In contrast to the size of the genus, the majority of past research focused on a small number of species, i.e., the so-called 'major' species M. arenaria, M. hapla, M. incognita, and M. javanica. This review highlights recent work aimed at 'minor' root-knot nematodes: M. chitwoodi, M. fallax, M. minor, M. enterolobii (=M. mayaguensis), M. exigua, and M. paranaensis. Some of these species have been described only recently. After a brief profile of each species, identification methods and their application in Meloidogyne spp. are summarized. Intraspecific variation and its impact on plant resistance breeding are discussed and interactions between M. enterolobii and Fusarium solani are highlighted as an example of synergistic interactions with other plant pathogens. Future research on Meloidogyne spp. is not only shaped by recent breakthroughs such as completing the genome sequences of M. hapla and M. incognita, but is also influenced by changes in agriculture. Taken together, the aim of this review is to draw attention to previously neglected and newly described Meloidogyne spp. that are developing into major problems for agriculture in tropical and temperate climates.
Collapse
|
67
|
Hu L, Cui R, Sun L, Lin B, Zhuo K, Liao J. Molecular and biochemical characterization of the β-1,4-endoglucanase gene Mj-eng-3 in the root-knot nematode Meloidogyne javanica. Exp Parasitol 2013; 135:15-23. [PMID: 23747693 DOI: 10.1016/j.exppara.2013.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
This study describes the molecular and biochemical characterization of the β-1,4-endoglucanase gene (Mj-eng-3) from the root knot nematode Meloidogyne javanica. A 2156-bp genomic DNA sequence of Mj-eng-3 containing six introns was obtained. Mj-eng-3 was localized in the subventral esophageal glands of M. javanica juveniles by in situ hybridization. Real-time RT-PCR assay showed that the highest transcriptional level of Mj-eng-3 occurred in pre-parasitic second-stage juveniles, and this high expression persisted in parasitic second-stage juveniles. Recombinant MJ-ENG-3 degraded carboxymethylcellulose and optimum enzyme activity at 40°C and pH 8.0. EDTA, Mg(2+), Mn(2+), Ca(2+), Co(2+), and Cu(2+) did not affect the activity of MJ-ENG-3; however, Zn(2+) and Fe(2+) inhibited MJ-ENG-3 enzyme activity. In planta Mj-eng-3 RNAi assay displayed a reduction in the number of nematodes and galls in transgenic tobacco roots. These results suggested that MJ-ENG-3 could be secreted by M. javanica to degrade the cellulose of plant cell walls to facilitate its entry and migration during the early stages of parasitism.
Collapse
Affiliation(s)
- Lili Hu
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | |
Collapse
|
68
|
Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL. Nematode effector proteins: an emerging paradigm of parasitism. THE NEW PHYTOLOGIST 2013; 199:879-894. [PMID: 23691972 DOI: 10.1111/nph.12323] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/05/2013] [Indexed: 05/18/2023]
Abstract
Phytonematodes use a stylet and secreted effectors to modify host cells and ingest nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode effectors, with a particular focus on proteinaceous stylet-secreted effectors of sedentary endoparasitic phytonematodes, for which a wealth of information has surfaced in the past 10 yr. We provide an update on the effector repertoires of several of the most economically important genera of phytonematodes and discuss current approaches to dissecting their function. Lastly, we highlight the latest breakthroughs in effector discovery that promise to shed new light on effector diversity and function across the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Xiaohong Wang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health and Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Axel A Elling
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Martin Wubben
- USDA-ARS, Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit and Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
69
|
Peng H, Gao BL, Kong LA, Yu Q, Huang WK, He XF, Long HB, Peng DL. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis. PLoS One 2013; 8:e69579. [PMID: 23922743 PMCID: PMC3726699 DOI: 10.1371/journal.pone.0069579] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 06/10/2013] [Indexed: 11/20/2022] Open
Abstract
The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs) derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO); 1550 clusters were assigned enzyme commission (EC) numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to those of sedentary plant nematodes. Finally we further characterized the two D. destructor expansin proteins.
Collapse
Affiliation(s)
- Huan Peng
- The Key Laboratory for Biology of Insect Pests and Plant Disease, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing-li Gao
- Huzhou Modern Agricultural Biotechnology Innovation Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang, China
| | - Ling-an Kong
- The Key Laboratory for Biology of Insect Pests and Plant Disease, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Yu
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Wen-kun Huang
- The Key Laboratory for Biology of Insect Pests and Plant Disease, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xu-feng He
- The Key Laboratory for Biology of Insect Pests and Plant Disease, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-bo Long
- The Key Laboratory for Biology of Insect Pests and Plant Disease, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pests Comprehensive Governance for Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, China
| | - De-liang Peng
- The Key Laboratory for Biology of Insect Pests and Plant Disease, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
70
|
Yang Y, Jittayasothorn Y, Chronis D, Wang X, Cousins P, Zhong GY. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS One 2013; 8:e69463. [PMID: 23874962 PMCID: PMC3712915 DOI: 10.1371/journal.pone.0069463] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/10/2013] [Indexed: 01/18/2023] Open
Abstract
Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5' end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs.
Collapse
Affiliation(s)
- Yingzhen Yang
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
| | - Yingyos Jittayasothorn
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Demosthenis Chronis
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Xiaohong Wang
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Peter Cousins
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
- E & J Gallo Winery, Modesto, California, United States of America
| | - Gan-Yuan Zhong
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
| |
Collapse
|
71
|
Haegeman A, Bauters L, Kyndt T, Rahman MM, Gheysen G. Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2013; 14:379-90. [PMID: 23279209 PMCID: PMC6638898 DOI: 10.1111/mpp.12014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant-parasitic nematodes secrete so-called effectors into their host plant which are able to suppress the plant's defence responses, alter plant signalling pathways and, in the case of root knot nematodes, induce the formation of giant cells. Putative effectors have been successfully identified by genomics, transcriptomics and proteomics approaches. In this study, we investigated the transcriptome of the rice root knot nematode Meloidogyne graminicola by 454 sequencing of second-stage juveniles as well as mRNA-seq of rice infected tissue. Over 350 000 reads derived from M. graminicola preparasitic juveniles were assembled, annotated and checked for homologues in different databases. From infected rice tissue, 1.4% of all reads generated were identified as being derived from the nematode. Using multiple strategies, several putative effector genes were identified, both pioneer genes and genes corresponding to already known effectors. To check whether these genes could be involved in the interaction with the plant, in situ hybridization was performed on a selection of genes to localize their expression in the nematode. Most were expressed in the gland cells or amphids of the nematode, confirming possible secretion of the proteins and hence a role in infection. Other putative effectors showed a different expression pattern, potentially linked with the excretory/secretory system. This transcriptome study is a good starting point to functionally investigate novel effectors derived from M. graminicola. This will lead to better insights into the interaction between these nematodes and the model plant rice. Moreover, the transcriptome can be used to identify possible target genes for RNA interference (RNAi)-based control strategies. Four genes proved to be interesting targets by showing up to 40% higher mortality relative to the control treatment when soaked in gene-specific small interfering RNAs (siRNAs).
Collapse
Affiliation(s)
- Annelies Haegeman
- Department of Molecular Biotechnology, Ghent University, B-9000, Ghent, Belgium
| | | | | | | | | |
Collapse
|
72
|
Haegeman A, Bauters L, Kyndt T, Rahman MM, Gheysen G. Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2013; 14:379-390. [PMID: 23279209 DOI: 10.1111/mpp.12014 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant-parasitic nematodes secrete so-called effectors into their host plant which are able to suppress the plant's defence responses, alter plant signalling pathways and, in the case of root knot nematodes, induce the formation of giant cells. Putative effectors have been successfully identified by genomics, transcriptomics and proteomics approaches. In this study, we investigated the transcriptome of the rice root knot nematode Meloidogyne graminicola by 454 sequencing of second-stage juveniles as well as mRNA-seq of rice infected tissue. Over 350 000 reads derived from M. graminicola preparasitic juveniles were assembled, annotated and checked for homologues in different databases. From infected rice tissue, 1.4% of all reads generated were identified as being derived from the nematode. Using multiple strategies, several putative effector genes were identified, both pioneer genes and genes corresponding to already known effectors. To check whether these genes could be involved in the interaction with the plant, in situ hybridization was performed on a selection of genes to localize their expression in the nematode. Most were expressed in the gland cells or amphids of the nematode, confirming possible secretion of the proteins and hence a role in infection. Other putative effectors showed a different expression pattern, potentially linked with the excretory/secretory system. This transcriptome study is a good starting point to functionally investigate novel effectors derived from M. graminicola. This will lead to better insights into the interaction between these nematodes and the model plant rice. Moreover, the transcriptome can be used to identify possible target genes for RNA interference (RNAi)-based control strategies. Four genes proved to be interesting targets by showing up to 40% higher mortality relative to the control treatment when soaked in gene-specific small interfering RNAs (siRNAs).
Collapse
Affiliation(s)
- Annelies Haegeman
- Department of Molecular Biotechnology, Ghent University, B-9000, Ghent, Belgium
| | | | | | | | | |
Collapse
|
73
|
Joseph S, Gheysen G, Subramaniam K. RNA interference in Pratylenchus coffeae: knock down of Pc-pat-10 and Pc-unc-87 impedes migration. Mol Biochem Parasitol 2012; 186:51-9. [PMID: 23043990 DOI: 10.1016/j.molbiopara.2012.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 11/26/2022]
Abstract
Many of the currently available nematicides used in nematode control are hazardous to the user, environment and beneficial non-target organisms. Therefore the need to develop alternative methods for nematode control such as the development of nematode-resistant crops through RNA-mediated interference (RNAi) holds great promise. The Caenorhabditis elegans genes unc-87 and pat-10 are essential components of the body wall muscle and are thus required for nematode movement. The Pratylenchus coffeae orthologs of these two genes, namely Pc-pat-10 and Pc-unc-87 were cloned and used to test RNAi in this migratory nematode. RNAi was performed by soaking P. coffeae in a solution containing dsRNA of either Pc-unc-87 or Pc-pat-10. The levels of both Pc-unc-87 and Pc-pat-10 mRNAs were significantly reduced in a sequence-specific manner in nematodes soaked for 24h. Nematodes incubated in Pc-pat-10 dsRNA appeared straight and rigid while Pc-unc-87 resulted in nematodes that were coiled, in contrast to the regular sinusoidal movement of the control nematodes. While 88.4 ± 3.9% of the control nematodes successfully migrated to the bottom of the sand column in 12h, only 6 ± 1.3% and 7 ± 2.3%, respectively, of the Pc-pat-10 (RNAi) and Pc-unc-87 (RNAi) nematodes successfully migrated to the bottom. However a recovery in movement as well as transcript level was observed in both treatments when the nematodes were incubated in distilled water for 24h following the dsRNA soaking. The recovery rate was slower in Pc-unc-87 when compared to Pc-pat-10. In summary, this study demonstrates the existence of the RNAi phenomenon in P. coffeae and shows that the function of unc-87 and pat-10 genes has been evolutionarily conserved among free-living and plant parasitic nematodes.
Collapse
Affiliation(s)
- Soumi Joseph
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, UP, India
| | | | | |
Collapse
|
74
|
Developments in RNA interference and genetic transformation to define gene function in parasitic helminths. Parasitology 2012; 139:557-9. [PMID: 22459432 DOI: 10.1017/s0031182012000108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
75
|
Arguel MJ, Jaouannet M, Magliano M, Abad P, Rosso MN. siRNAs Trigger Efficient Silencing of a Parasitism Gene in Plant Parasitic Root-Knot Nematodes. Genes (Basel) 2012; 3:391-408. [PMID: 24704976 PMCID: PMC3899990 DOI: 10.3390/genes3030391] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/18/2012] [Accepted: 06/26/2012] [Indexed: 12/20/2022] Open
Abstract
Expanding genomic data on plant pathogens open new perspectives for the development of specific and environment friendly pest management strategies based on the inhibition of parasitism genes that are essential for the success of infection. Identifying such genes relies on accurate reverse genetics tools and the screening of pathogen knock-down phenotypes. Root-knot nematodes are major cosmopolitan crop pests that feed on a wide range of host plants. Small interfering RNAs (siRNAs) would provide a powerful tool for reverse genetics of nematode parasitism genes provided that they could (1) target genes expressed in inner tissues of infective nematodes and (2) target genes expressed during parasitism. In this study, we show that siRNAs can access inner tissues of the infective juveniles during soaking and accumulate in the esophagus, amphidial pouches and related neurons of the nematode. We provide evidence that siRNAs can trigger knock-down of the parasitism gene Mi-CRT, a calreticulin gene expressed in the esophageal glands of Meloidogyne incognita. Mi-CRT knock-down in infective juveniles affected nematode virulence. However, Mi-CRT knock-down was not persistent after plant infection, indicating that siRNA-mediated RNAi is best suited for functional analysis of genes involved in pre-parasitic stages or in the early steps of infection.
Collapse
Affiliation(s)
- Marie-Jeanne Arguel
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| | - Maëlle Jaouannet
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| | - Marc Magliano
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| | - Pierre Abad
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| | - Marie-Noëlle Rosso
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| |
Collapse
|