51
|
Zhang C, Zhang H, Pi J, Zhang L, Kuhn A. Bulk Electrocatalytic NADH Cofactor Regeneration with Bipolar Electrochemistry. Angew Chem Int Ed Engl 2021; 61:e202111804. [PMID: 34705321 DOI: 10.1002/anie.202111804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 01/15/2023]
Abstract
Electrochemical regeneration of reduced nicotinamide adenine dinucleotide (NADH) is an extremely important challenge for the electroenzymatic synthesis of many valuable chemicals. Although some important progress has been made with modified electrodes concerning the reduction of NAD+ , the scale-up is difficult due to mass transport limitations inherent to large-size electrodes. Here, we propose instead to employ a dispersion of electrocatalytically active modified microparticles in the bulk of a bipolar electrochemical cell. In this way, redox reactions occur simultaneously on all of these individual microelectrodes without the need of a direct electrical connection. The concept is validated by using [Rh(Cp*)(bpy)Cl]+ functionalized surfaces, either of carbon felt as a reference material, or carbon microbeads acting as bipolar objects. In the latter case, enzymatically active 1,4-NADH is electroregenerated at the negatively polarized face of the particles. The efficiency of the system can be fine-tuned by controlling the electric field in the reaction compartment and the number of dispersed microelectrodes. This wireless bioelectrocatalytic approach opens up very interesting perspectives for electroenzymatic synthesis in the bulk phase.
Collapse
Affiliation(s)
- Chunhua Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, China
| | - Huiting Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, China
| | - Junying Pi
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, China
| | - Alexander Kuhn
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, China.,University Bordeaux, CNRS, Bordeaux INP, ISM, UMR, 5255, ENSCBP, Pessac, France
| |
Collapse
|
52
|
Abstract
Potentiometric sensors induce a spontaneous voltage that indicates ion activity in real time. We present here an advanced self-powered potentiometric sensor with memory. Specifically, the approach allows for one to record a deviation from the analyte's original concentration or determine whether the analyte concentration has surpassed a threshold in a predefined time interval. The sensor achieves this by harvesting energy in a capacitor and preserving it with the help of a diode. While the analyte concentration is allowed to return to an original value following a perturbation over time, this may not influence the sensor readout. To achieve the diode function, the sensor utilizes an additional pair of driving electrodes to move the potentiometric signal to a sufficiently high base voltage that is required for operating the diode placed in series with the capacitor and between the sensing probes. A single voltage measurement across the capacitor at the end of a chosen time interval is sufficient to reveal any altered ion activity occurring during that period. We demonstrate the applicability of the sensor to identify incurred pH changes in a river water sample during an interval of 2 h. This approach is promising for achieving deployable sensors to monitor ion activity relative to a defined threshold during a time interval with minimal electronic components in a self-powered design.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/del Til·lers, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/del Til·lers, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010 Barcelona, Spain
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
53
|
Satoh Y, Ding H, Yang H, Deng Y, Hsueh AJ, Shimizu T, Qiao M, Ma C, Kariya K, Kurihara T, Suzuki H. Wired Microfabricated Electrochemical Systems. Anal Chem 2021; 93:12655-12663. [PMID: 34476942 DOI: 10.1021/acs.analchem.1c02461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal wires have been used as an alternative to liquid junctions for the connection of solutions in microfabricated electrochemical devices. They exhibit similar performance to liquid junctions, provided that the interfacial potentials at both ends of the wires were appropriately canceled. Cyclic voltammograms of devices with liquid junctions and metal wires were very similar when no current or a low current flowed through the metal wire between the working and reference electrodes. Iridium wires with iridium oxide at both ends facilitated canceling of the interfacial potentials at either end of the junction particularly well, and were used effectively for voltammetry, amperometry, and potentiometry by adjusting the pH of the solutions in the working and reference electrode compartments to be equal. This approach was used to effectively integrate a reliable common reference electrode between multiple working electrodes and to conduct automated electrochemical control of solution transport in microfluidic systems.
Collapse
Affiliation(s)
- Yusei Satoh
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hanlin Ding
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hao Yang
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yi Deng
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - An-Ju Hsueh
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tetsuro Shimizu
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Mu Qiao
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Chengrui Ma
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Koki Kariya
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Toshiaki Kurihara
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroaki Suzuki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
54
|
Mutalib NAA, Deng Y, Hsueh A, Kariya K, Kurihara T, Suzuki H. Control of Interfacial Potentials and Redox Reactions on Bipolar Electrodes Using Ag/AgCl. ELECTROANAL 2021. [DOI: 10.1002/elan.202100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nurul Asyikeen Ab Mutalib
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Yi Deng
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - An‐Ju Hsueh
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Koki Kariya
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Toshiaki Kurihara
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Hiroaki Suzuki
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
55
|
Mao B, Qian L, Govindhan M, Liu Z, Chen A. Simultaneous electrochemical detection of guanine and adenine using reduced graphene oxide decorated with AuPt nanoclusters. Mikrochim Acta 2021; 188:276. [PMID: 34319444 DOI: 10.1007/s00604-021-04926-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/04/2021] [Indexed: 01/14/2023]
Abstract
A rapid and sensitive electrochemical sensing platform is reported based on bimetallic gold-platinum nanoclusters (AuPtNCs) dispersed on reduced graphene oxide (rGO) for the simultaneous detection of guanine and adenine using square wave voltammetry (SWV). The synthesis of AuPtNCs-rGO nanocomposite was achieved by a simultaneous reduction of graphene oxide (GO) and metal ions (Au3+ and Pt4+) in an aqueous solution. The developed AuPtNCs-rGO electrochemical sensor with the optimized 50:50 bimetallic (Au:Pt) nanoclusters exhibited an outstanding electrocatalytic performance towards the simultaneous oxidation of guanine and adenine without the aid of any enzymes or mediators in physiological pH. The electrochemical sensor platform showed low detection limits of 60 nM and 100 nM (S/N = 3) for guanine and adenine, respectively, with high sensitivity and an extensive linear range from 1.0 μM to 0.2 mM for both guanine and adenine. The interference from the most common electrochemically active interferents, including ascorbic acid, uric acid, and dopamine, was almost negligible. The simultaneous sensing of guanine and adenine in denatured Salmon Sperm DNA sample was successfully achieved using the proposed platform, showing that the AuPtNCs-rGO nanocomposite could provide auspicious clinical diagnosis and biomedical applications.
Collapse
Affiliation(s)
- Brennan Mao
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Lanting Qian
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Maduraiveeran Govindhan
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.,Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Zhonggang Liu
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, Anhui, People's Republic of China
| | - Aicheng Chen
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada. .,Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
56
|
Ma X, Gao W, Du F, Yuan F, Yu J, Guan Y, Sojic N, Xu G. Rational Design of Electrochemiluminescent Devices. Acc Chem Res 2021; 54:2936-2945. [PMID: 34165296 DOI: 10.1021/acs.accounts.1c00230] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrochemiluminescence (ECL) is a light-emitting process which combines the intriguing merits of both electrochemical and chemiluminescent methods. It is an extensively used method especially in clinical analysis and biological research due to its high sensitivity, wide dynamic range, and good reliability. ECL devices are critical for the development and applications of ECL. Much effort has been expended to improve the sensitivity, portability, affordability, and throughput of new ECL devices, which allow ECL to adapt broad usage scenarios.In this Account, we summarize our efforts on the recent development of ECL devices including new electrodes, ECL devices based on a wireless power transfer (WPT) technique, and novel bipolar electrochemistry. As the essential components in the ECL devices, electrodes play an important role in ECL detection. We have significantly improved the sensitivity of luminol ECL detection of H2O2 by using a stainless steel electrode. By using semiconductor materials (e.g., silicon and BiVO4), we have exploited photoinduced ECL to generate intense emission at much lower potentials upon illumination. For convenience, portability, and disposability, ECL devices based on cheap WPT devices have been designed. A small diode has been employed to rectify alternating current into direct current to dramatically enhance ECL intensity, enabling sensitive ECL detection using a smart phone as a detector. Finally, we have developed several ECL devices based on bipolar electrochemistry in view of the convenience of multiplex ECL sensing using a bipolar electrode (BPE). On the basis of the wireless feature of BPE, we have employed movable BPEs (e.g., BPE swimmers and magnetic rotating BPE) for deep exploration of the motional and ECL properties of dynamic BPE systems. To make full use of the ECL solution, we have dispersed numerous micro-/nano-BPEs in solution to produce intense 3D ECL in the entire solution, instead of 2D ECL in conventional ECL devices. In addition, the interference of ECL noise from driving electrodes was minimized by introducing the stainless steel with a passivation layer as the driving electrode. To eliminate the need for the fabrication of electrode arrays and the interference from the driving electrode and to decrease the applied voltage, we develop a new-type BPE device consisting of a single-electrode electrochemical system (SEES) based on a resistance-induced potential difference. The SEES is fabricated easily by attaching a multiperforated plate to a single film electrode. It enables the simultaneous detection of many samples and analytes using only a single film electrode (e.g., screen-printed electrode) instead of electrode arrays. It is of great potential in clinical analysis especially for multiple-biomarker detection, drug screening, and biological studies. Looking forward, we believe that more ECL devices and related ECL materials and detection methods will be developed for a wide range of applications, such as in vitro diagnosis, point-of-care testing, high-throughput analysis, drug screening, biological study, and mechanism investigation.
Collapse
Affiliation(s)
- Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Yu
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Neso Sojic
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
57
|
Masturah binti Fakhruddin S, Ino K, Inoue KY, Nashimoto Y, Shiku H. Bipolar Electrode‐based Electrochromic Devices for Analytical Applications – A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| | - Kumi Y. Inoue
- Graduate School of Environmental Studies Tohoku University Sendai 980-8579 Japan
- Center for Basic Education Faculty of Engineering Graduate Faculty of Interdisciplinary Research University of Yamanashi Kofu 400-8511 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University Sendai 980-8578 Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies Tohoku University Sendai 980-8579 Japan
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| |
Collapse
|
58
|
Borchers JS, Campbell CR, Van Scoy SB, Clark MJ, Anand RK. Redox Cycling at an Array of Interdigitated Bipolar Electrodes for Enhanced Sensitivity in Biosensing**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Janis S. Borchers
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Claire R. Campbell
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Savanah B. Van Scoy
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Morgan J. Clark
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Robbyn K. Anand
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| |
Collapse
|