51
|
Niu Z, Rao H, Xue X, Luo M, Liu X, Xue Z, Lu X. A Fenton-like reaction system with analyte-activated catfish effect as an enhanced colorimetric and photothermal dopamine bioassay. Analyst 2021; 146:1689-1697. [PMID: 33443257 DOI: 10.1039/d0an01830a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fenton-like reaction systems have been proven to be efficient as powerful promoters in advanced oxidation processes (AOPs) due to their generated reactive oxygen species (ROS), such as ˙OH and ˙O2-, which can further oxidize a specific chromogenic substrate like 3,3',5,5'-tetramethylbenzidine (TMB) to generate sensitive color readout and thereby demonstrate more potential in the colorimetric analysis field. However, the inherent drawback of the low rate-limiting step of Fe3+/Fe2+ conversion in the Fenton-like reaction and its resultant inefficiency for H2O2 decomposition hinder its practical applications. We herein communicate an analyte-activated catfish effect based catalysis strategy to promote the Fenton-like reaction, in which dopamine, like a catfish, was added to activate the Fenton-like reaction. By definition, the conversion rate of Fe3+ to Fe2+ in the proposed Fenton-like reaction can be significantly accelerated through a specific DA-mediated electron transfer process which further promotes the reaction activity in the Fenton-like reaction to generate more ˙OH and ˙O2- radicals. As a result, the produced ˙OH and ˙O2- radicals in such a reaction system can significantly oxidize TMB indicator into its oxidation product (TMBox) and therefore indicate the corresponding target-dependent color and photothermal signal readout, enabling the successful fabrication of a more sensitive and stable colorimetric and photothermometric DA sensor. More significantly, this strategy can greatly advance the practical application of Fenton-like reactions in the fields of colorimetric and photothermometric bioassays.
Collapse
Affiliation(s)
- Zhengrong Niu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | |
Collapse
|
52
|
Chen L, Qi W, Du C, Wang Y, Liu C, Huang X, Chang X. A novel copper ion sensing fluorescent probe for fast detection of pyrophosphate and alkaline phosphatase. NEW J CHEM 2021. [DOI: 10.1039/d1nj00075f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A Cu2+ sensing fluorescent probe is synthesized via a Mannich reaction and is applied in the fluorescence detection of pyrophosphate and alkaline phosphatase.
Collapse
Affiliation(s)
- Lei Chen
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Wenjing Qi
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Chengpei Du
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Chun Liu
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Xiaomei Huang
- Department of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou 635000
- P. R. China
| | - Xiaojuan Chang
- Chongqing Municipal and Environmental Sanitation Monitoring Department
- Chongqing 401121
- P. R. China
| |
Collapse
|
53
|
Peng L, Lin CJ, Shi L, Cai F. Magnetic mesoporous CoFe 2O 4 labels reacted with TMB for use in a sandwiched photothermal immunoassay for thyroglobulin. NEW J CHEM 2021. [DOI: 10.1039/d1nj04897j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative photothermal immunoassay with a sandwich-type immunoreaction mode was designed for the sensitive screening of thyroglobulin on capture antibody-coated microtiter plates using a handheld digital thermometer as the readout device.
Collapse
Affiliation(s)
- Lin Peng
- Xiamen Changgung Hospital, Xiamen 361028, Fujian, People's Republic of China
| | - Chi Jui Lin
- Xiamen Changgung Hospital, Xiamen 361028, Fujian, People's Republic of China
| | - Lei Shi
- Xiamen Changgung Hospital, Xiamen 361028, Fujian, People's Republic of China
| | - Fan Cai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| |
Collapse
|
54
|
Liu W, Wang X, Tai C, Yan W, Yu R, Li Y, Zhao H, Zhou F. Four-Channel Photothermal Plate Reader for High-Throughput Nanoparticle-Amplified Immunoassay. Anal Chem 2020; 92:15705-15710. [PMID: 33270418 DOI: 10.1021/acs.analchem.0c03555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We enhanced the sample throughput of microplate-based photothermal detection by using a semicylindrical prism to expand a point laser source to a long beam for illuminating multiple wells. Coupled with four epoxy-coated thermocouples in alignment with wells on a 96-well microplate, four parallel immunoassays of C-reaction protein (CRP) with antibody-conjugated gold nanoparticles can be simultaneously performed. The sample throughput is further increased by mounting the Styrofoam-enclosed microplate onto a translational/elevator stage so that immunoassays and thermocouple rinse/drying cycles can be implemented in a programmed fashion. The automated assay with three rinse/drying cycles takes only 34.5 min for four samples or 8.62 min/sample, whereas the manual mode with a single thermocouple and a point light source requires at least 66 min for just one sample. With careful calibration of the energy distribution of the expanded laser beam and controllable immersion of the thermocouples, excellent well-to-well (RSD = 1.3%) and cycle-to-cycle (RSD = 4.0%) reproducibility can be attained. The temperature changes can be correlated with the CRP concentration by the Langmuir isotherm, and the low limit of detection, 0.52 ng/mL or 4.33 pM, is well below the plasma CRP levels of both healthy people (<5 μg/mL) and patients (10-500 μg/mL). The serum CRP concentrations quantified by our plate reader are in excellent agreement with the immunoturbidimetric results, demonstrating that this cost-effective, robust, and high-throughput mode for microplate-based immunoassays is amenable to detecting biomarkers in many clinical samples.
Collapse
Affiliation(s)
- Wenwen Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P. R. China
| | - Chuanqi Tai
- Department of Interventional Therapy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 25001, P. R. China
| | - Wenyuan Yan
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Ruichuang Yu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yanan Li
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Hui Zhao
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
55
|
Liu X, Wu Z, Yang X, Wang Q, Zou L, Mei W, Zheng Y, Wang K. Photothermal and fluorescent dual-mode assay based on the formation of polydopamine nanoparticles for accurate determination of organophosphate pesticides. Mikrochim Acta 2020; 187:652. [PMID: 33175189 DOI: 10.1007/s00604-020-04629-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/28/2020] [Indexed: 02/04/2023]
Abstract
A photothermal and fluorescent dual-mode assay for sensitive organophosphate pesticides (Ops) determination is reported based on alkaline phosphatase (ALP)-inhibition-induced formation of polydopamine (PDA) nanoparticles. In the presence of ALP, ascorbic acid 2-phosphate (AAP) can be catalyzed to produce ascorbic acid (AA). AA can reduce MnO2 nanosheets, further inhibiting the oxidation of dopamine (DA). Ops as an inhibitor for ALP activity prevents the formation of AA and the reduction of MnO2 nanosheets. Eventually, the formation of PDA nanoparticles is promoted. The inhibitory effect of Ops on ALP activity causes obvious changes of photothermal signals and fluorescence signal at 495 nm. The detection limit (LOD) of dimethoate is 0.1 μM. The method displays excellent sensing capability for the dimethoate assay in real water with good recoveries of 99.4-107.6%. Graphical abstract A photothermal and fluorescent dual-mode biosensor for sensitive Ops detection was reported based on alkaline phosphatase (ALP)-inhibition-induced formation of polydopamine (PDA) nanoparticles. The dual-mode method significantly improved the accuracy and reliability of the results.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zhaoxing Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Wenjing Mei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
| |
Collapse
|
56
|
Rani S, Bandyopadhyay-Ghosh S, Ghosh SB, Liu G. Advances in Sensing Technologies for Monitoring of Bone Health. BIOSENSORS-BASEL 2020; 10:bios10040042. [PMID: 32326229 PMCID: PMC7235906 DOI: 10.3390/bios10040042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
: Changing lifestyle and food habits are responsible for health problems, especially those related to bone in an aging population. Poor bone health has now become a serious matter of concern for many of us. In order to avoid serious consequences, the early prediction of symptoms and diagnosis of bone diseases have become the need of the hour. From this inspiration, the evolution of different bone health monitoring techniques and measurement methods practiced by researchers and healthcare companies has been discussed. This paper focuses on various types of bone diseases along with the modeling and remodeling phenomena of bones. The evolution of various diagnosis tests for bone health monitoring has been also discussed. Various types of bone turnover markers, their assessment techniques, and recent developments for the monitoring of biochemical markers to diagnose the bone conditions are highlighted. Then, the paper focuses on the potential assessment of the recent sensing techniques (physical sensors and biosensors) that are currently available for bone health monitoring. Considering the importance of electrochemical biosensors in terms of high sensitivity and reliability, specific attention has been given to the recent development of electrochemical biosensors and significance in real-time monitoring of bone health.
Collapse
Affiliation(s)
- Seema Rani
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Rajasthan 303007, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Rajasthan 303007, India
- Correspondence:
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Rajasthan 303007, India
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
57
|
Zhang S, Chen Y, Huang Y, Dai H, Lin Y. Design and application of proximity hybridization-based multiple stimuli-responsive immunosensing platform for ovarian cancer biomarker detection. Biosens Bioelectron 2020; 159:112201. [PMID: 32364942 DOI: 10.1016/j.bios.2020.112201] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
Abstract
The development of convenient and sensitive multi-readout immunoassay is crucial but highly challenged for meeting the demand of exactness and diversity in early clinical diagnosis. Herein, a split-type multiple stimuli-responsive biosensor was outlined combined with the outstanding superiority of luminol probe-based electrochemiluminescence (ECL) strategy, mimicking enzyme-mediated colorimetric system and portable photothermal effect-induced temperature sensing. Especially, versatile MoS2 nanosheets (MoS2 NSs) with distinguished property not only acted as dual-promoter to improve the cathodic ECL of luminol because of its good electrocatalytic activity for dissolved O2 and favorable photothermal effect for elevating electrode temperature, but also used as nanozyme to regulate subsequent split-type visual colorimetric sensing due to its peroxidase-like activity for the generation of oxidized 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) in ABTS-H2O2 colorimetric system. More importantly, the green oxidized ABTS (ABTS•+) also exhibited strong near-infrared (NIR) laser-triggered photothermal performance, which can be innovatively employed as sensitive photothermal agent for converting biological signals into temperature under the irradiation of NIR laser, accomplishing more simpler temperature quantitative detection by a portable thermometer. Furthermore, on account of the affinity discrepancy of MoS2 NSs to single-stranded and double-stranded nucleic acids, a label-free proximity hybridization-based multifunctional assay platform was proposed for target detection with human epididymis-specific protein 4 (HE4) as model protein, demonstrating good analytical performances. Significantly, this innovative work not only enriches the foundational study of multi-model biosensing based on the unitary material but also provides an unambiguous guideline for exploring more accurate and simpler point-of-care diagnosis.
Collapse
Affiliation(s)
- Shupei Zhang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China; Fujian Provincial Maternity and Children Hospital, Fuzhou, Fujian, 350108, China
| | - Yanjie Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Hong Dai
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China; Fujian Provincial Maternity and Children Hospital, Fuzhou, Fujian, 350108, China.
| | - Yanyu Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
58
|
Dai T, Wan Y, Tian R, Wang S, Han T, Wang G. In Situ Cation Exchange Generated ZnS–Ag2S Nanoparticles for Photothermal Detection of Transcription Factor. ACS APPLIED BIO MATERIALS 2020; 3:3260-3267. [DOI: 10.1021/acsabm.0c00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tianyue Dai
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yifei Wan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Ruifen Tian
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Sicheng Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Ting Han
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Guangfeng Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
59
|
Xue X, Gao M, Rao H, Luo M, Wang H, An P, Feng T, Lu X, Xue Z, Liu X. Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles. Anal Chim Acta 2020; 1105:197-207. [DOI: 10.1016/j.aca.2020.01.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/28/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
|
60
|
Xue X, Luo M, Rao H, Xue Z, Wang B, Liu X, Lu X. Enhanced Thermometric Sensor for Arsenate Analysis Based on Dual Temperature Readout Signaling Strategy. Anal Chem 2020; 92:4672-4680. [PMID: 32090547 DOI: 10.1021/acs.analchem.0c00358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New methods for portable detection of arsenate are still in urgent need. Herein, we explored a simple but sensitive thermometric strategy for arsenate determination without complex instruments and skilled technicians. Cobalt oxyhydroxide (CoOOH) nanoflakes, can ingeniously decompose hydrogen peroxide into oxygen in a sealed reaction vessel, accompanied by marked pressure and significant temperature increase due to the exothermic reaction effect (ΔH = -98.2 kJ/mol). The increased pressure then compelled a certain amount of H2O overflowing from the drainage device into another vessel, leading to a significant temperature decrease due to the preloaded ammonium nitrate (NH4NO3) and its good dissolution endothermic effect (ΔH = 25.4 kJ/mol). In the presence of arsenate, the catalytic activity of CoOOH nanoflakes for H2O2 decomposition was inhibited dramatically, resulting in an obvious decrease of the pressure, weighting water and temperature response. The two temperature responses with increasing and decreasing feature were easily measured through a common thermometer, and exhibited an effective signaling amplification via coupling both "signal-on" and "signal-off" temperature readout elements. The obtained dual superimposing temperature readout exhibits a good linear with the concentration of arsenate with a lower detection limit (51 nM, 3.8 ppb). Compared to the inductively coupled plasma mass spectrometry, this enhanced thermometric strategy provides a simple, rapid, convenient, low cost, and portable platform for sensing arsenate in real environmental water.
Collapse
Affiliation(s)
- Xin Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| | - Mingyue Luo
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| | - Honghong Rao
- School of Chemistry & Environmental Engineering, Lanzhou City University, Lanzhou, 730070 (China)
| | - Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| | - Baodui Wang
- Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000 (China)
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| |
Collapse
|
61
|
Tao Y, Luo F, Guo L, Qiu B, Lin Z. Target-triggered aggregation of gold nanoparticles for photothermal quantitative detection of adenosine using a thermometer as readout. Anal Chim Acta 2020; 1110:151-157. [PMID: 32278390 DOI: 10.1016/j.aca.2020.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Colorimetric platform using the aggregation of gold nanoparticles (AuNPs) is a pretty simple method for biosensing, but advanced instruments such as specterophotometer is still needed to achieve accurately quantitative readout. Aggregated AuNPs exhibit excellent photothermal properties under near-infrared laser irradiation, which is significantly different from non-aggregated AuNPs. Herein, given the different photothermal effect, we translated the AuNPs-based colorimetric assay into a photothermal assay for the quantitative detection of adenosine using a thermometer as readout. Short single-stranded DNA (ssDNA, adenosine aptamer) was adsorbed on the surface of AuNPs and hence prevented the aggregation of AuNPs under high ionic concentration. The presence of adenosine caused the structural change of ssDNA and the AuNPs became aggregated. The enhanced temperature under NIR-laser irradiation has a linear response to the concentration of adenosine in the range of 2.0-50.0 μM. The detection limit was 1.7 μM. This proposed method is portable, easy and applicable to the quantitative assay of other targets by simply replacing of the sequence of ssDNA.
Collapse
Affiliation(s)
- Yingzhou Tao
- Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Fang Luo
- Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Longhua Guo
- Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Bin Qiu
- Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zhenyu Lin
- Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
62
|
Zhou X, Khusbu FY, Chen H, Ma C. A turn-on fluorescence assay of alkaline phosphatase activity based on an enzyme-triggered conformational switch of G-quadruplex. Talanta 2020; 208:120453. [DOI: 10.1016/j.talanta.2019.120453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
|
63
|
Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer. Anal Chim Acta 2020; 1098:117-124. [DOI: 10.1016/j.aca.2019.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 01/19/2023]
|
64
|
Rao H, Huang H, Zhang X, Xue X, Luo M, Liu H, Xue Z. A simple thermometer-based photothermometric assay for alkaline phosphatase activity based on target-induced nanoprobe generation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03920a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alkaline phosphatase (ALP)-induced in situ generation of Prussian blue nanoparticles for photothermometric ALP detection.
Collapse
Affiliation(s)
- Honghong Rao
- College of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou
- China
| | - Huiyi Huang
- College of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou
- China
- College of Chemistry and Chemical Engineering
| | - Xinyuan Zhang
- College of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou
- China
- College of Chemistry and Chemical Engineering
| | - Xin Xue
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Mingyue Luo
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou
- China
| | - Zhonghua Xue
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
65
|
Wang L, Zhu F, Zhu Y, Xie S, Chen M, Xiong Y, Liu Q, Yang H, Chen X. Intelligent Platform for Simultaneous Detection of Multiple Aminoglycosides Based on a Ratiometric Paper-Based Device with Digital Fluorescence Detector Readout. ACS Sens 2019; 4:3283-3290. [PMID: 31736294 DOI: 10.1021/acssensors.9b01845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A digital fluorescence detector (DFD), a handheld fluorescence detection device, can convert the fluorescence signal of samples into the corresponding fluorescer concentration. Herein, by adopting a DFD as the readout, a novel intelligent platform was developed based on a ratiometric paper-based device (RPD) for multiple aminoglycoside detection. There are five layers and four parallel channels contained in the designed RPD, functioning as reagent storage, fluidic path control and signal processing, respectively. The rationale of this design lies in the fact that aptamer/graphitic carbon nitride nanosheet (Apt/g-C3N4 NS) modified layers can catalyze o-phenylenediamine to fluorescent 2,3-diaminophenazine (DAP) in the presence of H2O2. When Apt was removed from nanosheets via the Apt-target reaction, the peroxidase-like activity would be decreased, thus decreasing the production of DAP. All the changes of the fluorescence DAP signal can be read out using a portable DFD. Based on the DFD signal change related to the concentration of the target, a quantitative reaction platform was established. Furthermore, the sample flow and Apt-target reaction time can be reasonably regulated using the H2O2-cleavable hydrophobic compound modified layer placed between the target recognition region and detection region. Then, the practicality of this platform was verified through realizing sensitive analysis of streptomycin, tobramycin, and kanamycin simultaneously. Overall, with merits including portability and ease of operation, the platform shows great potential in on-site simultaneous detection of multiple targets, especially in resource-limited settings.
Collapse
Affiliation(s)
- Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- School of Life Science, Central South University, Changsha 410013, China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| |
Collapse
|
66
|
Xiao W, Deng Z, Huang J, Huang Z, Zhuang M, Yuan Y, Nie J, Zhang Y. Highly Sensitive Colorimetric Detection of a Variety of Analytes via the Tyndall Effect. Anal Chem 2019; 91:15114-15122. [DOI: 10.1021/acs.analchem.9b03824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wencheng Xiao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zihao Deng
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jinkun Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ziheng Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Miaomiao Zhuang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yali Yuan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|